Roxbyite, a New Copper Sulphide Mineral from the Olympic Dam Deposit, Roxby Downs, South Australia

1988 ◽  
Vol 52 (366) ◽  
pp. 323-330 ◽  
Author(s):  
W. G. Mumme ◽  
G. J. Sparrow ◽  
G. S. Walker

AbstractRoxbyite (Cu1.74–1.82S), a new mineral, was isolated from drill core from the Olympic Dam deposit, from copper flotation concentrates from the Olympic Dam pilot plant, and from reaction residues obtained by treating certain concentrates with sulphuric acid. Powder X-ray diffraction data and the composition of the mineral are similar to results reported previously for the unnamed mineral of composition Cu1.83S (with a trace of iron) from the El Teniente deposit in Chile, and to copper sulphides of composition CuxS, 1.75 ⩽ x ⩽ 1.86, prepared electrochemically by several workers. A Weissenberg single-crystal study shows roxbyite to be monoclinic with a = 53.79, b = 30.90, c = 13.36Å, β = 90.0° and space group alternatives C2/m, Cm or C2. Some iron in the structure may stabilize the mineral.

2013 ◽  
Vol 77 (3) ◽  
pp. 385-398 ◽  
Author(s):  
P. Elliott ◽  
J. Brugger ◽  
T. Caradoc-Davies ◽  
A. Pring

AbstractHylbrownite, ideally Na3MgP3O10·12H2O, the second known triphosphate mineral, is a new mineral species from the Dome Rock mine, Boolcoomatta Reserve, Olary Province, South Australia, Australia. The mineral forms aggregates and sprays of crystals up to 0.5 mm across with individual crystals up to 0.12 mm in length and 0.02 mm in width. Crystals are thin prismatic to acicular in habit and are elongate along [001]. Forms observed are {010}, {100}, {001}, {210} and {201}. Crystals are colourless to white, possess a white streak, are transparent, brittle, have a vitreous lustre and are nonfluorescent. The measured density is 1.81(4) g cm−3; Mohs' hardness was not determined. Cleavage is good parallel to {001} and to {100} and the fracture is uneven. Hylbrownite crystals are nonpleochroic, biaxial (−), with α = 1.390(4), β = 1.421(4), γ = 1.446(4) and 2Vcalc. = 82.2°. Hylbrownite is monoclinic, space group P21/n, with a = 14.722(3), b = 9.240(2), c = 15.052(3) Å, β = 90.01(3)°, V = 2047.5(7) Å3, (single-crystal data) and Z = 4. The strongest lines in the powder X-ray diffraction pattern are [d (Å)(I)(hkl)]: 10.530(60)(10,101), 7.357(80)(200), 6.951(100)(11, 111), 4.754(35)(10, 103), 3.934(40)(022), 3.510(45)(30, 303), 3.336(35)(41, 411). Chemical analysis by electron microprobe gave Na2O 16.08, MgO 7.08, CaO 0.43, P2O5 37.60, H2Ocalc 38.45, total 99.64 wt.%. The empirical formula, calculated on the basis of 22 oxygen atoms is Na2.93Mg0.99Ca0.04P2.99O9.97·12.03H2O. The crystal structure was solved from single-crystal X-ray diffraction data using synchrotron radiation (T = 123 K) and refined to R1 = 4.50% on the basis of 2417 observed reflections with F0 > 4 σ(F0). [Mg(H2O)3P3O10] clusters link in the b direction to Naφ6 octahedra, by face and corner sharing. Edge sharing Naφ6 Octahedra and Naφ7 polyhedra form Na2O9 groups which link via corners to form chains along the b direction. Chains link to [Mg(H2O)3P3O10] clusters via corner-sharing in the c direction and form a thick sheet parallel to (100). Sheets are linked in the a direction via hydrogen bonds.


2019 ◽  
Vol 83 (4) ◽  
pp. 507-514
Author(s):  
Peter Elliott ◽  
Jakub Plášil ◽  
Václav Petříček ◽  
Jiří Čejka ◽  
Luca Bindi

ABSTRACTBaumoite, Ba0.5[(UO2)3O8Mo2(OH)3](H2O)~3, is a new mineral found near Radium Hill, South Australia, where it occurs in a granite matrix associated with baryte, metatorbernite, phurcalite and kaolinite. Baumoite forms thin crusts of yellow to orange–yellow tabular to prismatic crystals. The mineral is translucent with a vitreous lustre and pale yellow streak. Crystals are brittle, the fracture is uneven and show one excellent cleavage. The Mohs hardness is ~2½. The calculated density is 4.61 g/cm3. Optically, baumoite crystals are biaxial (–), with α = 1.716(4), β = 1.761(4), γ = 1.767(4) (white light); and 2Vcalc= 42.2°. Electron microprobe analyses gave the empirical formula Ba0.87Ca0.03Al0.04U2.97Mo2.02P0.03O22H11.99, based on 22 O atoms per formula unit. The eight strongest lines in the powder X-ray diffraction pattern are [dobsÅ (I) (hkl)]: 9.175(39)(12${\bar 1}$), 7.450(100)(020), 3.554(20)(221), 3.365(31)(004, 202), 3.255(31)(123, 30${\bar 2}$), 3.209(28)(12${\bar 4}$), 3.067(33)(30${\bar 3}$, 222, 32${\bar 2}$) and 2.977(20)(142). Single-crystal X-ray studies (R1= 5.85% for 1892 main reflections) indicate that baumoite is monoclinic, superspace groupX2/m(a0g)0swithX= (0,½,0,½), with unit-cell parameters:a= 9.8337(3),b= 15.0436(5),c= 14.2055(6) Å, β = 108.978(3)°,V= 1987.25(13) Å3andZ= 4. The crystal structure is twinned and incommensurately modulated and is based upon sheets of U6+and Mo6+polyhedra of unique topology. Four independent cationic sites partially occupied by Ba atoms are located between the sheets, together with H2O molecules.


2020 ◽  
Vol 58 (5) ◽  
pp. 549-562
Author(s):  
Anatoly V. Kasatkin ◽  
Fabrizio Nestola ◽  
Radek Škoda ◽  
Nikita V. Chukanov ◽  
Atali A. Agakhanov ◽  
...  

ABSTRACT Hingganite-(Nd), ideally Nd2□Be2Si2O8(OH)2, is a new gadolinite group, gadolinite supergroup mineral discovered at Zagi Mountain, near Kafoor Dheri, about 4 km S of Warsak and 30 km NW of Peshawar, Khyber Pakhtunkhwa Province, Pakistan. The new mineral forms zones measuring up to 1 × 1 mm2 in loose prismatic crystals up to 0.7 cm long, where it is intergrown with hingganite-(Y). Other associated minerals include aegirine, microcline, fergusonite-(Y), and zircon. Hingganite-(Nd) is dark greenish-brown, transparent, has vitreous luster and a white streak. It is brittle and has a conchoidal fracture. No cleavage or parting are observed. Mohs hardness is 5½–6. Dcalc. = 4.690 g/cm3. Hingganite-(Nd) is non-pleochroic, optically biaxial (+), α = 1.746(5), β = 1.766(5), γ = 1.792(6) (589 nm). 2Vmeas. = 80(7)°; 2Vcalc. = 84°. Dispersion of optical axes was not observed. The average chemical composition of hingganite-(Nd) is as follows (wt.%; electron microprobe, BeO, B2O3, and Lu2O3 content measured by LA-ICP-MS; H2O calculated by stoichiometry): BeO 9.64, CaO 0.45, MnO 0.10, FeO 3.03, B2O3 0.42, Y2O3 8.75, La2O3 1.63, Ce2O3 12.89, Pr2O3 3.09, Nd2O3 16.90, Sm2O3 5.97, Eu2O3 1.08, Gd2O3 5.15, Tb2O3 0.50, Dy2O3 2.50, Ho2O3 0.33, Er2O3 0.84, Tm2O3 0.10, Yb2O3 0.44, Lu2O3 0.04, ThO2 0.13, SiO2 23.55, H2O 2.72, total 100.25. The empirical formula calculated on the basis of 2 Si apfu is (Nd0.513Ce0.401Y0.395Sm0.175Gd0.145Pr0.096Dy0.068La0.051Ca0.041Eu0.031Er0.022Tb0.014Yb0.011Ho0.009Tm0.003Th0.003Lu0.001)Σ1.979(□0.778Fe2+0.215Mn0.007)Σ1.000(Be1.967B0.062)Σ2.029Si2O8.46(OH)1.54. Hingganite-(Nd) is monoclinic, space group P21/c with a = 4.77193(15), b = 7.6422(2), c = 9.9299(2) Å, β = 89.851(2)°, V = 362.123(14) Å3, and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.105 (95) (011), 4.959 (56) (002), 4.773 (100) (100), 3.462 (58) (102), 3.122 , 3.028 (61) (013), 2.864 (87) (121), 2.573 (89) (113). The crystal structure of hingganite-(Nd) was refined from single-crystal X-ray diffraction data to R = 0.034 for 2007 unique reflections with I > 2σ(I). The new mineral is named as an analogue of hingganite-(Y), hingganite-(Yb), and hingganite-(Ce), but with Nd dominant among the rare earth elements.


2009 ◽  
Vol 73 (6) ◽  
pp. 1027-1032 ◽  
Author(s):  
F. Nestola ◽  
A. Guastoni ◽  
L. Bindi ◽  
L. Secco

AbstractDalnegroite, ideally Tl4Pb2(As12Sb8)Σ20S34, is a new mineral from Lengenbach, Binntal, Switzerland. It occurs as anhedral to subhedral grains up to 200 μm across, closely associated with realgar, pyrite, Sb-rich seligmanite in a gangue of dolomite. Dalnegroite is opaque with a submetallic lustre and shows a brownish-red streak. It is brittle; the Vickers hardness (VHN25) is 87 kg mm-2(range: 69—101) (Mohs hardness ∼3—3½). In reflected light, dalnegroite is highly bireflectant and weakly pleochroic, from white to a slightly greenish-grey. In cross-polarized light, it is highly anisotropic with bluish to green rotation tints and red internal reflections.According to chemical and X-ray diffraction data, dalnegroite appears to be isotypic with chabournéite, Tl5-xPb2x(Sb,As)21-xS34. It is triclinic, probable space groupP1, witha= 16.217(7) Å,b= 42.544(9) Å,c= 8.557(4) Å, α = 95.72(4)°, β = 90.25(4)°, γ = 96.78(4)°,V= 5832(4) Å3,Z= 4.The nine strongest powder-diffraction lines [d(Å) (I/I0) (hkl)] are: 3.927 (100) (10 0); 3.775 (45) (22); 3.685 (45) (60); 3.620 (50) (440); 3.124 (50) (2); 2.929 (60) (42); 2.850 (70) (42); 2.579 (45) (02); 2.097 (60) (024). The mean of 11 electron microprobe analyses gave elemental concentrations as follows: Pb 10.09(1) wt.%, Tl 20.36(1), Sb 23.95(1), As 21.33(8), S 26.16(8), totalling 101.95 wt.%, corresponding to Tl4.15Pb2.03(As11.86Sb8.20)S34. The new mineral is named for Alberto Dal Negro, Professor in Mineralogy and Crystallography at the University of Padova since 1976.


2002 ◽  
Vol 58 (2) ◽  
pp. 191-197 ◽  
Author(s):  
O. Perez ◽  
A. C. Masset ◽  
H. Leligny ◽  
G. Baldinozzi ◽  
D. Pelloquin ◽  
...  

The structure of the m = 2 tubular compound Bi4Sr12Co8O30−δ, bismuth strontium cobalt oxide, was determined by single-crystal X-ray diffraction. This phase of orthorhombic symmetry exhibits a very strong tetragonal pseudosymmetry. The structure consists of 90°-oriented Bi2Sr2CoO6+δ slices, four Co atoms wide, forming [Sr4Co4O13]∞ pillars at their intersection. The Co atoms in these pillars form four corner-sharing CoO5 bipyramids. In the resulting [Co4O13] cluster, an anionic disorder is evidenced and discussed. Then, an accurate description of the particular structure of the pillars is given. Finally, a comparison with the Mn tubular compound Bi3.6Sr12.4Mn8O30−δ is carried out.


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2018 ◽  
Vol 83 (4) ◽  
pp. 523-530 ◽  
Author(s):  
Victor V. Subbotin ◽  
Anna Vymazalová ◽  
František Laufek ◽  
Yevgeny E. Savchenko ◽  
Chris J. Stanley ◽  
...  

AbstractMitrofanovite, Pt3Te4, is a new telluride discovered in low-sulfide disseminated ore in the East Chuarvy deposit, Fedorovo–Pana intrusion, Kola Peninsula, Russia. It forms anhedral grains (up to ~20 μm × 50 μm) commonly in intergrowths with moncheite in aggregates with lukkulaisvaaraite, kotulskite, vysotskite, braggite, keithconnite, rustenburgite and Pt–Fe alloys hosted by a chalcopyrite–pentlandite–pyrrhotite matrix. Associated silicates are: orthopyroxene, augite, olivine, amphiboles and plagioclase. Mitrofanovite is brittle; it has a metallic lustre and a grey streak. Mitrofanovite has a good cleavage, along {001}. In plane-polarised light, mitrofanovite is bright white with medium to strong bireflectance, slight pleochroism, and strong anisotropy on non-basal sections with greyish brown rotation tints; it exhibits no internal reflections. Reflectance values for the synthetic analogue of mitrofanovite in air (Ro, Re’ in %) are: 58.4, 54.6 at 470 nm; 62.7, 58.0 at 546 nm; 63.4, 59.1 at 589 nm; and 63.6, 59.5 at 650 nm. Fifteen electron-microprobe analyses of mitrofanovite gave an average composition: Pt 52.08, Pd 0.19, Te 47.08 and Bi 0.91, total 100.27 wt.%, corresponding to the formula (Pt2.91Pd0.02)Σ2.93(Te4.02Bi0.05)Σ4.07 based on 7 atoms; the average of eleven analyses on synthetic analogue is: Pt 52.57 and Te 47.45, total 100.02 wt.%, corresponding to Pt2.94Te4.06. The density, calculated on the basis of the formula, is 11.18 g/cm3. The mineral is trigonal, space group R$\overline 3 $m, with a = 3.9874(1), c = 35.361(1) Å, V = 486.91(2) Å3 and Z = 3. The crystal structure was solved and refined from the powder X-ray-diffraction data of synthetic Pt3Te4. Mitrofanovite is structurally and chemically related to moncheite (PtTe2). The strongest lines in the powder X-ray diffraction pattern of synthetic mitrofanovite [d in Å (I) (hkl)] are: 11.790(23)(003), 5.891(100)(006), 2.851(26)(107), 2.137(16)(1013), 2.039(18)(0114), 1.574(24)(0120), 1.3098(21)(0027). The structural identity of natural mitrofanovite with synthetic Pt3Te4 was confirmed by electron backscatter diffraction measurements on the natural sample. The mineral name is chosen to honour Felix P. Mitrofanov, a Russian geologist who was among the first to discover platinum-group element mineralisation in the Fedorova–Pana complex.


2012 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Syaiful Bahri ◽  
Muhdarina Muhdarina ◽  
Nurhayati Nurhayati ◽  
Fitri Andiyani

Pillared Cengar clay have been synthesized by two methods, first clay suspension is directly mixed into aqueous solution of hydroxy-aluminum polycations (WK) and second by mixing the clay suspension into the solution of sodium acetate and hydroxy-aluminumpolycations (SAK) sequentially. Both clays were calcined in air on atmospheric condition. Diffraction pola, surface morphology and cationexchange capacity of the pillared clays were characterized using X Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) andvisible spectrophotometry methods, respectively. The pillared clays showed increases of basal spacing from 3.57 Å to 4.55 Å and smectiteas a new mineral. Morphology of SAK has more heterogeneous surface with small plates and agglomeration of grains compare with WKwhich small plates. Adsorption of aqueous cation of Cu 2+ were studied on various variables of initial concentration as well as temperatures.As the result, adsorption of cation Cu 2+ on pillared Cengar clay is corresponding to Freundlich isotherm, while the adsorption capacity ofWK on cation Cu 2+ is slightly lower than SAK. The thermodynamic aspect, the WK is reflected possessed exothermic processes withnegative entropy, increased in Gibbs energy and non spontaneous, while the SAK possessed endothermic processes having positive entropy,decreased in Gibbs energy and non spontaneous.


2013 ◽  
Vol 77 (7) ◽  
pp. 3027-3037 ◽  
Author(s):  
C. Biagioni ◽  
P. Orlandi ◽  
F. Nestola ◽  
S. Bianchin

AbstractThe new mineral species oxycalcioroméite, Ca2Sb5+2O6O, has been discovered at the Buca della Vena mine, Stazzema, Apuan Alps, Tuscany, Italy. It occurs as euhedral octahedra, up to 0.1 mm in size, embedded in dolostone lenses in the baryte + pyrite + iron oxides ore. Associated minerals are calcite, cinnabar, derbylite, dolomite, hematite, 'mica', pyrite, sphalerite and 'tourmaline'. Oxycalcioroméite is reddish-brown in colour and transparent. It is isotropic, with ncalc = 1.950.Electron microprobe analysis gave (wt.%; n = 6) Sb2O5 63.73, TiO2 3.53, SnO2 0.28, Sb2O3 10.93, V2O3 0.68, Al2O3 0.28, PbO 0.68, FeO 5.52, MnO 0.13, CaO 13.68, Na2O 0.83, F 1.20, O = F – 0.51, total 100.96. No H2O, above the detection limit, was indicated by either infrared or micro-Raman spectroscopies. The empirical formula, based on 2 cations at the B site, is (Ca1.073Fe2+0.338Sb3+0.330Na0.118Pb0.013Mn0.008)Σ=1.880(Sb5+1.734Ti0.194V0.040Al0.024Sn0.008)Σ=2.000(O6.682F0.278)Σ6.960. The crystal structure study gives a cubic unit cell, space group Fdm, with a 10.3042(7) Å, V 1094.06(13) Å3, Z = 8. The five strongest X-ray powder diffraction lines are [d(Å)I(visually estimated)(hkl)]: 3.105(m)(311); 2.977(s)(222); 2.576(m)(400); 1.824(ms)(440); and 1.556(ms)(622). The crystal structure of oxycalcioroméite has been solved by X-ray single-crystal study on the basis of 114 observed reflections, with a final R1 = 0.0114. It agrees with the general features of the members of the pyrochlore supergroup.


Sign in / Sign up

Export Citation Format

Share Document