Coquandite, Sb6O8(SO4).H2O, a new mineral from Pereta, Tuscany, Italy, and two other localities

1992 ◽  
Vol 56 (385) ◽  
pp. 599-603 ◽  
Author(s):  
C. Sabelli ◽  
P. Orlandi ◽  
G. Vezzalini

AbstractCoaquandite, a new antimony oxy-sulphate hydrate, occurs as spheroidal knobs of silky fibres or, rarely, as tiny transparent colourless lamellar crystals on stibnite at the Pereta mine, Tuscany, Italy; it is associated with klebelsbergite, peretaite, valentinite, sulfur, gypsum, stibiconite, and senarmontite. Coquandite is triclinic P1, with a 11.434(7), b 29.77(4), c 11.314(4) Å, α 91.07(7)°, β 119.24(3)° γ 92.82(1)° . It has a cell volume of 3352(5)Å3 with Z = 12 and a calculated density of 5.78 g cm−3. The crystals, elongated along [001] and flattened on {010}, display polysynthetic twinning with (010) as the twin plane. Optically, they are biaxial (+) with z ≈ c, 2V ≫ 60° n = 2.08(5). The strongest lines of the X-ray powder pattern are [d in Å, (I), (hkl)] 14.84(50)(020), 9.27(41)(111, 110), 6.81(67)130, 3.304(93)(090), 3.092(100)(330).Coquandite has also been found at the Cetine mine, Tuscany, Italy, and at the Lucky Knock mine, Tonasket, Okanogan County, Washington, USA. 22 microprobe chemical analyses (elemental microanalysis for H) gave Sb2O3 88.91, SO3 8.35, CaO 0.04, Na2O 0.03, H2O 1.43, total 98.76 wt.%, corresponding to the empirical formula (Sb + S = 7) Sb5.98Ca0.01Na0.01O7.96(SO4)1.02.0·78H2O, and to the idealised formula Sb6O8(SO4).H2O. The I.R. spectrum, which confirms the presence of water in the formula, is given.A partial structural arrangement is also given: the Sb polyhedra lie in nine layers perpendicular to [010] and form 'hexagonally' shaped groups surrounded by SO4 tetrahedra.

1984 ◽  
Vol 48 (347) ◽  
pp. 277-282 ◽  
Author(s):  
A. Livingstone ◽  
H. Sarp

AbstractMacphersonite is white, resinous to adamantine, hardness (Mohs) 2½−3, density 6.50–6.55 gm/cm3 and possesses a perfect cleavage on {010}. Optically it is negative with 2Vα 35–36°, α = 1.87, β = 2.00 and γ = 2.01, α = b, γ = c, and γ = a, dispersion r > v. Polysynthetic twinning, with either coarse or fine lamellae, is common, as are contact twins. Crystals are orthorhombic, tabular on b with a 10.37, b 23.10 and c 9.25 Å, cell volume 2215.8 Å3 and space group Pcab; Z is 8 formula units. The seven strongest lines in the X-ray powder pattern are 3.274 (50) 052; 3.234 (100) 251; 2.654 (90) 351,203; 2.598 (30) 172, 400; 2.310 (30) 004, 371, 0.10.0; 2.182 (30) 263; and 2.033 (30) 234, 452, 154, 1.10.2. Electronprobe-microanalysis-determined chemistry leads to the empirical formula (Pb4.08, Cu0.10, Cd0.07)Σ4.25S0.90 C2.18O10.55(OH)1.58 which yields the ideal formula Pb4(SO4)(CO3)2(OH)2 and hence macphersonite is a polymorph of leadhillite and susannite. The infrared spectrum shows basic similarities to leadhillite and susannite spectra with additional diagnostic absorption bands. Macphersonite shows an identical thermogravimetric behaviour to that of leadhillite. It is associated, in varying combinations, with leadhillite, susannite, cerussite, caledonite, pyromorphite, scotlandite, galena, and the ‘lead hydroxyapatite’ of Temple (1955). The new mineral mimics leadhillite.


2018 ◽  
Vol 82 (1) ◽  
pp. 133-144 ◽  
Author(s):  
Luiz A. D. Menezes Filho ◽  
Mario L. S. C. Chaves ◽  
Nikita V. Chukanov ◽  
Daniel Atencio ◽  
Ricardo Scholz ◽  
...  

ABSTRACTParisite-(La) (IMA2016-031), ideally CaLa2(CO3)3F2, occurs in a hydrothermal vein crosscutting a metarhyolite of the Rio dos Remédios Group, at the Mula mine, Tapera village, Novo Horizonte county, Bahia, Brazil, associated with hematite, rutile, almeidaite, fluocerite-(Ce), brockite, monazite-(La), rhabdophane-(La) and bastnäsite-(La). Parisite-(La) occurs as residual nuclei (up to 5 mm) in steep doubly-terminated pseudo-hexagonal pyramidal crystals (up to 8.2 cm). Parisite-(La) is transparent, yellow-green to white, with a white streak and displays a vitreous (when yellow-green) to dull (when white) lustre. Cleavage is distinct on pseudo-{001}; fracture is laminated, conchoidal, or uneven. The Mohs hardness is 4 to 5, and it is brittle. Calculated density is 4.273 g cm−3. Parisite-(La) is pseudo-uniaxial (+), ω = 1.670(2) and ε = 1.782(5) (589 nm). The empirical formula normalized on the basis of 11 (O + F) atoms per formula unit (apfu) is Ca0.98(La0.83Nd0.51Ce0.37Pr0.16Sm0.04Y0.03)Σ1.94C3.03O8.91F2.09. The IR spectrum confirms the absence of OH groups. Single-crystal X-ray studies gave the following results: monoclinic (pseudo-trigonal), space group: C2, Cm, or C2/m, a = 12.356(1) Å, b = 7.1368(7) Å, c = 28.299(3) Å, β = 98.342(4)°, V = 2469.1(4) Å3 and Z = 12. Parisite-(La) is the La-dominant analogue of parisite-(Ce).


2010 ◽  
Vol 74 (5) ◽  
pp. 863-869 ◽  
Author(s):  
S. J. Mills ◽  
A. R. Kampf ◽  
P. A. Williams ◽  
P. Leverett ◽  
G. Poirier ◽  
...  

AbstractHydroniumpharmacosiderite, ideally (H3O)Fe4(AsO4)3(OH)4·4H2O, is a new mineral from Cornwall, UK, probably from the St. Day group of mines. It occurs as a single yellowish green, slightly elongated cube, measuring 0.17 mm ×0.14 mm ×0.14 mm. The mineral is transparent with a vitreous lustre. It is brittle with a cleavage on {001}, has an irregular fracture, a white streak and a Mohs hardness of 2–3 (determined on H3O-exchanged pharmacosiderite). Hydroniumpharmacosiderite has a calculated density of 2.559 g cm–3 for the empirical formula. The empirical formula, based upon 20.5 oxygen atoms, is: [(H3O)0.50K0.48Na0.06]1.04(Fe3.79Al0.22)4.01[(As2.73P0.15)2.88O12](OH)4·4H2.14O. The five strongest lines in the X-ray powder diffraction pattern are [dobs(Å),Iobs,(hkl)]: 8.050,100,(001); 3.265,35,(112); 2.412,30,(113); 2.830,23,(202); 4.628,22,(111). Hydroniumpharmacosiderite is cubic, space group with a = 7.9587(2) Å, V = 504.11(2) Å3 and Z = 1. The crystal structure was solved by direct methods and refined to R1 = 0.0481 for 520 reflections with I > 2σ(I). The structure is consistent with determinations for H3O-exhchanged pharmacosiderite and the general pharmacosiderite structure type.


2020 ◽  
Vol 58 (4) ◽  
pp. 533-542
Author(s):  
Anthony R. Kampf ◽  
Robert M. Housley ◽  
George R. Rossman

ABSTRACT Northstarite, Pb6(Te4+O3)5(S2O3), is a new mineral from the North Star mine, Tintic district, Juab County, Utah, USA. It is an oxidation-zone mineral occuring in a vug in massive quartz-baryte-enargite-pyrite in association with anglesite, azurite, chrysocolla, fluorapatite, plumbogummite, tellurite, zincospiroffite, and the new mineral adanite. Crystals are beige short prisms with pyramidal terminations, up to about 1 mm in length. The mineral is transparent to translucent with adamantine luster, white streak, Mohs hardness 2, brittle tenacity, irregular fracture, and no cleavage. The calculated density is 6.888 g/cm3. Northstarite is uniaxial (–) and nonpleochroic. The Raman spectrum is consistent with the presence of tellurite and thiosulfate groups and the absence of OH and H2O. Electron-microprobe analyses gave the empirical formula Pb5.80Sb3+0.05Te4+5.04S6+1.02S2–1.02O18. The mineral is hexagonal, space group P63, with a = 10.2495(5), c = 11.6677(8) Å, V = 1061.50(13) Å3, and Z = 2. The five strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 3.098(100)(113), 2.957(88)(300), 2.140(42)(223), 1.7335(41)(413), and 1.6256(31)(306). The structure (R1 = 0.033 for 1476 I > 2σI reflections) is a framework constructed of short (strong) Pb–O and Te–O bonds with channels along the 63 axes. The thiosulfate groups at the centers of the channels are only weakly bonded to the framework.


1995 ◽  
Vol 59 (395) ◽  
pp. 305-310 ◽  
Author(s):  
A. C. Roberts ◽  
J. A. R. Stirling ◽  
G. J. C. Carpenter ◽  
A. J. Criddle ◽  
G. C. Jones ◽  
...  

AbstractShannonite, ideally Pb2OCO3, is a new mineral species that occurs as mm-sized white porcellanous crusts, associated with fluorite, at the Grand Reef mine, Graham County, Arizona, USA. Other associated minerals are plumbojarosite, hematite, Mn-oxides, muscovite-2M1, quartz, litharge, massicot, hydrocerussite, minium, and unnamed PbCO3·2PbO. Shannonite is orthorhombic, space group P21221 or P212121, with unit-cell parameters (refined from X-ray powder data): a 9.294(3), b 9.000(3), c 5.133(2) Å, V 429.3(3) Å3, a:b:c 1.0327:1:0.5703, Z = 4. The strongest five lines in the X-ray powder pattern [d in Å (I)(hkl)] are: 4.02(40)(111); 3.215(100)(211); 3.181(90)(121); 2.858(40)(130); 2.564(35)(002). The average of eight electron microprobe analyses is PbO 89.9(5), CO2 (by CHN elemental analyser) 9.70, total 99.60 wt.%. With O = 4, the empirical formula is Pb1.91C1.05O4.00. The calculated density for the empirical formula is 7.31 and for the idealized formula is 7.59 g/cm3. In reflected light, shannonite is colourless-grey to white, with ubiquitous white internal reflections (× 16 objectives), weak anisotropy, barely detectable bireflectance, and no evidence of pleochroism. The calculated refractive index (at 590 nm) is 2.09. Measured reflectance values in air and in oil (× 4 objectives) are tabulated. Transmission electron-microscopy studies reveal that individual crystallites range in size from 10–400 nm, are platy, and are anhedral. Physical properties for cryptocrystalline crusts include: white streak; waxy lustre; opaque; nonfluorescent under both long- and short-wave ultraviolet light; uneven fracture; brittle; VHN100 97 (range 93–100); calculated Mohs’ hardness 3–3½. Shannonite is soluble in concentrated HCl and in dilute HNO3 and H2SO4. The mineral name is for David M. Shannon, who helped collect the samples and who initiated this study.


1993 ◽  
Vol 57 (387) ◽  
pp. 309-313 ◽  
Author(s):  
A. Pring ◽  
W. D. Birch

AbstractGatehouseite is a new manganese hydroxy phosphate from Iron Monarch, South Australia. The new mineral occurs as radiating clusters of pale yellow, and yellow to pale brownish orange bladed crystals up to 100 ~tm in length. The crystals are elongated along [010] and the principal forms are {102}, {110} and {001}. Gatehouseite also occurs as overgrowths on prismatic arsenoclasite crystals. Associated with gatehouseite are baryte, shigaite, manganoan ferroan calcite, hausmannite and hematite. Gatehouseite appears to have formed at low temperature by the interaction of phosphorus-rich fluids on hausmannite in carbonate-rich fractures in the hematite ore. Electron microprobe analysis yielded: MnO 64.42, FeO 0.19, CuO 0.03, ZnO 0.03, PbO 0.05, Al2O3 0.10, P2O5 22.18, V2O5 0.38, As2O5 3.58, H2O (6.44%). These data gave an empirical formula of Mn5.09Fe0.01Al0.01(P1.75As0.17-V0.02)∑1.94O8(OH)4.00, calculated on the basis of 12 oxygen atoms. The simplified formula is Mn5(PO4)2(OH)4. The mineral is transparent with a pale yellow streak, an adamantine lustre and an estimated Mohs hardness of 4. The crystals exhibit a distinct cleavage on {010} and have a splintery fracture. The strongest lines in the X-ray powder pattern are (dobs, Iobs, hkl) 4.48 (10) (004); 4.03 (10) (104); 2.900 (100) (11.5); 2.853 (70) (106); 2.801 (50) (021); 2.702 (80) (303); 2.022 (15) (322); 1.608(15) (330). These data were indexed on an orthorhombic cell, with a = 9.097(2), b = 5.693(2), c = 18.002(10) Å and a volume of 932.4(8) Å3; the space group is probably P212121. For Z = 4 and using the empirical formula, the calculated density is 3.74 g/cm3. Optical properties could not be determined in full; two refractive indices are 1.74(1) and 1.76(1) (white light); pleochroism is distinct from brown to near colourless. The crystals are length slow with parallel extinction. The name is for Dr. Bryan Michael Kenneth Cummings Gatehouse (1932-), crystal chemist of Monash University, Melbourne, Australia.


2010 ◽  
Vol 74 (3) ◽  
pp. 463-468 ◽  
Author(s):  
V. A. Kovalenker ◽  
O. Yu. Plotinskaya ◽  
C. J. Stanley ◽  
A. C. Roberts ◽  
A. M. McDonald ◽  
...  

AbstractKurilite, with the simplified formula, Ag8Te3Se, is a new mineral from the Prasolovskoe epithermal Au-Ag deposit, Kunashir Island, Kuril arc, Russian Federation. It occurs as aggregates up to 2 mm in size, composed of brittle xenomorphic grains, up to several μm in size, in quartz, associated with tetrahedrite, hessite, sylvanite and petzite. Kurilite is opaque, grey, with a metallic lustre and a black streak. Under plane-polarized light, kurilite is white with no observed bireflectance, cleavage, or parting observed. Under crossed polars it appears isotropic without internal reflections. Reflectance values in air and in oil, are tabulated. It has a mean VHN (25 g load) of 99.9 kg/mm2 which equates roughly to a Mohs hardness of 3. Electron microprobe analyses yield a mean composition of Ag 63.71, Au 0.29, Te 29.48, Se 5.04, S 0.07, total 98.71 wt.%. The empirical formula (based on 12 atoms) is (Ag7.97Au0.02)Σ7.99Te3.00(Se0.86Te0.12S0.03)Σ1.01. The calculated density is 7.799 g/cm3 (based on the empirical formula and unit-cell parameters refined from single-crystal data). Kurilite is rhombohedral, R3 or , a 15.80(1), c 19.57(6) Å, V 4231(12)Å3, c:a 1.2386, Z = 15. Its crystal structure remains unsolved. The seven strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.727(20)(131), 2.996(50)(232), 2.510(30)(226,422), 2.201(100)(128,416,342), 2.152(20)(603), 2.079(30)(253), 2.046(20)(336,434). The mineral is named after the locality.


2018 ◽  
Vol 83 (02) ◽  
pp. 233-238
Author(s):  
Frank N. Keutsch ◽  
Dan Topa ◽  
Rie Takagi Fredrickson ◽  
Emil Makovicky ◽  
Werner H. Paar

AbstractAgmantinite, ideally Ag2MnSnS4, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as orange–red crystals up to 100 μm across. Agmantinite is translucent with adamantine lustre and possesses a red streak. It is brittle. Neither fracture nor cleavage were observed. Based on the empirical formula the calculated density is 4.574 g/cm3. On the basis of chemically similar compounds the Mohs hardness is estimated at between 2 to 2½. In plane-polarised light agmantinite is white with red internal reflections. It is weakly bireflectant with no observable pleochroism with red internal reflections. Between crossed polars, agmantinite is weakly anisotropic with reddish brown to greenish grey rotation tints. The reflectances (RminandRmax) for the four standard wavelengths are: 19.7 and 22.0 (470 nm); 20.5 and 23.2 (546 nm); 21.7 and 2.49 (589 nm); and 20.6 and 23.6 (650 nm), respectively.Agmantinite is orthorhombic, space groupP21nm, with unit-cell parameters:a= 6.632(2),b= 6.922(2),c= 8.156(2) Å,V= 374.41(17) Å3,a:b:c0.958:1:1.178 andZ= 2. The crystal structure was refined toR= 0.0575 for 519 reflections withI >2σ(I). Agmantinite is the first known mineral of${M}_{\rm 2}^{\rm I} $MIIMIVS4type that is derived from wurtzite rather than sphalerite by ordered substitution of Zn, analogous to the substitution pattern for deriving stannite from sphalerite. The six strongest X-ray powder-diffraction lines derived from single-crystal X-ray diffraction data [din Å (intensity)] are: 3.51 (s), 3.32 (w), 3.11 (vs), 2.42 (w), 2.04 (m) and 1.88 (m). The empirical formula (based on 8 apfu) is (Ag1.94Cu0.03)Σ1.97(Mn0.98Zn0.05)Σ1.03Sn0.97S4.03.The crystal structure-derived formula is Ag2(Mn0.69Zn0.31)Σ1.00SnS4and the simplified formula is Ag2MnSnS4.The name is for the composition and the new mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2014-083).


1994 ◽  
Vol 58 (390) ◽  
pp. 59-68 ◽  
Author(s):  
R. F. Symes ◽  
G. Cressey ◽  
A. J. Griddle ◽  
C. J. Stanley ◽  
J. G. Francis ◽  
...  

AbstractParkinsonite, ideally (Pb,Mo,□)8O8Cl2, is a new mineral from the Merehead Quarry, Cranmore, Somerset, England. It occurs as compact clusters or patches of red to purplish red bladed crystals, which have an adamantine lustre and a perfect {001} cleavage and occupy fractures and cavities in carbonate vughs in veins of manganese and iron oxide and hydroxide minerals. Associated minerals are mendipite, diaboleite, chloroxiphite, wulfenite, cerussite and hydrocerussite. Discrete crystals were not found; intergrown crystalline aggregates are the usual form of occurrence. The maximum grain size is about 300 × 100 µm, but most grains are appreciably smaller. Parkinsonite was synthesized using high purity chemicals. The measured density of the synthetic material is 7.32 g/cm3; the calculated density is 7.39 g/cm3, the difference being due to minor impurity and slight porosity in the synthetic sample. Parkinsonite is translucent. Reflectance spectra were obtained in air and in oil. Refractive indices calculated from these (at 589 nm) are for Ro, 2.58, and Re', 2.42, i.e. uniaxial negative. VHN50 is 113–133 from which the calculated Mobs hardness is 2–2.5.X-ray studies show that parkinsonite is tetragonal with space group I4/mmm, I4̄2m, I4̄m2, I4/mm, or I422 and a 3.9922(3), c 22.514(2) Å. It has a cell volume of 358.82(5) Å3 with Z = 1. The strongest six lines of the X-ray powder diffraction pattern are [d in Å (I) (hkl)] 2.823, 2.813(100) (110,008); 5.63(85) (004); 2.251(33) (116, 0.0.10); 2.988(27) (105); 3.750(15) (006); 1.994(11) (200,118). Averaged electron microprobe analyses give the empirical formula Pb6.34Mo0.89□0.77O8.02Cl1.98 on the basis of 10 atoms [O + Cl]. The name is for Reginald F. D. Parkinson, mineral collector of Somerset, UK, who first found the mineral.


2011 ◽  
Vol 75 (6) ◽  
pp. 2721-2732 ◽  
Author(s):  
L. Bindi ◽  
F. Nestola ◽  
U. Kolitsch ◽  
A. Guastoni ◽  
F. Zorzi

AbstractFassinaite, ideally Pb22+(S2O3)(CO3), is a new mineral from the Trentini mine, Mount Naro, Vicenza Province, Veneto, Italy (holotype locality). It is also reported from the Erasmus adit, Schwarzleo District, Leogang, Salzburg, Austria and the Friedrich-Christian mine, Schapbach, Black Forest, Baden-Wurttemberg, Germany (cotype localities). At the Italian type locality it occurs as acicular [010]. colourless crystals up to 200 μn long, closely associated with galena, quartz and anglesite. At the Austrian cotype locality it is associated with cerussite, rare sulphur and very rare phosgenite. At the German cotype locality anglesite is the only associated phase. Fassinaite crystals commonly have flat chisel-shaped terminations. They are transparent with vitreous to adamantine lustre and a white streak. Fassinaite is brittle with an irregular fracture and no discernible cleavage; the estimated Mohs hardness is 11/2—2. The calculated density for the type material is 6.084 g cm–3 (on the basis of the empirical formula), whereas the X-ray density is 5.947 g cm–3. In common with other natural lead thiosulphates (i.e. sidpietersite and steverustite) fassinaite has intense internal reflections, which do not allow satisfactory optical data to be collected; the crystals are length-slow and have very high birefringence. The mineral is not fluorescent.Fassinaite is orthorhombic, space group Pnma, with unit-cell parameters (for the holotype material) a = 16.320(2), b = 8.7616(6), c = 4.5809(7) Å, V = 655.0(1) Å3, a:b:c = 1.863:1:0.523, Z = 4. Single-crystal structural studies were carried out on crystals from all three localities: R1(F) values range between 0.0353 and 0.0596. The structure consists of rod-like arrangements of Pb-centred polyhedra that extend along the [010] direction. These ‘rods’ are linked, alternately, by (CO3)2– and (S2O3)2– groups. The (S2O3)2– groups point alternately left and right (in a projection on [001] with [010] set vertical) if the apex occupied by the S2– in the thiosulphate group is defined to be the atom giving the direction. The lead atoms are nine-coordinated by seven oxygen atoms and two sulphur (S2–) atoms. The eight strongest X-ray powder-diffraction lines [d in Å (I/I0) (hkl)] are: 4.410 (39) (101), 4.381 (59) (020), 4.080 (62) (400), 3.504 (75) (301), 3.108 (100) (121), 2.986 (82) (420), 2.952 (49) (221) and 2.736 (60) (321). Electron-microprobe analyses produce an empirical formula Pb2.01(1)(S1.82(2)O3)CO3 (on the basis of six oxygen atoms). The presence of both carbonate and thiosulphate groups was corroborated by Raman spectra, which are discussed in detail. Fassinaite is named after Bruno Fassina (b. 1943), an Italian mineral collector who discovered the mineral in 2009.


Sign in / Sign up

Export Citation Format

Share Document