scholarly journals Transfusion in the age of molecular diagnostics

Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Marion E. Reid

Abstract DNA-based tests are increasingly being used to predict a blood group phenotype to improve transfusion medicine. This is possible because genes encoding 29 of the 30 blood group systems have been cloned and sequenced, and the molecular bases associated with most antigens have been determined. RBCs carrying a particular antigen, if introduced into the circulation of an individual who lacks that antigen (through transfusion or pregnancy), can elicit an immune response. It is the antibody from such an immune response that causes problems in clinical practice and the reason why antigen-negative blood is required for safe transfusion. The classical method of testing for blood group antigens and antibodies is hemagglutination; however, it has certain limitations, some of which can be overcome by testing DNA. Such testing allows conservation of antibodies for confirmation by hemagglutination of predicted antigen-negativity. High-throughput platforms provide a means to test relatively large numbers of donors, thereby opening the door to change the way antigen-negative blood is provided to patients and to prevent immunization. This review summarizes how molecular approaches, in conjunction with conventional hemagglutination, can be applied in transfusion medicine.

1992 ◽  
Vol 176 (6) ◽  
pp. 1637-1643 ◽  
Author(s):  
J J Kenny ◽  
C M Moratz ◽  
G Guelde ◽  
C D O'Connell ◽  
J George ◽  
...  

Antibodies bearing the T15 idiotype dominate the murine primary immune response to phosphocholine (PC). Analysis of antigen binding of antibodies derived from V1:DFL16.1:JH1 (VH1) germline and N region-derived variant heavy (H) chains and kappa 22, kappa 24, and kappa 8 light (L) chains demonstrates that the T15H:kappa 22L (T15) antibody binds PC at least 20-40 times better than other antibodies derived from alternate germline forms of the VH1 H chain and kappa 22, kappa 24, or kappa 8 L chains. To achieve affinities in the same range as the T15 antibody, kappa 24 and kappa 8 L chain-containing antibodies must have H chains derived from variant N region or somatically mutated VH1 genes. Single amino acid differences at the VD junction of the various germline and N region variant VH1 H chains dictate the L chain that can associate with the H chain to produce a PC-specific antibody. Several H:L combinations give rise to T15 or M167 idiotype-positive antibodies that lack specificity for PC, and single amino acid substitutions or insertions at the VH1:D junction result in the loss of T15 or M167 idiotopes. Based on these observations, our data support a molecular model involving both preferential gene rearrangement and antigen-driven B cell selection to explain T15 idiotype dominance in the immune response to PC. In the absence of N region diversification, large numbers of neonatal B cells bearing the T15H:kappa 22L surface immunoglobulin M (sIgM) receptors would be selected and expanded by autologous or environmental PC antigen into the long-lived peripheral B cell pool.


2020 ◽  
Vol 7 (1) ◽  
pp. 8-11
Author(s):  
Nancy E. Bacon ◽  
Ethel D. Patten ◽  
Janet L. Vincent

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 291-291
Author(s):  
Evelyn J A Tait ◽  
Robin Fraser ◽  
Michael Moss ◽  
Stanislaw J Urbaniak

Abstract Background: Antibody screening is performed both routinely in the blood group typing procedures for donors and patients and in more detail as part of special investigations for transfusion-dependent patients such as those suffering from Sickle Cell Disease and Thalassaemia. However, despite the care taken, intrinsic limitations of traditional serological diagnostic tests mean that alloimmunisation of pregnant women and multiply transfused patient may still go undetected, resulting in Hemolytic Disease of the Newborn or Hemolytic Transfusion Reactions, respectively. Furthermore, although the genes encoding the majority of blood group antigens have been characterised, the expression of recombinant gene products and the subsequent determination of protein structure that might lead to novel diagnostic reagents have proved more difficult to achieve. Methods: Phage Display libraries that express random peptide sequences (~1015) on the virion surface were screened using a series of monoclonal antibodies and an anti-RhD polyclonal preparation to identify peptides that mimic epitopes of clinically important blood group antigens. The peptides thus identified, were then synthesised in macroarrays and evaluated using SPOTs (Simple Precise Optimal Test system) in a step towards development of a novel diagnostic antibody-screening assay. Results: The combined approach of phagepeptide display and SPOTs proved powerful. From 490 phage-peptides selected by biopanning, 86 mimotopes bound their cognate antibody in SPOTs assays and represented the clinically important blood group antigens RhD (including epitopes 1.1, 3.1 and 6.3), RhE, Rhe, Fya and Fyb. These peptides ranged in size from 7 to 15 residues and included 7-mers that were constrained at their termini by a di-sulphide bridge. Further SPOTs analyses showed 26 of these phage-peptides (12 RhD, 3 RhE, 1 Rhe, 2 Fya and 8 Fyb) have the appropriate strength of signal and binding specificity for inclusion in any future diagnostic antibody-screening assay. A subset of these peptides has been further tested. These peptides were immobilised on polystyrene microspheres and shown to specifically bind their cognate antibodies in both (1) monoplex gel agglutination immunoassays and (2) microsphere-based, multiplex suspension arrays. Conclusions: We have shown that, regardless of whether or not the mimotopes resemble the original antigen sequence, they bind their cognate antibodies specifically and are therefore genuine mimics of the natural antigenic epitopes. It has also been demonstrated that the context in which a peptide is presented is fundamentally important for antibody recognition. The value of the phage-peptide approach in identifying mimotopes to clinically significant blood group antigens has also been established. Moreover, these peptides could be used in a single, comprehensive screening assay and eliminate many of the problems associated with agglutination assays and may herald the possibility of a synthetic, diagnostic array for routine antibody screening for all patients and donors and patients in the near future.


Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 248-256 ◽  
Author(s):  
David J. Anstee

Abstract Over the past 20 years the molecular bases of almost all the major blood group antigens have been determined. This research has enabled development of DNA-based methods for determining blood group genotype. The most notable application of these DNA-based methods has been for determining fetal blood group in pregnancies when the fetus is at risk for hemolytic disease of the fetus and newborn. The replacement of all conventional serologic methods for pretransfusion testing by molecular methods is not straightforward. For the majority of transfusion recipients matching beyond ABO and D type is unnecessary, and the minority of untransfused patients at risk of alloimmunization who would benefit from more extensively blood group–matched blood cannot be identified reliably. Even if a method to identify persons most likely to make alloantibodies were available, this would not of itself guarantee the provision of extensively phenotype-matched blood for these patients because this is determined by the size and racial composition of blood donations available for transfusion. However, routine use of DNA-based extended phenotyping to provide optimally matched donations for patients with preexisting antibodies or patients with a known predisposition to alloimmunization, such as those with sickle cell disease, is widely used.


Vox Sanguinis ◽  
1994 ◽  
Vol 67 ◽  
pp. 7-12 ◽  
Author(s):  
W.H. OUWEHAND ◽  
J.M. BYE ◽  
B.D. GORICK ◽  
J.D. MARKS ◽  
E. TIMMERS ◽  
...  

from CD99 high expressors but membranes from CD99 low expressors required exposure of 5 minutes before the 32 kD band was apparent [50]. Unfortunately, these tests gave no information about the Xga protein because the position of the Xga band was masked by the antibody light chain which became labelled. However, a 32 kD band was seen in the Xga-immunoprecipitate from Xg(a+) but not from Xg(a-) cells [50]. It has not yet been proved that this is the CD99 protein because this band was not stained by immunoblotting Xga-immunoprecipitates with 12E7. The luciferin-enhanced luminescent proceedure to detect the avidin-biotin label is very much more sensitive than immunoblotting. Our results support the theory that Xga and CD99 may be associated in the membrane. Cloning of the XG gene will increase our understanding of this relationship. The important blood group genes have been cloned but two big problems remain, regulation on antigen expression and the function of blood group polymorphisms. Rare phenotypes should still be studied because they will contribute to unravelling the mechanisms responsible for the polymorphisms. The wealth of serological information which continues to increase includes many examples of variable expression of red cell antigens. Some antigens do not show the same variation on other cells suggesting that some modes of regulation may be limited to red cells. Association of blood group antigens with proteins of known function and identification of red cell antigens on cells other than red cells will contibute to understanding the functions of the blood group polymorphisms. REFERENCES 1. P.L. Mollison, C.P. Engelfreit and M. Contreras, Blood Transfusion in Clinical Medicine. Blackwell Scientfic Publications, Oxford (1993). 2. M. Lewis (Chairman) et al, Vox Sang., 61_, 158-160 (1991). 3. G.L. Daniels, J.J. Moulds (chairman) et al, Vox Sang., 65, 77-80 (1993). 4. A.C. Petty, J. Immunol. Meth., 161. 91-95 (1993). 5. J. M. Moulds, in Immunobiology of Transfusion Medicine. G. Garratty ed. Marcel Dekker. Inc., New York, (1994) pp. 273-297. 6. J.M. Moulds, M.W. Nickells, J.J. Moulds, M.C. Brown and J.P. Atkinson, J. Exp. Med., 173, 1159-1163 (1991). 7. N. Rao, D.J. Ferguson, S-F. Lee and M.J. Telen, J. Immun., 146, 3502-3507 (1991). 8. A.C. Petty, (abs) Transfusion Medicine 3 Suppl 1, 84 (1993). 9. J.M. Moulds, J.J. Moulds, M. Brown and J.P. Atkinson, Vox Sang. 62, 230-235 (1992).

1995 ◽  
pp. 198-198

2009 ◽  
Vol 02 ◽  
pp. 52
Author(s):  
Cheng-Han Huang ◽  

The Rhesus (Rh) antigens form a blood group system of major significance in transfusion medicine due to their polymorphic nature at a population level and their potency as protein immunogens, which in response to incompatibility induce harmful hemolytic reactions. For seven decades, the Rh family has undergone extensive investigation and has served as a model for studies on membrane biology with a focus on biochemistry and genetics. The past decade has seen a rapid growth of molecular data on Rh allelic diversity and a major effort in probing the function of Rh proteins as gas channels in the membrane. It is now established that the antigen carrier RhD or RhCE and its regulator RhAG, the erythroid branches of the Rh family, dictate antigen expression, which together with RhBG and RhCG, the epithelial branches of the Rh family, penetrate all vertebrate animals and arise from a common ancestor of unicellular origin. Hematology and immunohematology, similar to other clinical disciplines, are on the horizon of genomic medicine, being transformed by the new knowledge of chromosome biology and gene expression. This article addresses the molecular aspects of the Rh protein family with an emphasis on its blood group system, relating translation research to genomic transfusion medicine.


Sign in / Sign up

Export Citation Format

Share Document