Soluble HLA class I induces NK cell apoptosis upon the engagement of killer-activating HLA class I receptors through FasL-Fas interaction

Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4098-4107 ◽  
Author(s):  
Grazia Maria Spaggiari ◽  
Paola Contini ◽  
Alessandra Dondero ◽  
Roberta Carosio ◽  
Francesco Puppo ◽  
...  

The engagement of the activating isoforms of C-type lectin inhibitory receptor (CLIR) or killer Ig-like receptor (KIR) by their natural ligands, represented by soluble HLA-I (sHLA-I) molecules, induced programmed cell death of natural killer (NK) cells. Indeed, NK cell apoptosis elicited by either putative HLA-E and HLA-F (sHLA-I non-A, -B, -C, and -G) or sHLA-I–Cw4 or –Cw3 from untransfected or –Cw4 or –Cw3 alleles transfected HLA-A−, B−, C−, G−, E+, F+ 721.221 lymphoblastoid cell line, respectively, was blocked by covering the corresponding activating receptor with either anti-CLIR– or anti-KIR–specific monoclonal antibodies (mAbs). After sHLA-I–activating receptor interaction, NK cells produced and released Fas ligand (FasL), which in turn led to NK cell apoptosis by interacting with Fas at the NK cell surface. Blocking anti-Fas mAb, or anti-FasL mAb, inhibited sHLA-I–mediated apoptosis via activating receptor in NK cell clones. This apoptosis was inhibited by NK cell treatment with cyclosporin A, whereas this drug had no effect on activating receptor–mediated activation of cytolysis. Conversely, concanamycin A, an inhibitor of vacuolar type H+–adenosine triphosphatase (H+-ATPase) of granules, inhibited activating receptor–induced NK cell cytolysis, suggesting that activating receptor–mediated apoptosis and cytolysis can use different intracellular pathways. Furthermore, a large amount of interferon-γ (IFN-γ) was detectable in culture supernatant of activating receptor+ NK cells incubated with the appropriate sHLA-I ligand. Again, cyclosporin A, but not concanamycin A, strongly reduced activating receptor–mediated IFN-γ production. This suggests that activating receptor–induced apoptosis of NK cells could play a role in eliminating potentially harmful NK cell clones and, at the same time, it leads to production of IFN-γ, an antiviral cytokine able to amplify immune responses.

Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1706-1714 ◽  
Author(s):  
Grazia Maria Spaggiari ◽  
Paola Contini ◽  
Roberta Carosio ◽  
Marica Arvigo ◽  
Massimo Ghio ◽  
...  

Herein, we show that CD8dull, CD8intermediate, and CD8bright natural killer (NK) cell clones can be identified. Triggering of CD8 with its natural ligand(s), represented by soluble HLA class I (sHLA-I), isolated either from serum of healthy donors or from HLA-I− 721.221 lymphoblastoid cell line transfected with HLA-A2, -Cw4, and -Bw46 alleles, or HLA-G1 leads to NK cell apoptosis. The magnitude of this effect directly correlated with the level of CD8 expression. sHLA-I–induced apoptosis depends on the interaction with CD8, as it was inhibited by masking this molecule with specific monoclonal antibodies (mAbs). Moreover, sHLA-I or CD8 cross-linking with specific mAbs elicited intracellular calcium increases, Fas ligand (FasL) messenger RNA transcription, and FasL secretion, which were needed for delivering the death signal. Indeed, this apoptosis was inhibited by preincubation of NK cell clones with Fas or FasL antagonist mAbs, indicating that the Fas/FasL pathway is involved. Furthermore, members of the inhibitory receptor superfamily, such as CD94/NKG2 complex or killer inhibitory receptors, were shown to exert an inhibitory effect on sHLA-I–mediated apoptosis and secretion of FasL. These findings suggest that interaction between sHLA-I and CD8 evokes an apoptotic signal that is down-regulated by inhibitory receptor superfamily that function as survival receptors in NK cells.


Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5840-5850 ◽  
Author(s):  
Fabio Morandi ◽  
Elisa Ferretti ◽  
Roberta Castriconi ◽  
Alessandra Dondero ◽  
Andrea Petretto ◽  
...  

Abstract Soluble HLA-G (sHLA-G) inhibits natural killer (NK) cell functions. Here, we investigated sHLA-G–mediated modulation of (1) chemokine receptor and NK receptor expression and function and (2) cytokine and chemokine secretion in CD56bright and CD56dim NK cells. sHLA-G-treated or untreated peripheral blood (PB) and tonsil NK cells were analyzed for chemokine receptor and NK receptor expression by flow cytometry. sHLA-G down-modulated (1) CXCR3 on PB and tonsil CD56bright and CD56dim, (2) CCR2 on PB and tonsil CD56bright, (3) CX3CR1 on PB CD56dim, (4) CXCR5 on tonsil CD56dim, and (5) CD94/NKG2A on PB and tonsil CD56bright and CD56dim NK cells. Such sHLA-G–mediated down-modulations were reverted by adding anti–HLA-G or anti–ILT2 mAbs. sHLA-G inhibited chemotaxis of (1) PB NK cells toward CXCL10, CXCL11, and CX3CL1 and (2) PB CD56bright NK cells toward CCL2 and CXCL10. IFN-γ secretion induced by NKp46 engagement was inhibited by NKG2A engagement in untreated but not in sHLA-G–treated NK cells. sHLA-G up-regulated secretion of (1) CCL22 in CD56bright and CD56dim and (2) CCL2, CCL8, and CXCL2-CXCL3 in CD56dim PB NK cells. Signal transduction experiments showed sHLA-G–mediated down-modulation of Stat5 phosphorylation in PB NK cells. In conclusion, our data delineated novel mechanisms of sHLA-G–mediated inhibition of NK-cell functions.


2019 ◽  
Vol 20 (2) ◽  
pp. 443 ◽  
Author(s):  
Maria Streltsova ◽  
Sofya Erokhina ◽  
Leonid Kanevskiy ◽  
Maria Grechikhina ◽  
Polina Kobyzeva ◽  
...  

A pattern of natural killer cell (NK cell) heterogeneity determines proliferative and functional responses to activating stimuli in individuals. Obtaining the progeny of a single cell by cloning the original population is one of the ways to study NK cell heterogeneity. In this work, we sorted single cells into a plate and stimulated them via interleukin (IL)-2 and gene-modified K562 feeder cells that expressed membrane-bound IL-21 (K562-mbIL21), which led to a generation of phenotypically confirmed and functionally active NK cell clones. Next, we applied two models of clone cultivation, which differently affected their phenotype, lifespan, and functional activity. The first model, which included weekly restimulation of clones with K562-mbIL21 and IL-2, resulted in the generation of relatively short-lived (5–7 weeks) clones of highly activated NK cells. Levels of human leukocyte antigen class II molecule—DR isotype (HLA-DR) expression in the expanded NK cells correlated strongly with interferon-γ (IFN-γ) production. The second model, in which NK cells were restimulated weekly with IL-2 alone and once on the sixth week with K562-mbIL21 and IL-2, produced long-lived clones (8–14 weeks) that expanded up to 107 cells with a lower ability to produce IFN-γ. Our method is applicable for studying variability in phenotype, proliferative, and functional activity of certain NK cell progeny in response to the stimulation, which may help in selecting NK cells best suited for clinical use.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Silvia Pesce ◽  
Simona Carlomagno ◽  
Alessandro Moretta ◽  
Simona Sivori ◽  
Emanuela Marcenaro

The KIR2DS4 receptor is the oldest KIR2DS expressed by human NK lymphocytes. The specificity of recognition of this receptor for various HLA class I alleles has been demonstrated; however it remains poorly understood whether these interactions may result in the activation of some specific functions in NK cells. Here, we examined the functional outcome of the KIR2DS4/HLA class I interaction by the use of an alternative functional system based on the ability of KIR2DS4 to regulate the mechanism of trogocytosis by NK cells. We demonstrate that KIR2DS4 can induce the uptake of CCR7 by KIR2DS4+NKG2A+NK cell clones after interacting with CCR7+target cells expressing HLA-Cw4 and HLA-Cw6 alleles. However this interaction is not always sufficient to override the inhibition generated by NKG2A expressed on the same NK cells. The recognition of HLA-Cw4 was confirmed by experiments of cytotoxicity against HLA-C-transfected cells. We also show that, different from resting NK cells, the acquisition of CCR7 in response to IL-18 cannot occur in IL2-activated NK cells because of a marked downregulation in their IL-18Rαexpression. As a consequence trogocytosis represents the major mechanism by which KIR2DS4+activated NK cells acquire the expression of this chemokine receptor.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 910-918 ◽  
Author(s):  
Mary E. Ross ◽  
Michael A. Caligiuri

Abstract Interferon-γ (IFN-γ) is critical for an effective innate immune response against infection. A combination of interleukins (ILs) derived from activated T cells (IL-2) and monocytes (IL-12), or monocytes alone (IL-15 and IL-12), induces optimal production of IFN-γ from natural killer (NK) cells. The mechanism by which human NK cells downregulate their production of IFN-γ is unknown. Here we show that the same cytokines that induce human NK cell IFN-γ production subsequently induce apoptosis of the NK cells. Fas, bcl-2, or bax do not appear to be involved in this process. The mechanism of cytokine-induced apoptosis of human NK cells appears to involve NK cell production of tumor necrosis factor-α (TNF-α). Neutralization of TNF-α or inhibition of TNF-α binding to the p80 TNF-α receptor partially inhibited apoptosis. Transforming growth factor-β, which inhibits cytokine-induced NK cell production of IFN-γ and TNF-α, also decreased cytokine-induced NK cell apoptosis. Costimulation of a CD3−CD56+ NK leukemia cell line with IL-2 and IL-12 or IL-15 and IL-12 induced apoptosis in vitro, which increased when combined with a chemotherapeutic agent. In summary, costimulation of human NK cells via the IL-2 receptor and the IL-12 receptor induces significant IFN-γ production, followed by NK cell apoptosis and a decline in IFN-γ production. Hence, cytokines that activate this innate immune response may also serve to limit it via apoptosis. This novel observation may have implications for the regulation of the innate immune response during infection, the toxicity of combination cytokine therapy, and the treatment of NK cell leukemia.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 313-313
Author(s):  
Joseph H. Chewning ◽  
Charlotte N. Gudme ◽  
Glenn Heller ◽  
Bo Dupont

Abstract The hematopoietic stem cell transplant (HCT) donor KIR genotype has been correlated with disease-free survival in patients with acute myelogenous leukemia. The Killer Cell Immunoglobulin-like Receptor (KIR) gene family encodes highly homologous pairs of activating and inhibiting receptors, 2DL1–2DS1; 2DL2/3–2DS2; and 3DL1–3DS1. Inhibitory members are known to regulate NK cell function through interactions with HLA Class I antigens. The role of activating KIRs and their ligand specificity is, however, not well defined. The activating receptor, KIR2DS1, is known to bind the HLA-Cw C2 group antigens and we have recently demonstrated a role for this receptor in NK cell allorecognition. In contrast, KIR2DS2 does not bind HLA-Cw C1 group antigens, and a functional role of this receptor even in NK allorecognition has not been established. We now demonstrate, that presence of the activating KIR2DS2 gene in NK donors homozygous for the HLA-KIR ligand group C2 is associated with significant alloreactivity against C1 homozygous target cells (polyclonal NK cells, p=0.006; NK clones, p=0.001). This alloreactivity is mediated by “missing self” on the target and is dominated by “lack of C2 group on target”. The “missing C2” effect was absent, however, in C2 homozygous donors lacking 2DS2 (p=0.99). Only very rare cytotoxic NK clones expressing GL183 (2DL2/3, 2DS2) and with alloreactivity against C1 targets could be generated in vitro from 2DS2-positive, C2 homozygous donors. A majority of these rare GL183-positive clones did not demonstrate inhibitory function against the HLA class I deficient 721.221 transfected with Cw3 (C1-group), and GL183 cross-linking of the clones resulted in increased cytokine production. Thus, KIR2DS2 is an activating receptor in NK clones from C2 homozygous donors, but does not appear to recognize C1 ligand. We next investigated 2DS2 function in donors heterozygous for the C groups (i.e. C1/C2). Analysis of NK cell function in a 2DS2-positive, C1/C2 donor revealed a “missing HLA-KIR ligand” effect for the C2 group. Cytotoxicity by IL2-propagated, polyclonal NK cells and NK clones revealed allocytotoxicity against targets lacking the C2 group (p<0.001). In addition, a repertoire analysis on 138 NK clones generated from this donor revealed a marked increase in the number of EB6 (KIR2DL1/S1)-expressing NK clones (95%) compared to both the fresh (10%–50%) and the IL-2-expanded polyclonal NK repertoire (12%–60%). Additionally, all EB6-expressing clones from this donor were inhibited by the C2 ligand. Subsequent studies in freshly isolated NK cells following activating receptor cross-linking (NKp46, NKG2C, and CD16) or by alloantigen activation demonstrated that the functioning subset of NK cells in this donor predominantly expressed the EB6 receptor. Other inhibitory receptors (e.g. NKG2A, KIR3DL1, and KIR3DL2) did not contribute significantly to the functional subset of NK cells. Presence of 2DS2 in this donor was therefore associated with a “skewing” of the NK repertoire towards EB6 positivity, and dominated by functional NK cells that were inhibited by the “self” C2 ligand. Collectively, these studies provide the first evidence that activating KIR can influence the NK cell repertoire. Furthermore, our studies would indicate that presence of activating KIRs in HCT donors for recipients homozygous HLA-KIR ligands might induce post-transplantation graft versus host NK alloreactivity.


Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4108-4116 ◽  
Author(s):  
Emanuela Marcenaro ◽  
Claudia Cantoni ◽  
Silvia Pesce ◽  
Carola Prato ◽  
Daniela Pende ◽  
...  

Abstract C-C chemokine receptor type 7 (CCR7) is a chemokine receptor playing a pivotal role in the induction of human natural killer (NK)–cell migration to lymph nodes. We show that “licensed” peripheral blood killer immunoglobulin-like receptor–positive (KIR+) NK-cell populations, as well as KIR+ NK-cell clones, de novo express CCR7 upon coculture with mature dendritic cells (mDCs) or Epstein-Barr virus (EBV)–transformed lymphoblastoid cell lines. As a consequence, they become capable of migrating in response to the CCR7-specific chemokines C-C chemokine ligand (CCL)–19 and/or CCL21. The acquisition of CCR7 by NK cells requires direct cell-to-cell contact, is detectable within a few minutes, and is due to receptor uptake from CCR7+ cells. This mechanism is tightly regulated by KIR-mediated recognition of human leukocyte antigen (HLA) class I as well as by adhesion molecules including leukocyte function-associated antigen 1 (LFA-1) and CD2. Analysis of NK-cell clones revealed that alloreactive (KIR-ligand mismatched) but not autologous NK cells acquire CCR7. These data have important implications in haploidentical hematopoietic stem cell transplantation (HSCT), in which alloreactive NK cells may acquire the ability to migrate to secondary lymphoid compartments (SLCs), where they can kill recipient antigen-presenting cells (APCs) and T cells thus preventing graft-versus-host (and host-versus-graft) reactions.


2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Zahra Kiani ◽  
Franck P. Dupuy ◽  
Julie Bruneau ◽  
Bertrand Lebouché ◽  
Christelle Retière ◽  
...  

ABSTRACT Several studies support a role for specific killer immunoglobulin-like receptor (KIR)–HLA combinations in protection from HIV infection and slower progression to AIDS. Natural killer (NK) cells acquire effector functions through education, a process that requires the interaction of inhibitory NK cell receptors with their major histocompatibility complex (MHC) class I (or HLA class I [HLA-I]) ligands. HLA-C allotypes are ligands for the inhibitory KIRs (iKIRs) KIR2DL1, KIR2DL2, and KIR2DL3, whereas the ligand for KIR3DL1 is HLA-Bw4. HIV infection reduces the expression of HLA-A, -B, and -C on the surfaces of infected CD4 (iCD4) T cells. Here we investigated whether education through iKIR-HLA interactions influenced NK cell responses to autologous iCD4 cells. Enriched NK cells were stimulated with autologous iCD4 cells or with uninfected CD4 cells as controls. The capacities of single-positive (sp) KIR2DL1, KIR2DL2, KIR2DL3, and KIR3DL1 NK cells to produce CCL4, gamma interferon (IFN-γ), and/or CD107a were assessed by flow cytometry. Overall, we observed that the potency of NK cell education was directly related to the frequency of each spiKIR+ NK cell’s ability to respond to the reduction of its cognate HLA ligand on autologous iCD4 cells, as measured by the frequency of production by spiKIR+ NK cells of CCL4, IFN-γ, and/or CD107a. Both NK cell education and HIV-mediated changes in HLA expression influenced NK cell responses to iCD4 cells. IMPORTANCE Epidemiological studies show that natural killer (NK) cells have anti-HIV activity: they are able to reduce the risk of HIV infection and/or slow HIV disease progression. How NK cells contribute to these outcomes is not fully characterized. We used primary NK cells and autologous HIV-infected cells to examine the role of education through four inhibitory killer immunoglobulin-like receptors (iKIRs) from persons with HLA types that are able to educate NK cells bearing one of these iKIRs. HIV-infected cells activated NK cells through missing-self mechanisms due to the downmodulation of cell surface HLA expression mediated by HIV Nef and Vpu. A higher frequency of educated than uneducated NK cells expressing each of these iKIRs responded to autologous HIV-infected cells by producing CCL4, IFN-γ, and CD107a. Since NK cells were from non-HIV-infected individuals, they model the consequences of healthy NK cell–HIV-infected cell interactions occurring in the HIV eclipse phase, when new infections are susceptible to extinction.


Sign in / Sign up

Export Citation Format

Share Document