Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells

Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2645-2652 ◽  
Author(s):  
Renato Colognato ◽  
Joseph R. Slupsky ◽  
Marina Jendrach ◽  
Ladislav Burysek ◽  
Tatiana Syrovets ◽  
...  

Abstract Protease-activated receptors (PARs) are stimulated by proteolytic cleavage of their extracellular domain, unmasking a new N-terminus acting as tethered ligand. Whereas the role of PARs in platelets is well known, their presence and function in human monocytes and other antigen-presenting cells has not been characterized. Here it is demonstrated that human peripheral monocytes and monocyte-derived macrophages and dendritic cells differentially express PARs. Human monocytes express mainly PAR1 and less PAR3. Differentiation of monocytes into macrophages by either macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) elicits enhanced expression of PAR1, PAR2, and PAR3. In contrast, dendritic cells differentiated from monocytes by GM-CSF and interleukin-4 (IL-4) strongly down-regulated PAR1, PAR2, and PAR3, both at the mRNA and the protein level. Down-regulation of the PAR expression was apparently due to IL-4, because treatment of macrophages with IL-4 caused down-regulation of PAR1, PAR2, and PAR3. PAR4 mRNA expression remained undetectable in any of the cell types investigated. Stimulation of PAR1, PAR2, and PAR3 with thrombin, trypsin, or established receptor-activating peptides (PAR-APs) triggered cytosolic Ca2+ responses, indicating functionally active PARs. Further, stimulation of monocytes or macrophages with thrombin or PAR1-AP, but not with PAR2-or PAR4-AP, triggers expression of monocyte chemoattractant protein-1 (MCP-1) both at the mRNA and the protein level. These data demonstrate that differentiation of human monocytes is associated with differential expression of functionally active PARs that mediate distinct regulatory functions in inflammation and atherogenesis. (Blood. 2003;102:2645-2652)

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1259-1261
Author(s):  
J Horiguchi ◽  
MK Warren ◽  
D Kufe

The macrophage-specific colony-stimulating factor (CSF-1, M-CSF) regulates the survival, growth and differentiation of monocytes. We have recently demonstrated that phorbol ester induces expression of CSF- 1 in human monocytes. These findings suggested that activated monocytes are capable of producing their own lineage-specific CSF. The present studies demonstrate that the granulocyte-macrophage colony-stimulating factor (GM-CSF) also induces CSF-1 transcripts in monocytes. Furthermore, we demonstrate that the detection of CSF-1 RNA in GM-CSF- treated monocytes is associated with synthesis of the CSF-1 gene product. The results thus suggest that GM-CSF may indirectly control specific monocyte functions through the regulation of CSF-1 production. These findings indicate another level of interaction between T cells and monocytes.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3130-3137 ◽  
Author(s):  
PK Epling-Burnette ◽  
S Wei ◽  
DK Blanchard ◽  
E Spranzi ◽  
JY Djeu

Abstract Human monocytes express interleukin-2 receptor beta (IL-2R beta) constitutively; however, the function of these receptors has not been fully delineated. We discovered that IL-2R beta directs two biologic activities in human monocytes, the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) and increased susceptibility to lysis by lymphokine-activated killer cells (LAK) cells. Human monocytes were purified from peripheral blood mononuclear cells by plastic adherence and anti-CD2 plus complement lysis. By a 5-hour 51Cr-release assay, monocytes cultured in IL-2 were found to gain increasing susceptibility to LAK cells with time and this effect was dose dependent. Maximal susceptibility was obtained with a 4-day culture in 1,000 U/mL of IL-2. Monocytes were also found to release GM-CSF in response to IL-2 using a CSF-dependent cell line, Mo7e. Because IL-2- induced GM-CSF release coincides with LAK lysis of IL-2-cultured monocytes, we treated monocytes with anti-GM-CSF and anti-IL-2R beta to determine whether GM-CSF release and LAK susceptibility were dependent or independent events. We found that both phenomena were inhibited by either antibody. Therefore, we conclude that IL-2-induced release of GM- CSF is mediated by IL-2R beta, which then acts to modulate the susceptibility of monocytes to lysis by LAK cells.


1987 ◽  
Vol 166 (5) ◽  
pp. 1484-1498 ◽  
Author(s):  
M D Witmer-Pack ◽  
W Olivier ◽  
J Valinsky ◽  
G Schuler ◽  
R M Steinman

A panning method has been developed to enrich Langerhans cells (LC) from murine epidermis. In standard culture media, the enriched populations progressively lose viability over a 3-d interval. When the cultures are supplemented with keratinocyte-conditioned medium, LC viability is improved and the cells increase in size and number of dendritic processes. Accessory function, as monitored by stimulating activity in the mixed lymphocyte reaction (MLR), increases at least 10-20-fold. The conditioned media of stimulated macrophages and T cells also support the viability and maturation of cultured LC. A panel of purified cytokines has been tested, and only granulocyte/macrophage colony-stimulating factor (GM-CSF) substitutes for bulk-conditioned medium. The recombinant molecule exhibits half-maximal activity at 5 pM. Without activity are: IL-1-4; IFN-alpha/beta/gamma; cachectin/TNF; M- and G-CSF. A rabbit anti-GM-CSF specifically neutralizes the capacity of keratinocyte-conditioned medium to generate active LC. However, GM-CSF is not required for LC function during the MLR itself. We conclude that the development of immunologically active LC in culture is mediated by GM-CSF. The observation that these dendritic cells do not respond to lineage-specific G- and M-CSFs suggests that LC represent a distinct myeloid differentiation pathway. Because GM-CSF can be made by nonimmune cells and can mediate the production of active dendritic cells, this cytokine provides a T-independent mechanism for enhancing the sensitization phase of cell-mediated immunity.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Yves Delneste ◽  
Peggy Charbonnier ◽  
Nathalie Herbault ◽  
Giovanni Magistrelli ◽  
Gersende Caron ◽  
...  

Abstract Human monocytes differentiate into dendritic cells (DCs) or macrophages according to the nature of environmental signals. Monocytes stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin 4 (IL-4) yield DCs. We tested here whether interferon-γ (IFN-γ), a potent activator of macrophages, may modulate monocyte differentiation. Addition of IFN-γ to IL-4 plus GM-CSF–stimulated monocytes switches their differentiation from DCs to CD14−CD64+ macrophages. IFN-γ increases macrophage colony-stimulating factor (M-CSF) and IL-6 production by IL-4 plus GM-CSF–stimulated monocytes by acting at the transcriptional level and acts together with IL-4 to up-regulate M-CSF but not IL-6 production. IFN-γ also increases M-CSF receptor internalization. Results from neutralizing experiments show that both M-CSF and IL-6 are involved in the ability of IFN-γ to skew monocyte differentiation from DCs to macrophages. Finally, this effect of IFN-γ is limited to early stages of differentiation. When added to immature DCs, IFN-γ up-regulates IL-6 but not M-CSF production and does not convert them to macrophages, even in the presence of exogenous M-CSF. In conclusion, IFN-γ shifts monocyte differentiation to macrophages rather than DCs through autocrine M-CSF and IL-6 production. These data show that IFN-γ controls the differentiation of antigen-presenting cells and thereby reveals a new mechanism by which IFN-γ orchestrates the outcome of specific immune responses.


2016 ◽  
Vol 43 (10) ◽  
pp. 1874-1884 ◽  
Author(s):  
Martijn H. van den Bosch ◽  
Arjen B. Blom ◽  
Rik F. Schelbergen ◽  
Marije I. Koenders ◽  
Fons A. van de Loo ◽  
...  

Objective.The alarmins S100A8 and S100A9 have been shown to regulate synovial activation, cartilage damage, and osteophyte formation in osteoarthritis (OA). Here we investigated the effect of S100A9 on the production of proinflammatory cytokines and matrix metalloprotease (MMP) in OA synovium, granulocyte macrophage colony-stimulating factor (GM-CSF)-differentiated/macrophage colony-stimulating factor (M-CSF)-differentiated macrophages, and OA fibroblasts.Methods.We determined which cell types in the synovium produced S100A8 and S100A9. Further, the production of proinflammatory cytokines and MMP, and the activation of canonical Wnt signaling, was determined in human OA synovium, OA fibroblasts, and monocyte-derived macrophages following stimulation with S100A9.Results.We observed that S100A8 and S100A9 were mainly produced by GM-CSF–differentiated macrophages present in the synovium, and to a lesser extent by M-CSF–differentiated macrophages, but not by fibroblasts. S100A9 stimulation of OA synovial tissue increased the production of the proinflammatory cytokines interleukin (IL) 1β, IL-6, IL-8, and tumor necrosis factor-α. Additionally, various MMP were upregulated after S100A9 stimulation. Experiments to determine which cell type was responsible for these effects revealed that mainly stimulation of GM-CSF–differentiated macrophages and to a lesser extent M-CSF-differentiated macrophages with S100A9 increased the expression of these proinflammatory cytokines and MMP. In contrast, stimulation of fibroblasts with S100A9 did not affect their expression. Finally, stimulation of GM-CSF–differentiated, but not M-CSF–differentiated macrophages with S100A9 activated canonical Wnt signaling, whereas incubation of OA synovium with the S100A9 inhibitor paquinimod reduced the activation of canonical Wnt signaling.Conclusion.Predominantly mediated by M1-like macrophages, the alarmin S100A9 stimulates the production of proinflammatory and catabolic mediators and activates canonical Wnt signaling in OA synovium.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3616-3621 ◽  
Author(s):  
JA Hamilton ◽  
GA Whitty ◽  
H Stanton ◽  
J Wojta ◽  
M Gallichio ◽  
...  

Macrophage colony-stimulating factor (M-CSF or CSF-1) and granulocyte- macrophage CSF (GM-CSF) have been shown to increase human monocyte urokinase-type plasminogen-activator (u-PA) activity with possible consequences for cell migration and tissue remodeling; because monocyte u-PA activity is likely to be controlled in part also by the PA inhibitors (PAIs) made by the cell, the effect of M-CSF and GM-CSF on human monocyte PAI-2 and PAI-1 synthesis was investigated. To this end, elutriation-purified human monocytes were treated in vitro with purified recombinant human M-CSF and GM-CSF, and PAI-2 and PAI-1 antigen and mRNA levels measured by specific enzyme-linked immunosorbent assays and Northern blot, respectively. Each CSF could enhance the protein and mRNA levels of PAI-2 and PAI-1 at similar concentrations for each product. This similar regulation of monocyte PAI expression in response to the CSFs contrasted with that found for the effects of lipopolysaccharide, transforming growth factor-beta and a glucocorticoid. Therefore, PAIs may be modulating the effects of the CSFs on monocyte u-PA activity at sites of inflammation and tissue remodeling.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 202-210 ◽  
Author(s):  
ML Disis ◽  
H Bernhard ◽  
FM Shiota ◽  
SL Hand ◽  
JR Gralow ◽  
...  

Abstract The current studies evaluate granulocyte-macrophage colony-stimulating factor (GM-CSF) as a vaccine adjuvant. An important issue for developing vaccine therapy for human malignancy is identifying adjuvants that can elicit T-cell responses to proteins and peptides derived from “self” tumor antigens. GM-CSF, in vitro, stimulates the growth of antigen-presenting cells such as dendritic cells and macrophages. Initial experiments examined whether GM-CSF injected into the skin of rats could affect the number or character of antigen presenting cells, measured as class II major histocompatability complex expressing cells, in lymph nodes draining the injection site. Intradermal (id) inoculation of GM-CSF every 24 hours for a total of five inoculations resulted in an increase of class II+ fluorescing cells that peaked at the fourth inoculation. Subcutaneous (sq) inoculation resulted in an increase of class II+ fluorescing cells that peaked following the second inoculation, then decreased over time. Using this schema for “conditioning” the inoculation site, GM-CSF was administered id or sq for five injections and a foreign antigen, tetanus toxoid (tt), was given at the beginning or the end of the immunization cycle. Id immunization was more effective than sq at eliciting tt specific immunity. In addition, GM-CSF id, administered as a single dose with antigen, compared favorably with complete Freund's adjuvant (CFA) and alum in eliciting tt specific antibody and cellular immunity. We have shown that immunity to rat neu (c-erbB-2) protein, an oncogenic self protein, can be generated in rats by immunization with peptides derived from the normal rat neu sequence plus CFA. The current study demonstrates that rat neu peptides inoculated with GM-CSF could elicit a strong delayed type hypersensitivity reaction (DTH) response, whereas peptides alone were non-immunogenic. GM-CSF was as effective as CFA in generating rat neu specific DTH responses after immunization with a neu peptide based vaccine. Soluble GM-CSF is a potent adjuvant for the generation of immune responses to foreign proteins as well as peptides derived from a self tumor antigen.


Sign in / Sign up

Export Citation Format

Share Document