Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization

Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1340-1346 ◽  
Author(s):  
Christopher Heeschen ◽  
Alexandra Aicher ◽  
Ralf Lehmann ◽  
Stephan Fichtlscherer ◽  
Mariuca Vasa ◽  
...  

Abstract Increasing evidence suggests that postnatal neovascularization involves the recruitment of circulating endothelial progenitor cells (EPCs). Hematopoietic and endothelial cell lineages share common progenitors. Cytokines formerly thought to be specific for the hematopoietic system have only recently been shown to affect several functions in endothelial cells. Accordingly, we investigated the stimulatory potential of erythropoietin (Epo) on EPC mobilization and neovascularization. The bone marrow of Epo-treated mice showed a significant increase in number and proliferation of stem and progenitor cells as well as in colony-forming units. The number of isolated EPCs and CD34+/flk-1+ precursor cells was significantly increased in spleen and peripheral blood of Epo-treated mice compared with phosphate-buffered saline–treated mice. In in vivo models of postnatal neovascularization, Epo significantly increased inflammation- and ischemia-induced neovascularization. The physiologic relevance of these findings was investigated in patients with coronary heart disease. In a multivariate regression model, serum levels of Epo and vascular endothelial growth factor were significantly associated with the number of stem and progenitor cells in the bone marrow as well as with the number and function of circulating EPCs. In conclusion, the present study suggests that Epo stimulates postnatal neovascularization at least in part by enhancing EPC mobilization from the bone marrow. Epo appears to physiologically regulate EPC mobilization in patients with ischemic heart disease. Thus, Epo serum levels may help in identifying patients with impaired EPC recruitment capacity.

2008 ◽  
Vol 294 (3) ◽  
pp. R811-R818 ◽  
Author(s):  
Chao-Hung Wang ◽  
Wen-Jin Cherng ◽  
Ning-I Yang ◽  
Chia-Ming Hsu ◽  
Chi-Hsiao Yeh ◽  
...  

Cyclosporin A (CsA) improves the success rate of transplantation. The CD26/dipeptidylpeptidase IV (DPP IV) system plays a critical role in mobilizing endothelial progenitor cells (EPCs) from bone marrow. This study investigated whether CsA manipulates CD26/DPP IV activity and increases EPC mobilization. C57BL/6 mice were divided into control and CsA-treated groups. Before and after hindlimb ischemia was induced, circulating EPC number and serum levels of different cytokines were measured. Compared with the controls, CsA treatment significantly increased the blood levels of stroma-derived factor-1α and stem cell factor after ischemic stress ( P < 0.001). The CsA group displayed a significant increase in the number of circulating EPCs (sca-1+KDR+ and c-kit+CD31+ EPCs, both P < 0.05). In vivo, CsA caused a significant increase in the numbers of EPCs incorporated into the Matrigel and ischemic limbs ( P < 0.05). In the peripheral blood, CsA significantly decreased CD26+ cell numbers and attenuated the plasma CD26/DPP IV activity ( P < 0.001). Furthermore, short-term CsA treatment significantly improved the perfusion of ischemic limbs and decreased the spontaneous digital amputation rate. In summary, CsA manipulates the mobilization of EPCs into the circulation via the CD26/DPP IV system. Short-term CsA treatment has beneficial effects on angiogenesis of ischemic tissues.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Martin Teraa ◽  
Ralf W Sprengers ◽  
Frans L Moll ◽  
Marianne C Verhaar ◽  

Background Critical limb ischemia (CLI) is characterized by obstruction of lower extremity arteries and a largely unexplained impaired ischemic neovascularization response. Bone marrow (BM) derived endothelial progenitor cells (EPC) contribute to postnatal neovascularization. We hypothesize that reduced levels and function of circulating progenitor cells and a dysfunctional BM environment contribute to impaired neovascularization in CLI. Methods Levels of primitive (CD34+ and CD133+) progenitors and CD34+KDR+ haemangioblastic EPC were analyzed using flow cytometry in peripheral blood (PB) and BM from 101 CLI patients in the JUVENTAS trial ( NCT00371371 ) and healthy controls (n=37 and n=12 for PB and BM, respectively). Endothelial damage markers (sE-selectin, sICAM-1, sVCAM-1, thrombomodulin) and PB levels of progenitor cell mobilizing (VEGF, SDF-1α, SCF, G-CSF) and inflammatory (IL-6, IL-8, IP-10) factors were assessed by ELISA and multiplex. Levels and activity of the EPC mobilizing protease MMP-9 were assessed in BM plasma by ELISA and zymography. Circulating angiogenic cells (CAC) were cultured from PB, and CAC paracrine function was assessed. Results Endothelial damage markers were higher in CLI ( p< 0.01). PB levels of VEGF, SDF-1α, SCF, G-CSF ( p< 0.05) and of IL-6, IL-8 and IP-10 were higher in CLI ( p< 0.05). Circulating EPC and CD133+ cells and BM CD34+ cells were significantly lower in CLI (all p <0.05), BM levels and activity of MMP-9 were lower in CLI (both p< 0.01). Multivariate regression analysis showed an inverse association between IL-6 levels and BM CD34+ cell levels ( p= 0.007). CAC outgrowth did not differ significantly between CLI patients and healthy controls ( p= 0.137), however CAC from CLI patients had profoundly reduced migration stimulating potential ( p< 0.0001). Conclusion CLI patients have reduced levels of circulating EPC despite profound endothelial injury and an EPC mobilizing response. Moreover, CLI patients have lower BM CD34+ cell levels, which were inversely associated with the inflammatory marker IL-6, and lower BM MMP-9 levels and activity. Our data suggest that reduced levels and function of circulating progenitor cells and BM dysfunction contribute to the defective neovascularization response in CLI.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Cristina Bono ◽  
Alba Martínez ◽  
Javier Megías ◽  
Daniel Gozalbo ◽  
Alberto Yáñez ◽  
...  

ABSTRACT Toll-like receptor (TLR) agonists drive hematopoietic stem and progenitor cells (HSPCs) to differentiate along the myeloid lineage. In this study, we used an HSPC transplantation model to investigate the possible direct interaction of β-glucan and its receptor (dectin-1) on HSPCs in vivo. Purified HSPCs from bone marrow of B6Ly5.1 mice (CD45.1 alloantigen) were transplanted into dectin-1−/− mice (CD45.2 alloantigen), which were then injected with β-glucan (depleted zymosan). As recipient mouse cells do not recognize the dectin-1 agonist injected, interference by soluble mediators secreted by recipient cells is negligible. Transplanted HSPCs differentiated into macrophages in response to depleted zymosan in the spleens and bone marrow of recipient mice. Functionally, macrophages derived from HSPCs exposed to depleted zymosan in vivo produced higher levels of inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 6 [IL-6]). These results demonstrate that trained immune responses, already described for monocytes and macrophages, also take place in HSPCs. Using a similar in vivo model of HSPC transplantation, we demonstrated that inactivated yeasts of Candida albicans induce differentiation of HSPCs through a dectin-1- and MyD88-dependent pathway. Soluble factors produced following exposure of HSPCs to dectin-1 agonists acted in a paracrine manner to induce myeloid differentiation and to influence the function of macrophages derived from dectin-1-unresponsive or β-glucan-unexposed HSPCs. Finally, we demonstrated that an in vitro transient exposure of HSPCs to live C. albicans cells, prior to differentiation, is sufficient to induce a trained phenotype of the macrophages they produce in a dectin-1- and Toll-like receptor 2 (TLR2)-dependent manner. IMPORTANCE Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections. Understanding host defense is essential to design novel therapeutic strategies to boost immune protection against Candida albicans. In this article, we delve into two new concepts that have arisen over the last years: (i) the delivery of myelopoiesis-inducing signals by microbial components directly sensed by hematopoietic stem and progenitor cells (HSPCs) and (ii) the concept of “trained innate immunity” that may also apply to HSPCs. We demonstrate that dectin-1 ligation in vivo activates HSPCs and induces their differentiation to trained macrophages by a cell-autonomous indirect mechanism. This points to new mechanisms by which pathogen detection by HSPCs may modulate hematopoiesis in real time to generate myeloid cells better prepared to deal with the infection. Manipulation of this process may help to boost the innate immune response during candidiasis.


2008 ◽  
Vol 85 (4) ◽  
pp. 1361-1366 ◽  
Author(s):  
Shigetoshi Mieno ◽  
Richard T. Clements ◽  
Munir Boodhwani ◽  
Neel R. Sodha ◽  
Basel Ramlawi ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2137-2137 ◽  
Author(s):  
Linda J. Bendall ◽  
Robert Welschinger ◽  
Florian Liedtke ◽  
Carole Ford ◽  
Aileen Dela Pena ◽  
...  

Abstract Abstract 2137 The chemokine CXCL12, and its receptor CXCR4, play an essential role in homing and engraftment of normal hematopoietic cells in the bone marrow, with the CXCR4 antagonist AMD3100 inducing the rapid mobilization of hematopoietic stem and progenitor cells into the blood in mice and humans. We have previously demonstrated that AMD3100 similarly induces the mobilization of acute lymphoblastic leukemia (ALL) cells into the peripheral blood. The bone marrow microenvironment is thought to provide a protective niche for ALL cells, contributing to chemo-resistance. As a result, compounds that disrupt leukemic cell interactions with the bone marrow microenvironment are of interest as chemo-sensitizing agents. However, the mobilization of normal hematopoietic stem and progenitor cells may also increase bone marrow toxicity. To better evaluate how such mobilizing agents affect normal hematopoietic progenitors and ALL cells, the temporal response of ALL cells to the CXCR4 antagonist AMD3100 was compared to that of normal hematopoietic progenitor cells using a NOD/SCID xenograft model of ALL and BALB/c mice respectively. ALL cells from all 7 pre-B ALL xenografts were mobilized into the peripheral blood by AMD3100. Mobilization was apparent 1 hour and maximal 3 hours after drug administration, similar to that observed for normal hematopoietic progenitors. However, ALL cells remained in the circulation for longer than normal hematopoietic progenitors. The number of ALL cells in the circulation remained significantly elevated in 6 of 7 xenografts examined, 6 hours post AMD3100 administration, a time point by which circulating normal hematopoietic progenitor levels had returned to baseline. No correlation between the expression of the chemokine receptor CXCR4 or the adhesion molecules VLA-4, VLA-5 or CD44, and the extent or duration of ALL cell mobilization was detected. In contrast, the overall motility of the ALL cells in chemotaxis assays was predictive of the extent of ALL cell mobilization. This was not due to CXCL12-specific chemotaxis because the association was lost when correction for background motility was undertaken. In addition, AMD3100 increased the proportion of actively cells ALL cells in the peripheral blood. This did not appear to be due to selective mobilization of cycling cells but reflected the more proliferative nature of bone marrow as compared to peripheral blood ALL cells. This is in contrast to the selective mobilization of quiescent normal hematopoietic stem and progenitor cells by AMD3100. Consistent with these findings, the addition of AMD3100 to the cell cycle dependent drug vincristine, increased the efficacy of this agent in NOD/SCID mice engrafted with ALL. Overall, this suggests that ALL cells will be more sensitive to effects of agents that disrupt interactions with the bone marrow microenvironment than normal progenitors, and that combining agents that disrupt ALL retention in the bone marrow may increase the therapeutic effect of cell cycle dependent chemotherapeutic agents. Disclosures: Bendall: Genzyme: Honoraria.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2047-2047
Author(s):  
Wendy Pang ◽  
Elizabeth Price ◽  
Irving L. Weissman ◽  
Stanley L. Schrier

Abstract Abstract 2047 Anemia is both a highly prevalent and clinically important condition that causes significant morbidity and mortality in the elderly population. While anemia in the elderly can be attributed to a number of causes, approximately 30% of elderly subjects with anemia have no overt etiology and fall under the category of unexplained anemia of the elderly (UA). There is increasing evidence to suggest that changes in the frequency and/or function of hematopoietic stem and progenitor cells may contribute to the onset and pathophysiology of age-associated hematological conditions, such as UA. Hematopoietic stem cells (HSC) reside at the top of the hematopoietic hierarchy and can differentiate, via increasingly committed downstream progenitors, into all the mature cells of the hematopoietic system. Human myelo-erythroid development proceeds through a set of oligopotent progenitors: HSC give rise to multipotent progenitors (MPP), which give rise to common myeloid progenitors (CMP), which in turn give rise to granulocyte-macrophage progenitors (GMP) and megakaryocyte-erythrocyte progenitors (MEP). We use flow cytometry and in vitro culture of sorted human HSC (Lin-CD34+CD38-CD90+CD45RA-), MPP (Lin-CD34+CD38-CD90-CD45RA-), CMP (Lin-CD34+CD38+CD123+CD45RA-), GMP (Lin-CD34+CD38+CD123+CD45RA+), and MEP (Lin-CD34+CD38+CD123-CD45RA-) from hematologically normal young (23 samples; age 20–35) and elderly (11 samples; age 65+) and UA (5 samples; age 65+) bone marrow samples in order to characterize the changes in the distribution and function of hematopoietic stem and progenitor populations during the aging process and, in particular, in the development of UA. We found that UA patients contain higher frequencies of HSC compared to both elderly normal (1.5-fold; p<0.03) and young normal samples (2.8-fold; p<10-5). We also found increased frequencies of MPP from UA patients compared to MPP from elderly normal (2.6-fold; p<0.002) and young normal samples (5.8-fold; p<0.04). While we observed similar frequencies of CMP among the three groups, we found a notable trend suggesting decreased frequencies of GMP and corresponding increased frequencies of MEP in UA patients. Functionally, HSC from the three groups exhibit statistically insignificant differences in the efficiency of colony formation under the myeloid differentiation-promoting methylcellulose-based in vitro culture conditions; however, on average, HSC from elderly bone marrow samples, regardless of the presence or absence of anemia, tend to form fewer colonies in methylcellulose. Interestingly, HSC from UA patients produce more granulocyte-monocyte (CFU-GM) colonies and fewer erythroid (CFU-E and BFU-E) colonies, compared to HSC from normal samples (p<0.001). Similarly, CMP from UA patients, compared to normal CMP, yield skewed distributions of myeloid-erythroid colonies when plated in methylcellulose, significantly favoring production of CFU-GM colonies over CFU-E and BFU-E colonies (p<0.003). Additionally, MEP from UA patients form both CFU-E and BFU-E colonies in methylcellulose albeit at a significantly lower efficiency than MEP from normal bone marrow samples (p<0.01). This is the first study to examine the changes in hematopoietic stem and progenitor populations in UA patients. The changes in the distribution of hematopoietic stem and progenitor cells in UA patients indicate that the HSC and MPP populations, and possibly also the MEP population, expand in the context of anemia, potentially in response to homeostatic feedback mechanisms. Nevertheless, these expanded populations are functionally impaired in their ability to differentiate towards the erythroid lineage. Our data suggest that there are intrinsic defects in the HSC population of UA patients that lead to poor erythroid differentiation, which can be readily observed even in the earliest committed myelo-erythroid progenitors. We have generated gene expression profiling data from these purified hematopoietic stem and progenitor populations from UA patients to try to identify biological pathways and markers relevant to disease pathogenesis and potential therapeutic targets. Disclosures: Weissman: Amgen, Systemix, Stem cells Inc, Cellerant: Consultancy, Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Schrier:Celgene: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3401-3401
Author(s):  
Rebecca L Porter ◽  
Mary A Georger ◽  
Laura M Calvi

Abstract Abstract 3401 Hematopoietic stem and progenitor cells (HSPCs) are responsible for the continual production of all mature blood cells during homeostasis and times of stress. These cells are known to be regulated in part by the bone marrow microenvironment in which they reside. We have previously reported that the microenvironmentally-produced factor Prostaglandin E2 (PGE2) expands HSPCs when administered systemically in naïve mice (Porter, Frisch et. al., Blood, 2009). However, the mechanism mediating this expansion remains unclear. Here, we demonstrate that in vivo PGE2 treatment inhibits apoptosis of HSPCs in naïve mice, as measured by Annexin V staining (p=0.0083, n=6–7 mice/group) and detection of active-Caspase 3 (p=0.01, n=6–7 mice/group). These data suggest that inhibition of apoptosis is at least one mechanism by which PGE2 expands HSPCs. Since PGE2 is a local mediator of injury and is known to play a protective role in other cell types, we hypothesized that it could be an important microenvironmental regulator of HSPCs during times of injury. Thus, these studies explored the role of PGE2 signaling in the bone marrow following myelosuppressive injury using a radiation injury model. Endogenous PGE2 levels in the bone marrow increased 2.9-fold in response to a sub-lethal dose of 6.5 Gy total body irradiation (TBI)(p=0.0004, n=3–11 mice/group). This increase in PGE2 correlated with up-regulation of microenvironmental Cyclooxygenase-2 (Cox-2) mRNA (p=0.0048) and protein levels at 24 and 72 hr post-TBI, respectively. Further augmentation of prostaglandin signaling following 6.5 Gy TBI by administration of exogenous 16,16-dimethyl-PGE2 (dmPGE2) enhanced the survival of functional HSPCs acutely after injury. At 24 hr post-TBI, the bone marrow of dmPGE2-treated animals contained significantly more LSK cells (p=0.0037, n=13 mice/group) and colony forming unit-spleen cells (p=0.037, n=5 mice/group). Competitive transplantation assays at 72 hr post-TBI demonstrated that bone marrow cells from irradiated dmPGE2-treated mice exhibited increased repopulating activity compared with cells from vehicle-treated mice. Taken together, these results indicate that dmPGE2 treatment post-TBI increases survival of functional HSPCs. Since PGE2 can inhibit apoptosis of HSPCs in naïve mice, the effect of dmPGE2 post-TBI on apoptosis was also investigated. HSPCs isolated from mice 24 hr post-TBI demonstrated statistically significant down-regulation of several pro-apoptotic genes and up-regulation of anti-apoptotic genes in dmPGE2-treated animals (3 separate experiments with n=4–8 mice/group in each), suggesting that dmPGE2 initiates an anti-apoptotic program in HSPCs following injury. Notably, there was no significant change in expression of the anti-apoptotic gene Survivin, which has previously been reported to increase in response to ex vivo dmPGE2 treatment of bone marrow cells (Hoggatt et. al., Blood, 2009), suggesting differential effects of dmPGE2 in vivo and/or in an injury setting. Additionally, to ensure that this inhibition of apoptosis was not merely increasing survival of damaged and non-functional HSPCs, the effect of early treatment with dmPGE2 post-TBI on hematopoietic recovery was assayed by monitoring peripheral blood counts. Interestingly, dmPGE2 treatment in the first 72 hr post-TBI significantly accelerated recovery of platelet levels and hematocrit compared with injured vehicle-treated mice (n=12 mice/group). Immunohistochemical analysis of the bone marrow of dmPGE2-treated mice also exhibited a dramatic activation of Cox-2 in the bone marrow microenvironment. This suggests that the beneficial effect of dmPGE2 treatment following injury may occur, both through direct stimulation of hematopoietic cells and also via activation of the HSC niche. In summary, these data indicate that PGE2 is a critical microenvironmental regulator of hematopoietic cells in response to injury. Exploitation of the dmPGE2-induced initiation of an anti-apoptotic program in HSPCs may represent a useful method to increase survival of these cells after sub-lethal radiation injury. Further, amplification of prostaglandin signaling by treatment with PGE2 agonists may also represent a novel approach to meaningfully accelerate recovery of peripheral blood counts in patients with hematopoietic system injury during a vulnerable time when few therapeutic options are currently available. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 513-513
Author(s):  
Pekka Jaako ◽  
Shubhranshu Debnath ◽  
Karin Olsson ◽  
Axel Schambach ◽  
Christopher Baum ◽  
...  

Abstract Abstract 513 Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia associated with physical abnormalities and predisposition to cancer. Mutations in genes that encode ribosomal proteins have been identified in approximately 60–70 % of the patients. Among these genes, ribosomal protein S19 (RPS19) is the most common DBA gene (25 % of the cases). Current DBA therapies involve risks for serious side effects and a high proportion of deaths are treatment-related underscoring the need for novel therapies. We have previously demonstrated that enforced expression of RPS19 improves the proliferation, erythroid colony-forming potential and differentiation of patient derived RPS19-deficient hematopoietic progenitor cells in vitro (Hamaguchi, Blood 2002; Hamaguchi, Mol Ther 2003). Furthermore, RPS19 overexpression enhances the engraftment and erythroid differentiation of patient-derived hematopoietic stem and progenitor cells when transplanted into immunocompromised mice (Flygare, Exp Hematol 2008). Collectively these studies suggest the feasibility of gene therapy in the treatment of RPS19-deficient DBA. In the current project we have assessed the therapeutic efficacy of gene therapy using a mouse model for RPS19-deficient DBA (Jaako, Blood 2011; Jaako, Blood 2012). This model contains an Rps19-targeting shRNA (shRNA-D) that is expressed by a doxycycline-responsive promoter located downstream of Collagen A1 gene. Transgenic animals were bred either heterozygous or homozygous for the shRNA-D in order to generate two models with intermediate or severe Rps19 deficiency, respectively. Indeed, following transplantation, the administration of doxycycline to the recipients with homozygous shRNA-D bone marrow results in an acute and lethal bone marrow failure, while the heterozygous shRNA-D recipients develop a mild and chronic phenotype. We employed lentiviral vectors harboring a codon-optimized human RPS19 cDNA driven by the SFFV promoter, followed by IRES and GFP (SFFV-RPS19). A similar vector without the RPS19 cDNA was used as a control (SFFV-GFP). To assess the therapeutic potential of the SFFV-RPS19 vector in vivo, transduced c-Kit enriched bone marrow cells from control and homozygous shRNA-D mice were injected into lethally irradiated wild-type mice. Based on the percentage of GFP-positive cells, transduction efficiencies varied between 40 % and 60 %. Three months after transplantation, recipient mice were administered doxycycline in order to induce Rps19 deficiency. After two weeks of doxycycline administration, the recipients transplanted with SFFV-RPS19 or SFFV-GFP control cells showed no differences in blood cellularity. Remarkably, at the same time-point the recipients with SFFV-GFP homozygous shRNA-D bone marrow showed a dramatic decrease in blood cellularity that led to death, while the recipients with SFFV-RPS19 shRNA-D bone marrow showed nearly normal blood cellularity. These results demonstrate the potential of enforced expression of RPS19 to reverse the severe anemia and bone marrow failure in DBA. To assess the reconstitution advantage of transduced hematopoietic stem and progenitor cells with time, we performed similar experiments with heterozygous shRNA-D bone marrow cells. We monitored the percentage of GFP-positive myeloid cells in the peripheral blood, which provides a dynamic read-out for bone marrow activity. After four months of doxycycline administration, the mean percentage of GFP-positive cells in the recipients with SFFV-RPS19 heterozygous shRNA-D bone marrow increased to 97 %, while no similar advantage was observed in the recipients with SFFV-RPS19 or SFFV-GFP control bone marrow, or SFFV-GFP heterozygous shRNA-D bone marrow. Consistently, SFFV-RPS19 conferred a reconstitution advantage over the non-transduced cells in the bone marrow. Furthermore, SFFV-RPS19 reversed the hypocellular bone marrow observed in the SFFV-GFP heterozygous shRNA-D recipients. Taken together, using mouse models for RPS19-deficient DBA, we demonstrate that the enforced expression of RPS19 rescues the lethal bone marrow failure and confers a strong reconstitution advantage in vivo. These results provide a proof-of-principle for gene therapy in the treatment of RPS19-deficient DBA. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document