Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin

Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2574-2580 ◽  
Author(s):  
Carlos J. Miranda ◽  
Hortence Makui ◽  
Ricardo J. Soares ◽  
Marc Bilodeau ◽  
Jeannie Mui ◽  
...  

Abstract The clinical use of doxorubicin (DOX), an anthracycline chemotherapeutic agent, is limited by cardiotoxicity. The possible involvement of iron in DOX-induced cardiotoxicity became evident from studies in which iron chelators were shown to be cardioprotective. Iron overload is found in hereditary hemochromatosis, a genetic disorder prevalent in individuals of European descent. We hypothesized that Hfe deficiency may increase susceptibility to DOX-induced toxicity. Acute cardiotoxicity and iron changes were studied after treatment with DOX in Hfe knock-out (Hfe-/-) mice and wild-type mice. DOX-induced iron metabolism changes were intensified in Hfe-/- mice, which accumulated significantly more iron in the heart, liver, and pancreas, but less in the spleen compared with wild-type mice. In addition, Hfe-deficient mice exhibited significantly greater sensitivity to DOX-induced elevations in serum creatine kinase and aspartate aminotransferase. Increased mortality after chronic DOX treatment was observed in Hfe-/- mice and Hfe+/-mice compared with wild-type mice. DOX-treated Hfe-/- mice had a higher degree of mitochondrial damage and iron deposits in the heart than did wild-type mice. These data demonstrate that Hfe deficiency in mice increases susceptibility to DOX-induced cardiotoxicity and suggest that genetic mutations related to defects in iron metabolism may contribute to its cardiotoxicity in humans. (Blood. 2003;102:2574-2580)

2006 ◽  
Vol 975 ◽  
Author(s):  
N Beril Kavukcuoglu ◽  
Adrian B. Mann

ABSTRACTOsteocalcin (OC) and osteopontin (OPN) are among the most abundant non-collagenous bone matrix proteins. Both have drawn interest from investigators studying their function in osteoporosis and it is known that mutations of these proteins can also have dramatic effects on the properties of bone. Other proteins including fibrillin 1 and 2 (FBN2) have been less widely studied, but can be mutated in some individuals resulting in connective tissue disorders. It has been reported that abnormal fibrillin may play a role in decreased bone mass. In this study bones from osteopontin (OPN), osteocalcin (OC) and fibrillin-2 (FBN2) knockout mice have been investigated. The study has identified how these proteins affect the bone's nanomechanical properties (hardness and elastic modulus). Nanoindentation tests were performed on the radial axis of cortical femora bones from the knockout mice and their wildtype controls. The results showed that young (age< 12 weeks) OPN knock-out bones have significantly lower mechanical properties than wild-type bones indicate a crucial role for OPN in early bone mineralization. After 12 weeks of age, the OPN knockout and wild-type control bones did not show any statistical difference. In OC deficient mice the mechanical properties were found to increase in the cortical mid-shaft of femora from 1 year old mice, suggesting an increase in bone mineralization, but 3 month old FBN2 deficient mice bones showed a decrease in mechanical properties across the cortical radial axis of the mid- femora.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1169-1169
Author(s):  
Maren Weisser ◽  
Kerstin B. Kaufmann ◽  
Tomer Itkin ◽  
Linping Chen-Wichmann ◽  
Tsvee Lapidot ◽  
...  

Abstract Reactive oxygen species (ROS) have been implicated in the regulation of stemness of hematopoietic stem cells (HSC). HSC with long-term repopulating capabilities are characterized by low ROS levels, whereas increased ROS levels correlate with lineage specification and differentiation. Several tightly regulated sources of ROS production are well known among which are the NADPH oxidases (Nox). HSC are known to express Nox1, Nox2 and Nox4, however, their role in maintenance of stem cell potential or in the activation of differentiation programs are poorly understood. While Nox2 is activated in response to various extrinsic and intrinsic stimuli, mainly during infection and inflammation, Nox4 is constitutively active and is considered to be responsible for steady-state ROS production. Consequently, Nox4 deficiency might lower ROS levels at steady-state hematopoiesis and thereby could have an impact on HSC physiology. In this work we studied HSC homeostasis in Nox4 knock-out mice. Analysis of the hematopoietic stem and progenitor cell (HSPC) pool in the bone marrow (BM) revealed no significant differences in the levels of Lineage marker negative (Lin-) Sca-1+ ckit+ (LSK) and LSK-SLAM (LSK CD150+ CD48-) cells in Nox4 deficient mice compared to wild type (WT) C57BL/6J mice. HSPC frequency upon primary and secondary BM transplantation was comparable between Nox4 deficient and WT mice. In addition, the frequency of colony forming cells in the BM under steady-state conditions did not differ between both mouse groups. However, Nox4 deficient mice possess more functional HSCs as observed in in vivo competitive repopulating unit (CRU) assays. Lin- cells derived from Nox4 knock out (KO) mice showed an increased CRU frequency and superior multilineage engraftment upon secondary transplantation. Surprisingly, ROS levels in different HSPC subsets of NOX4 KO mice were comparable to WT cells, implying that the absence of Nox4 in HSCs does not have a major intrinsic impact on HSC physiology via ROS. Therefore, the increased levels of functional HSCs observed in our studies may suggest a contribution of the BM microenvironment to steady-state hematopoiesis in the BM of Nox4 KO animals. Recent observations suggest a regulation of the BM stem cell pool by BM endothelial cells, in particular by the permeability state of the blood-bone marrow-barrier (Itkin T et al., ASH Annual Meeting Abstracts, 2012). Endothelial cells interact with HSCs predominantly via paracrine effects and control stem cell retention, egress and homing as well as stem cell activation. As Nox4 is highly expressed in endothelial cells and is involved in angiogenesis, we reasoned that the absence of NOX4 could affect HSC homeostasis through altered BM endothelium properties and barrier permeability state. Indeed, in preliminary assays we found reduced short-term homing of BM mononuclear cells into the BM of Nox4 deficient mice as compared to wild type hosts. Furthermore, in vivo administration of Evans Blue dye revealed reduced dye penetration into Nox4-/- BM compared to wild type mice upon intravenous injection. Taken together, these data indicate a reduced endothelial permeability in Nox4 KO mice. Ongoing experiments aim at further characterization of the Nox4-/- phenotype in BM sinusoidal and arteriolar endothelial cells, the impact of Nox4 deletion on BM hematopoietic and mesenchymal stem cells, and in deciphering the role of Nox4 in the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 15 ◽  
Author(s):  
Chiara Berteotti ◽  
Viviana Lo Martire ◽  
Sara Alvente ◽  
Stefano Bastianini ◽  
Cristiano Bombardi ◽  
...  

The loss of hypothalamic neurons that produce wake-promoting orexin (hypocretin) neuropeptides is responsible for narcolepsy type 1 (NT1). While the number of histamine neurons is increased in patients with NT1, results on orexin-deficient mouse models of NT1 are inconsistent. On the other hand, the effect of histamine deficiency on orexin neuron number has never been tested on mammals, even though histamine has been reported to be essential for the development of a functional orexin system in zebrafish. The aim of this study was to test whether histamine neurons are increased in number in orexin-deficient mice and whether orexin neurons are decreased in number in histamine-deficient mice. The hypothalamic neurons expressing L-histidine decarboxylase (HDC), the histamine synthesis enzyme, and those expressing orexin A were counted in four orexin knock-out mice, four histamine-deficient HDC knock-out mice, and four wild-type C57BL/6J mice. The number of HDC-positive neurons was significantly higher in orexin knock-out than in wild-type mice (2,502 ± 77 vs. 1,800 ± 213, respectively, one-tailed t-test, P = 0.011). Conversely, the number of orexin neurons was not significantly lower in HDC knock-out than in wild-type mice (2,306 ± 56 vs. 2,320 ± 120, respectively, one-tailed t-test, P = 0.459). These data support the view that orexin peptide deficiency is sufficient to increase histamine neuron number, supporting the involvement of the histamine waking system in the pathophysiology of NT1. Conversely, these data do not support a significant role of histamine in orexin neuron development in mammals.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 821-821
Author(s):  
Jonas S. Jutzi ◽  
A Gruender ◽  
Konrad Aumann ◽  
Heike L. Pahl

Abstract Background: We have described overexpression of the transcription factor NF-E2 in MPN patients and shown that elevated NF-E2 levels cause a MPN phenotype in transgenic mice. This includes thrombocytosis, leukocytosis, splenomegaly as well as an expansion of the stem- and progenitor cell compartments in the bone marrow. Recently, we have shown that, counterintuitively for a transcription factor, NF-E2 is located exclusively in the cytoplasm in the vast majority of erythroid cells in the bone marrow (85%). Patients with PMF show a statistically highly significant elevation in the proportion of cells displaying nuclear NF-E2 compared to either healthy controls or ET and PV patients. However, the molecular mechanisms regulating the subcellular localization of NF-E2 and its aberrant localization in PMF remain to be investigated. The E3 ubiquitin ligase ITCH has been postulated to stabilize and retain NF-E2 in the cytosol by protein-protein interaction and subsequent ubiquitinylation. The phenotype of ITCH deficient mice, however, has only been described briefly: animals display splenomegaly and an expansion of the stem cell compartment. The effect of ITCH deficiency on peripheral blood counts and on NF-E2 activity has not been determined. Aims: To characterize the phenotype of ITCH deficient mice and investigate the effect of ITCH deficiency on NF-E2 localization and activity. Methods: The peripheral blood and bone marrow of ITCH knock out mice as well as of heterozygous and wild-type control animals was analyzed: CBCs were determined every four weeks, stem- and progenitor populations in the bone marrow were assessed by 7-color FACS. Expression levels of NF-E2 and its targets genes were measured by quantitative PCR. Plasma cytokine concentrations were measured by Cytometric Bead Array. To determine the subcellular localization of NF-E2, immunohistochemical stainings of ITCH knock out BMs and wild-type controls were conducted. Results: At several consecutive time points ITCH knock out mice displayed a statistically significant elevation in WBC compared to heterozygous and wild-type littermates. Interestingly, both the percentage and the absolute number of eosinophils were significantly increased, some animals presenting with a drastic eosinophilia, the differential containing over 60% eosinophils. Furthermore, ITCH knock out mice display a significant decrease in platelet count, accompanied by an increase in platelet mass and volume, indicative of giant platelets. In the bone marrow ITCH deficient mice show a significant increase in the absolute number of Common Myeloid Progenitors (CMP). NF-E2 expression levels in the peripheral blood as well as in the bone marrow were highly statistically significantly increased compared to the levels measured in wild-type or heterozygous control mice. Consequently, the NF-E2 target gene Thromboxane Synthase A was statistically significantly overexpressed in peripheral blood of ITCH knock out mice. Plamsa concentrations of the inflammatory cytokines INF-γ and TNF were statistically significantly elevated, reaching two to threefold higher levels in ITCH knock out mice compared to wild-type littermates. Lastly, NF-E2 subcellular localization was altered in ITCH deficient mice, which display a significant increase in the proportion of megakaryocytes positive for nuclear NF-E2. Summary/Conclusions: Our data identify the E3 ubiquitin ligase ITCH as a regulator of NF-E2 activity. Impaired ITCH activity leads to both an NF-E2 overexpression and an increased nuclear NF-E2 localization that together drive overexpression of NF-E2 target genes. Furthermore, ITCH deficiency leads to higher inflammatory cytokine levels, comparable to those seen in PMF patients. All of these factors contribute to the resulting myeloproliferative phenotype with eosinophilia. Our data provide the first pathophysiological explanation of the pathognomonic symptom of ITCH deletion: pruritus in "itchy" mice. Moreover, given the aberrant NF-E2 localization in PMF patients, our data provide a possible mechanism and underscore the role of elevated NF-E2 activity in the pathophysiology of myeloproliferative neoplasms. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3843-3843
Author(s):  
Matthias Schranzhofer ◽  
Manfred Schifrer ◽  
Bruno Galy ◽  
Matthias W. Hentze ◽  
Ernst W. Mullner ◽  
...  

Abstract Developing red blood cells are the major consumers of body iron which is indispensable for the enormous production of heme for hemoglobin synthesis. The uptake of iron occurs via binding of iron-loaded transferrin to its cognate receptor (TfR). Thereafter the iron is shuttled to the mitochondria where it is incorporated into protoporphyrin IX to form heme. Excess iron is enclosed within the iron storage protein ferritin. Coordinated control between iron uptake and storage is mainly achieved by the post-transcriptional regulation of TfR1 and ferritin synthesis by the iron regulatory proteins IRP1 and IRP2. Recently, two groups independently created mice lacking either IRP1 or IRP2 and showed that only IRP2 deficient mice developed microcytic hypochromic anemia. Both groups observed a reduction in TfR1 protein expression levels in the developing red blood cells of IRP2 knockout animals and suggested that the decrease in receptor levels is responsible for the development of anemia. For a more detailed analysis of how the loss of IRP2 expression influences iron metabolism and hemoglobinization during terminal erythroid differentiation, we isolated CFU-E-like erythroid cells from mouse fetal liver of wild type, IRP1 and IRP2 knock out animals. In vitro cultivation of these primary erythroid cells and their synchronous induction for differentiation allowed us to study their cellular iron metabolism at different time points. We analyzed the extent of hemoglobinization and cell size as well as the expression of ferritin and TfR1 during various stages of erythroid differentiation in IRP1, IRP2 and wild type cells. In agreement with the published phenotype of microcytic hypochromic anemia, only erythroblasts lacking IRP2 exhibited a reduction in hemoglobinization and showed a significant increase in ferritin protein levels before and after induction of differentiation. In contrast, TfR1 protein expression levels on the cell surface were significantly decreased in IRP2 deficient cells until 24h of differentiation, but converged with those of wild type cells at 48h of differentiation at the time point at which hemoglobinization is fully in progress. Moreover, measurement of 59Fe uptake and its cellular distribution showed that there is significantly more 59Fe located in cytosolic ferritin of IRP2 knock out cells at all time points compared to their wild type counterpart. In summary, these results suggest that not only the reduced expression of TfR1, but also the up-regulation of ferritin, play important roles in the development of anemic phenotype in IRP2 knock out mice. This work was supported by the Canadian Institutes of Health Research and the Canadian Blood Services.


Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3374-3381 ◽  
Author(s):  
Junwei Gao ◽  
Juxing Chen ◽  
Ivana De Domenico ◽  
David M. Koeller ◽  
Cary O. Harding ◽  
...  

Abstract Hereditary hemochromatosis is caused by mutations in the hereditary hemochromatosis protein (HFE), transferrin-receptor 2 (TfR2), hemojuvelin, hepcidin, or ferroportin genes. Hepcidin is a key iron regulator, which is secreted by the liver, and decreases serum iron levels by causing the down-regulation of the iron transporter, ferroportin. Mutations in either HFE or TfR2 lower hepcidin levels, implying that both HFE and TfR2 are necessary for regulation of hepcidin expression. In this study, we used a recombinant adeno-associated virus, AAV2/8, for hepatocyte-specific expression of either Hfe or Tfr2 in mice. Expression of Hfe in Hfe-null mice both increased Hfe and hepcidin mRNA and lowered hepatic iron and Tf saturation. Expression of Tfr2 in Tfr2-deficient mice had a similar effect, whereas expression of Hfe in Tfr2-deficient mice or of Tfr2 in Hfe-null mice had no effect on liver or serum iron levels. Expression of Hfe in wild-type mice increased hepcidin mRNA and lowered iron levels. In contrast, expression of Tfr2 had no effect on wild-type mice. These findings suggest that Hfe is limiting in formation of the Hfe/Tfr2 complex that regulates hepcidin expression. In addition, these studies show that the use of recombinant AAV vector to deliver genes is a promising approach for studying physiologic consequences of protein complexes.


Blood ◽  
2004 ◽  
Vol 103 (7) ◽  
pp. 2847-2849 ◽  
Author(s):  
Carlos J. Miranda ◽  
Hortence Makui ◽  
Nancy C. Andrews ◽  
Manuela M. Santos

Abstract Genetic causes of hereditary hemochromatosis (HH) include mutations in the HFE gene, coding for a β2-microglobulin (β2m)-associated major histocompatibility complex class I-like protein. However, iron accumulation in patients with HH can be highly variable. Previously, analysis of β2mRag1-/- double-deficient mice, lacking all β2m-dependent molecules and lymphocytes, demonstrated increased iron accumulation in the pancreas and heart compared with β2m single knock-out mice. To evaluate whether the observed phenotype in β2mRag1-/- mice was due solely to the absence of Hfe or to other β2m-dependent molecules, we generated HfeRag1-/- double-deficient mice. Our studies revealed that introduction of Rag1 deficiency in Hfe knock-out mice leads to heightened iron overload, mainly in the liver, whereas the heart and pancreas are relatively spared compared with β2mRag1-/- mice. These results suggest that other β2m-interacting protein(s) may be involved in iron regulation and that in the absence of functional Hfe molecules lymphocyte numbers may influence iron overload severity. (Blood. 2004;103: 2847-2849)


Blood ◽  
2009 ◽  
Vol 114 (12) ◽  
pp. 2515-2520 ◽  
Author(s):  
Léon Kautz ◽  
Delphine Meynard ◽  
Céline Besson-Fournier ◽  
Valérie Darnaud ◽  
Talal Al Saati ◽  
...  

Abstract Impaired regulation of hepcidin expression in response to iron loading appears to be the pathogenic mechanism for hereditary hemochromatosis. Iron normally induces expression of the BMP6 ligand, which, in turn, activates the BMP/Smad signaling cascade directing hepcidin expression. The molecular function of the HFE protein, involved in the most common form of hereditary hemochromatosis, is still unknown. We have used Hfe-deficient mice of different genetic backgrounds to test whether HFE has a role in the signaling cascade induced by BMP6. At 7 weeks of age, these mice have accumulated iron in their liver and have increased Bmp6 mRNA and protein. However, in contrast to mice with secondary iron overload, levels of phosphorylated Smads 1/5/8 and of Id1 mRNA, both indicators of BMP signaling, are not significantly higher in the liver of these mice than in wild-type livers. As a consequence, hepcidin mRNA levels in Hfe-deficient mice are similar or marginally reduced, compared with 7-week-old wild-type mice. The inappropriately low levels of Id1 and hepcidin mRNA observed at weaning further suggest that Hfe deficiency triggers iron overload by impairing hepatic Bmp/Smad signaling. HFE therefore appears to facilitate signal transduction induced by the BMP6 ligand.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 382-382 ◽  
Author(s):  
Katherine Y King ◽  
Megan T Baldridge ◽  
David C Weksberg ◽  
Margaret A Goodell

Abstract Abstract 382 Hematopoietic stem cells (HSCs) are a self-renewing population of bone marrow cells that give rise to all of the cellular elements of the blood and retain enormous proliferative potential in vivo. We have a growing understanding that the controls on HSC proliferation are tied in part to regulation by the immune system—specifically, that HSC proliferation and mobilization can be stimulated by the immune cytokines interferon-alpha and interferon-gamma (IFNg). Our previous work has demonstrated that HSC quiescence and function are aberrant in mice lacking the immunity-related GTPase Irgm1 (also Lrg47). Indeed, the bone marrow of Irgm1-deficient animals at baseline mimics the bone marrow of wild type animals that have been stimulated with IFNg. We hypothesized that the HSC defects in Irgm1-deficient animals are due to overabundant IFNg signaling, and that Irgm1 normally serves to dampen the stimulatory effects of IFNg on HSCs. To test this hypothesis, we used RNA expression profiling to compare gene expression in wild type versus Irgm1-deficient mice. We found that interferon-dependent signaling is globally upregulated in the HSCs of Irgm1-deficient mice. Next we generated Irgm1-/-IFNgR1-/- and Irgm1-/-Stat1-/- double knock out animals. In contrast to the phenotype of Irgm1 single knock out mutants, the hyperproliferation and self-renewal defects in HSCs were both rescued in the double knock out animals, indicating that IFNg signaling is required for manifestation of the Irgm1-deficient phenotype. Futhermore, we found that Irgm1 is expressed in HSCs in a Stat1- and IFNgR-dependent fashion, suggesting that it forms a negative feedback loop for IFNg signaling in the HSC population. Collectively, our results indicate that Irgm1 is a powerful negative regulator of IFNg-dependent stimulation in HSCs. These findings demonstrate that IFNg provides a significant stimulus for HSC proliferation even in the absence of infection, and that IFNg-dependent signaling must be tightly regulated to preserve HSC self-renewal capacity. This study provides evidence that the Irgm1 protein can serve as a link between immunity and regulation of hematopoiesis at the level of the stem cell. We speculate that utilization of Irgm1 for its immune functions may detract from its ability to regulate HSC self-renewal capacity, thus ultimately contributing to myelosuppression and increased risk of death from chronic infections such as tuberculosis. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Bijay Jha ◽  
Sanjay Varikuti ◽  
Nicholas Bishop ◽  
Gregory dos Santos ◽  
Jacquelyn McDonald ◽  
...  

Abstract Trypanosoma cruzi is the etiologic agent of Chagas disease for which there are no prophylactic vaccines. Cyclophilin 19 is a secreted cis-trans peptidyl isomerase expressed in all life stages of Trypanosoma cruzi, which in the insect stage leads to the inactivation of insect anti-parasitic peptides and parasite transformation and in intracellular amastigotes participates in generating ROS enhancing parasite growth. We have generated a parasite knock-out mutant of Cyp19 which fails to replicate in cell culture or in mice indicating that lack of Cyp19 is critical for infectivity. Knock-out parasites fail to replicate in or cause clinical disease in immune-deficient mice further validating their lack of virulence. Repeated inoculation of knock-out parasites into immuno-competent mice elicits parasite-specific antibodies and T-cell responses. Challenge of immunized mice with wild-type parasites is 100% effective at preventing disease. These results indicate that the knock-out parasite line is a live vaccine candidate for Chagas disease.


Sign in / Sign up

Export Citation Format

Share Document