scholarly journals Orexin/Hypocretin and Histamine Cross-Talk on Hypothalamic Neuron Counts in Mice

2021 ◽  
Vol 15 ◽  
Author(s):  
Chiara Berteotti ◽  
Viviana Lo Martire ◽  
Sara Alvente ◽  
Stefano Bastianini ◽  
Cristiano Bombardi ◽  
...  

The loss of hypothalamic neurons that produce wake-promoting orexin (hypocretin) neuropeptides is responsible for narcolepsy type 1 (NT1). While the number of histamine neurons is increased in patients with NT1, results on orexin-deficient mouse models of NT1 are inconsistent. On the other hand, the effect of histamine deficiency on orexin neuron number has never been tested on mammals, even though histamine has been reported to be essential for the development of a functional orexin system in zebrafish. The aim of this study was to test whether histamine neurons are increased in number in orexin-deficient mice and whether orexin neurons are decreased in number in histamine-deficient mice. The hypothalamic neurons expressing L-histidine decarboxylase (HDC), the histamine synthesis enzyme, and those expressing orexin A were counted in four orexin knock-out mice, four histamine-deficient HDC knock-out mice, and four wild-type C57BL/6J mice. The number of HDC-positive neurons was significantly higher in orexin knock-out than in wild-type mice (2,502 ± 77 vs. 1,800 ± 213, respectively, one-tailed t-test, P = 0.011). Conversely, the number of orexin neurons was not significantly lower in HDC knock-out than in wild-type mice (2,306 ± 56 vs. 2,320 ± 120, respectively, one-tailed t-test, P = 0.459). These data support the view that orexin peptide deficiency is sufficient to increase histamine neuron number, supporting the involvement of the histamine waking system in the pathophysiology of NT1. Conversely, these data do not support a significant role of histamine in orexin neuron development in mammals.

2002 ◽  
Vol 22 (17) ◽  
pp. 7695-7711 ◽  
Author(s):  
Régis Parmentier ◽  
Hiroshi Ohtsu ◽  
Zahia Djebbara-Hannas ◽  
Jean-Louis Valatx ◽  
Takehiko Watanabe ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 821-821
Author(s):  
Jonas S. Jutzi ◽  
A Gruender ◽  
Konrad Aumann ◽  
Heike L. Pahl

Abstract Background: We have described overexpression of the transcription factor NF-E2 in MPN patients and shown that elevated NF-E2 levels cause a MPN phenotype in transgenic mice. This includes thrombocytosis, leukocytosis, splenomegaly as well as an expansion of the stem- and progenitor cell compartments in the bone marrow. Recently, we have shown that, counterintuitively for a transcription factor, NF-E2 is located exclusively in the cytoplasm in the vast majority of erythroid cells in the bone marrow (85%). Patients with PMF show a statistically highly significant elevation in the proportion of cells displaying nuclear NF-E2 compared to either healthy controls or ET and PV patients. However, the molecular mechanisms regulating the subcellular localization of NF-E2 and its aberrant localization in PMF remain to be investigated. The E3 ubiquitin ligase ITCH has been postulated to stabilize and retain NF-E2 in the cytosol by protein-protein interaction and subsequent ubiquitinylation. The phenotype of ITCH deficient mice, however, has only been described briefly: animals display splenomegaly and an expansion of the stem cell compartment. The effect of ITCH deficiency on peripheral blood counts and on NF-E2 activity has not been determined. Aims: To characterize the phenotype of ITCH deficient mice and investigate the effect of ITCH deficiency on NF-E2 localization and activity. Methods: The peripheral blood and bone marrow of ITCH knock out mice as well as of heterozygous and wild-type control animals was analyzed: CBCs were determined every four weeks, stem- and progenitor populations in the bone marrow were assessed by 7-color FACS. Expression levels of NF-E2 and its targets genes were measured by quantitative PCR. Plasma cytokine concentrations were measured by Cytometric Bead Array. To determine the subcellular localization of NF-E2, immunohistochemical stainings of ITCH knock out BMs and wild-type controls were conducted. Results: At several consecutive time points ITCH knock out mice displayed a statistically significant elevation in WBC compared to heterozygous and wild-type littermates. Interestingly, both the percentage and the absolute number of eosinophils were significantly increased, some animals presenting with a drastic eosinophilia, the differential containing over 60% eosinophils. Furthermore, ITCH knock out mice display a significant decrease in platelet count, accompanied by an increase in platelet mass and volume, indicative of giant platelets. In the bone marrow ITCH deficient mice show a significant increase in the absolute number of Common Myeloid Progenitors (CMP). NF-E2 expression levels in the peripheral blood as well as in the bone marrow were highly statistically significantly increased compared to the levels measured in wild-type or heterozygous control mice. Consequently, the NF-E2 target gene Thromboxane Synthase A was statistically significantly overexpressed in peripheral blood of ITCH knock out mice. Plamsa concentrations of the inflammatory cytokines INF-γ and TNF were statistically significantly elevated, reaching two to threefold higher levels in ITCH knock out mice compared to wild-type littermates. Lastly, NF-E2 subcellular localization was altered in ITCH deficient mice, which display a significant increase in the proportion of megakaryocytes positive for nuclear NF-E2. Summary/Conclusions: Our data identify the E3 ubiquitin ligase ITCH as a regulator of NF-E2 activity. Impaired ITCH activity leads to both an NF-E2 overexpression and an increased nuclear NF-E2 localization that together drive overexpression of NF-E2 target genes. Furthermore, ITCH deficiency leads to higher inflammatory cytokine levels, comparable to those seen in PMF patients. All of these factors contribute to the resulting myeloproliferative phenotype with eosinophilia. Our data provide the first pathophysiological explanation of the pathognomonic symptom of ITCH deletion: pruritus in "itchy" mice. Moreover, given the aberrant NF-E2 localization in PMF patients, our data provide a possible mechanism and underscore the role of elevated NF-E2 activity in the pathophysiology of myeloproliferative neoplasms. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1197-1197 ◽  
Author(s):  
Selvi Ramasamy ◽  
Saez Borja ◽  
Subhankar Mukhopadhyay ◽  
Jianfeng Wang ◽  
Daching Ding ◽  
...  

Abstract Abstract 1197 TLE1 belongs to the Groucho/TLE family of co-repressors that act as master regulators during development affecting segmentation, neurogenesis, myogenesis, and multiple cell fate decisions. TLE1 modulate several major signaling pathways including Wnt and Notch, and specifically interacts with multiple transcription factors involved in hematopoiesis such TCF/LEF, HES1, RUNX1/AML. TLE1 has also been implicated in Crohn's disease via its interaction with NOD2, a regulator of NFkB. Our laboratory identified TLE1 as a likely AML tumor suppressor gene, commonly deleted in subgroups of AML, and others have shown its role as a tumor suppressor gene in myeloid and other hematopoietic malignancies. To better understand the role of TLE1 in hematopoiesis and leukemogenesis we created a line of Tle1 null mice. Tle1 null mice are born normally, but become progressively growth retarded by 3 days of life, with only 50% survival by 4 weeks as compared to heterozygous and wild type littermates. Abnormalities are observed in several organs systems including the hematopoietic system. We characterized the hematopoietic system in Tle1 knock out mice between two and 12 weeks of age. The bone marrow cellularity in the Tle1 knock out mice is comparable to the wild type mice at all time points examined. However, frequency of granulocyte macrophage progenitors in bone marrow mononuclear cells is significantly higher in the Tle1 knockout bone marrow compared to heterozygous and wild type mice. The proportion and number of myeloid cells as evidenced by Gr1, Mac1 expression are significantly higher in the bone marrow, spleen and blood of these knockout mice. There were significantly lower B-cells (B220+cells) in the Tle1 knockout mice compared to heterozygous and wild type. In colony forming assays there was a trend towards higher number of CFU-GM (7.66 vs 5), p=0.07) and CFU-M (27.16 vs 12.5, p=0.05) colonies from Tle1 null bone marrow as compared to wild type bone marrow. The spleens from four week and 17 months old Tle1 knockout mice had higher frequency of Gr1-negative, Mac1-positive and F4/80 positive macrophages. We also observed a significantly higher production of the inflammatory cytokines IL6 and TNFafrom peritoneal macrophages harvested from Tle1 null mice as compared to those from wild type mice in response to TLR ligand stimulation. To investigate the potential mechanism of this inhibitory effect of TLE1 on inflammation we demonstrated that TLE1 expression is able to block the nuclear translocation of NFkB in THP1 cells in response to LPS-K12 (p<0.05). In summary this work demonstrates that the lack of Tle1 expression biases hematopoiesis towards myeloid differentiation, a finding of potential relevance given the inactivation of TLE1 seen in subsets of myeloid malignancies. We further show that inactivation of Tle1 leads to an increase in macrophages primed to release increased inflammatory cytokines. This is notable given the recent observation that TLE1 may modulate the effects of NOD2 in the pathogenesis of Crohn's disease. These Tle1 null mice will allow the investigation of the potential role of TLE1 as a modulator of a variety of other inflammatory diseases. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Kerry J. Welsh ◽  
Cole T. Lewis ◽  
Sydney Boyd ◽  
Michael C. Braun ◽  
Jeffrey K. Actor

Mycobacterium tuberculosis(MTB) remains a significant global health burden despite the availability of antimicrobial chemotherapy. Increasing evidence indicates a critical role of the complement system in the development of host protection against the bacillus, but few studies have specifically explored the function of the terminal complement factors. Mice deficient in complement C7 and wild-type C57BL/6 mice were aerosol challenged with MTB Erdman and assessed for bacterial burden, histopathology, and lung cytokine responses at days 30 and 60 post-infection. Macrophages isolated from C7 −/− and wild-type mice were evaluated for MTB proliferation and cytokine production. C7 −/− mice had significantly less liver colony forming units (CFUs) at day 30; no differences were noted in lung CFUs. The C7 deficient mice had markedly reduced lung occlusion with significantly increased total lymphocytes, decreased macrophages, and increased numbers of CD4+ cells 60 days post-infection. Expression of lung IFN-γand TNF-αwas increased at day 60 compared to wild-type mice. There were no differences in MTB-proliferation in macrophages isolated from wild-type and knock-out mice. These results indicate a role for complement C7 in the development of MTB induced immunopathology which warrants further investigation.


2007 ◽  
Vol 292 (1) ◽  
pp. G262-G267 ◽  
Author(s):  
Hitomi Seino ◽  
Haruyasu Ueda ◽  
Masahiro Kokai ◽  
Noriko M. Tsuji ◽  
Shinichiro Kashiwamura ◽  
...  

A role of IL-18 in the induction of gastric lesions by water immersion and restraint stress (WRS) was investigated. When wild-type BALB/c mice were exposed to WRS, levels of IL-18 in the serum and stomach increased rapidly with the development of acute gastric lesions. In IL-18-deficient mice [IL-18 knockout (KO) mice] similarly exposed to WRS, no gastric lesions were observed, but the administration of IL-18 before exposure to WRS resulted in the induction of WRS-induced gastric lesions. WRS enhanced gastric histidine decarboxylase (HDC) activity with concomitant increases in gastric histamine content. In IL-18 KO mice, the WRS-induced elevation of gastric HDC activity and histamine levels was much less than that in wild-type mice, but it was augmented by prior administration of IL-18. Treatment of wild-type mice with cimetidine, a histamine H2 receptor antagonist, inhibited the formation of WRS-induced gastric lesions with no effect on the induction of gastric IL-18 by WRS. Levels of corticosterone, one of the stress indicators, were lower in IL-18 KO mice than in wild-type mice. The glucocorticoid receptor antagonist mifepristone had no effect on gastric IL-18 and histamine levels but aggravated the stress-induced gastric lesions, indicating that corticosterone was not involved in the IL-18-mediated formation of stress-induced gastric lesions. These results indicate that IL-18 is involved in the induction of gastric lesions by WRS through augmentation of HDC activity and production of histamine in the stomach.


2006 ◽  
Vol 144 (2) ◽  
pp. 273-280 ◽  
Author(s):  
B. Sheil ◽  
J. MacSharry ◽  
L. O'Callaghan ◽  
A. O'Riordan ◽  
A. Waters ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10224
Author(s):  
Xiaohong Yuan ◽  
Shu Yang ◽  
Wen Li ◽  
Jinggang Li ◽  
Jia Lin ◽  
...  

Fibronectin (FN) is a multi-functional glycoprotein that primarily acts as a cell adhesion molecule and tethers cells to the extra cellular matrix. In order to clarify the effect of FN deficiency on hematopoiesis, biochemical and immune parameters in mice. We constructed a tamoxifen-induced conditional (cre-loxp system) fibronectin knock-out (FnKO) mouse model on a C57BL/6 background, and monitored their behavior, fertility, histological, hematopoietic, biochemical and immunological indices. We found that the Fn KO mice had reduced fertility, high platelet counts, smaller bone marrow megakaryocytes and looser attachment between the hepatocyte and vascular endothelial junctions compared to the wild type (WT) mice. In contrast, the behavior, hematological counts, serum biochemical indices and vital organ histology were similar in both Fn KO and WT mice. This model will greatly help in elucidating the role of FN in immune-related diseases in future.


2019 ◽  
Vol 36 (1) ◽  
pp. 66-80 ◽  
Author(s):  
Dong-Ying Yan ◽  
Chang Liu ◽  
Xuan Tan ◽  
Zhuo Ma ◽  
Can Wang ◽  
...  

2005 ◽  
Vol 201 (12) ◽  
pp. 1949-1960 ◽  
Author(s):  
Jack Hutcheson ◽  
John C. Scatizzi ◽  
Emily Bickel ◽  
Nathaniel J. Brown ◽  
Philippe Bouillet ◽  
...  

The proapoptotic members of the Bcl-2 family can be subdivided into members that contain several Bcl-2 homology (BH) domains and those that contain only the BH3 domain. Although it is known that BH3-only proteins and the multi-BH domain proteins, Bak and Bax, are essential for programmed cell death, the overlapping role of these two subgroups has not been examined in vivo. To investigate this, we generated Bak/Bim and Bax/Bim double deficient mice. We found that although Bax−/−Bim−/−, but not Bak−/−Bim−/−, mice display webbed hind and front paws and malocclusion of the incisors, both groups of mice present with dysregulated hematopoiesis. Combined loss of Bak and Bim or Bax and Bim causes defects in myeloid and B-lymphoid development that are more severe than those found in the single knock-out mice. Bak−/−Bim−/− mice have a complement of thymocytes that resembles those in control mice, whereas Bax−/−Bim−/− mice are more similar to Bim−/− mice. However, thymocytes isolated from Bak−/−Bim−/− or Bax−/−Bim−/− mice are markedly more resistant to apoptotic stimuli mediated by the intrinsic pathway as compared with thymocytes from single-knockout mice. These data suggest an essential overlapping role for Bak or Bax and Bim in the intrinsic apoptotic pathway.


Sign in / Sign up

Export Citation Format

Share Document