scholarly journals Membrane type 1–matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium

Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 3956-3964 ◽  
Author(s):  
Salomón Matías-Román ◽  
Beatriz G. Gálvez ◽  
Laura Genís ◽  
María Yáñez-Mó ◽  
Gonzalo de la Rosa ◽  
...  

Abstract Membrane type 1–matrix metalloproteinase (MT1-MMP) is involved in endothelial and tumor-cell migration, but its putative role in leukocyte migration has not been characterized yet. Here, we demonstrate that anti–MT1-MMP monoclonal antibody (mAb) impaired monocyte chemotactic protein-1 (MCP-1)–stimulated monocyte migration on fibronectin (FN), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). In addition, monocyte transmigration through tumor necrosis factor-α (TNF-α)–activated endothelium is also inhibited by anti–MT1-MMP mAb. Therefore, regulation of MT1-MMP in human peripheral blood monocytes was investigated. First, MT1-MMP clustering was observed at motility-associated membrane protrusions of MCP-1–stimulated monocytes migrating on FN, VCAM-1, or ICAM-1 and at the leading edge, together with profilin, of monocytes transmigrating through activated endothelial cells. In addition, up-regulation of MT1-MMP expression was induced in human monocytes upon attachment to FN in a manner dependent on α4β1 and α5β1 integrins. Binding of monocytes to TNF-α–activated human endothelial cells as well as to VCAM-1 or ICAM-1 also resulted in an increase of MT1-MMP expression. These findings correlated with an enhancement of MT1-MMP fibrinolytic activity in monocytes bound to FN, VCAM-1, or ICAM-1. Our data show that MT1-MMP is required during human monocyte migration and endothelial transmigration and that MT1-MMP localization, expression, and activity are regulated in monocytes upon contact with FN or endothelial ligands, pointing to a key role of MT1-MMP in monocyte recruitment during inflammation.

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e105697 ◽  
Author(s):  
Hiroshi Ohkawara ◽  
Toshiyuki Ishibashi ◽  
Koichi Sugimoto ◽  
Kazuhiko Ikeda ◽  
Kazuei Ogawa ◽  
...  

2005 ◽  
Vol 73 (6) ◽  
pp. 3271-3277 ◽  
Author(s):  
Nicola K. Viebig ◽  
Ulrich Wulbrand ◽  
Reinhold Förster ◽  
Katherine T. Andrews ◽  
Michael Lanzer ◽  
...  

ABSTRACT Cytoadherence of Plasmodium falciparum-infected erythrocytes (PRBC) to endothelial cells causes severe clinical disease, presumably as a of result perfusion failure and tissue hypoxia. Cytoadherence to endothelial cells is increased by endothelial cell activation, which is believed to occur in a paracrine fashion by mediators such as tumor necrosis factor alpha (TNF-α) released from macrophages that initially recognize PRBC. Here we provide evidence that PRBC directly stimulate human endothelial cells in the absence of macrophages, leading to increased expression of adhesion-promoting molecules, such as intercellular adhesion molecule 1. Endothelial cell stimulation by PRBC required direct physical contact for a short time (30 to 60 min) and was correlated with parasitemia. Gene expression profiling of endothelial cells stimulated by PRBC revealed increased expression levels of chemokine and adhesion molecule genes. PRBC-stimulated endothelial cells especially showed increased expression of molecules involved in parasite adhesion but failed to express molecules promoting leukocyte adhesion, such as E-selectin and vascular cell adhesion molecule 1, even after challenge with TNF-α. Collectively, our data suggest that stimulation of endothelial cells by PRBC may have two effects: prevention of parasite clearance through increased cytoadherence and attenuation of leukocyte binding to endothelial cells, thereby preventing deleterious immune reactivity.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shu-Ling Hsieh ◽  
Jyh-Jye Wang ◽  
Kuan-Hua Su ◽  
Ying-Lan Kuo ◽  
Shuchen Hsieh ◽  
...  

Gynura bicolor (Roxb. and Willd.) DC (G. bicolor) is generally used as a dietary vegetable and traditional herb in Taiwan and the Far East. G. bicolor exerts antioxidant and anti-inflammatory effects and regulates blood lipids and cholesterol. However, the effects of G. bicolor on endothelial transmigration and atherosclerosis are not clear. The present study investigated the effects of G. bicolor on endothelial permeability and transmigration in human endothelial cells. We prepared G. bicolor ether extract (GBEE) for use as the experimental material. Under TNF-α stimulation, HL-60 cell adherence to EA.hy926 cells, the shape of EA.hy926 cells, and the expression of adhesion molecules and transmigration-related regulatory molecules were analysed after pretreatment with GBEE for 24 h. GBEE inhibited leukocyte adhesion to endothelial cells, reduced intercellular adhesion molecule-1 (ICAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) expressions, and decreased endothelial monolayer permeability. GBEE also reduced paracellular transmigration by reducing the levels of reactive oxygen species (ROS), Src phosphorylation, and vascular endothelial-cadherin (VE-cadherin) phosphorylation. GBEE reduced transcellular migration via inhibition of Ras homolog family member A (RhoA) and Rho-associated protein kinase (ROCK) expression and phosphorylation of the ezrin-radixin-moesin (ERM) protein. Incubation of EA.hy926 cells with GBEE for 8 h and stimulation with TNF-α for 3 h reduced the phosphorylation of the inhibitor of kappa B (IĸB) and DNA-binding activity of nuclear factor-ĸB (NF-ĸB). These results suggest that GBEE has a protective effect against endothelial dysfunction via suppression of leukocyte-endothelium adhesion and transmigration.


2007 ◽  
Vol 282 (34) ◽  
pp. 25010-25019 ◽  
Author(s):  
Srinivas D. Sithu ◽  
William R. English ◽  
Paul Olson ◽  
Davia Krubasik ◽  
Andrew H. Baker ◽  
...  

2010 ◽  
Vol 36 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Renata Amato Vieira ◽  
Edna Maria de Albuquerque Diniz ◽  
Maria Esther Jurfest Rivero Ceccon

OBJETIVO: Avaliar se as concentrações dos mediadores inflamatórios (CCL5, soluble intercellular adhesion molecule type 1 [sICAM-1], TNF-α, IL-6 e IL-10) na secreção nasofaríngea e no soro de crianças com infecção do trato respiratório inferior (ITRI) por vírus sincicial respiratório (VSR) apresentam correlação com os marcadores clínicos de gravidade da doença. MÉTODOS: Entre julho de 2004 e dezembro de 2005, 30 crianças com idade inferior a três meses, diagnosticadas com ITRI por VSR e admitidas em uma UTI neonatal foram incluídas neste estudo. RESULTADOS: Houve uma correlação positiva significante entre a gravidade da doença na admissão hospitalar, determinada por um sistema de escore clínico modificado, e as concentrações de sICAM-1 e de IL-10 na secreção nasofaríngea e de IL-6 no soro dos pacientes. Houve também uma correlação positiva significante entre a concentração de IL-6 no soro e o tempo de oxigenoterapia e a duração da internação. CONCLUSÕES: As concentrações de sICAM-1 e IL-10 na secreção nasofaríngea e de IL-6 no soro determinadas na admissão poderiam ser usadas como marcadores de gravidade da ITRI por VSR. Os níveis de IL-6 determinados no soro na admissão também poderiam ser usados para predizer o prolongamento da oxigenoterapia e da duração da internação.


2018 ◽  
Author(s):  
◽  
Tara Marcink

Membrane type 1 matrix metalloproteinase (MT1-MMP) is essential to a myriad of extracellular activities including tumor cell migration and angiogenesis. At the cell surface, MT1-MMP is a major factor in the proteolysis of receptors, growth factors, and collagen. MT1-MMP extracellular domains bind the cell surface which can be influential in bringing these complexes together. This study uses new techniques to uncover the interactions between MT1-MMP and the cell surface. Described here is the development of techniques in protein and lipid preparations, NMR data acquisition, and structure determination by molecular dynamics simulations. Through these methods, the HPX domain was shown to bind nanodiscs by opposing tips of blade II and blade IV. The protruding part of these tips contain an EPGYPK sequence that are seen dipping into the membrane surface making contact with the lipid head groups. Blade IV membrane binding allows collagen to bind unhindered. Both blade II and blade IV membrane binding structures are shown to be favorable for homodimerization without disruption of the collagen binding site. The catalytic domain is shown to at least transiently bind membranes. This study then hypothesizes and discusses how these interactions impact both future peripheral protein membrane interaction studies and uncover similarities between the MMP family.


Sign in / Sign up

Export Citation Format

Share Document