Increased GILZ expression in transgenic mice up-regulates Th-2 lymphokines

Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1039-1047 ◽  
Author(s):  
Lorenza Cannarile ◽  
Francesca Fallarino ◽  
Massimiliano Agostini ◽  
Salvatore Cuzzocrea ◽  
Emanuela Mazzon ◽  
...  

AbstractGILZ (glucocorticoid-induced leucine zipper), a gene induced by dexamethasone, is involved in control of T lymphocyte activation and apoptosis. In the present study, using Gilz transgenic mice (TG), which overexpress GILZ in the T-cell lineage, we demonstrate that Gilz is implicated in T helper-2 (Th-2) response development. After in vitro stimulation by CD3/CD28 antibodies, peripheral naive CD4+ T cells from TG mice secrete more Th-2 cytokines such as interleukin-4 (IL-4), IL-5, IL-13, and IL-10, and produce less Th-1 cytokines such as interferon-γ (IFN-γ) than wild-type mice (WT). CD4+ TG lymphocytes up-regulated Th-2 cytokine expression in the specific response to ovalbumin chicken egg (OVA) antigen immunization. Up-regulation correlated with increased expression of GATA-3 and signal transducer and activator of transcription 6 (Stat6), Th-2–specific transcription factors and decreased expression of T-bet, a transcription factor involved in Th-1 differentiation. Finally, in TG mice delayed-type hypersensitivity, a Th-1 response, was inhibited and bleomycin-induced pulmonary fibrosis, a Th-2 mediated disease, was more severe. These results indicate that Gilz contributes to CD4+ commitment toward a Th-2 phenotype and suggest this contribution may be another mechanism accounting for glucocorticoid immunomodulation.

Gut ◽  
1998 ◽  
Vol 42 (5) ◽  
pp. 643-649 ◽  
Author(s):  
M Carol ◽  
A Lambrechts ◽  
A Van Gossum ◽  
M Libin ◽  
M Goldman ◽  
...  

Background—Cytokines secreted by intestinal T lymphocytes probably play a critical role in regulation of the gut associated immune responses.Aims—To quantify interferon γ (IFN-γ) and interleukin 4 (IL-4) secreting cells (SC) among human intraepithelial (IEL) and lamina propria (LPL) lymphocytes from the duodenum and right colon in non-pathological situations and in the absence of in vitro stimulation.Patients—Duodenal and right colonic biopsy specimens were obtained from patients with no inflammation of the intestinal mucosa.Methods—Intraepithelial and lamina propria cell suspensions were assayed for numbers of cells spontaneously secreting IFN-γ and IL-4 by a two site reverse enzyme linked immunospot technique (ELISPOT).Results—The relatively high proportion of duodenal lymphocytes spontaneously secreting IFN-γ (IEL 3.6%; LPL 1.9%) and IL-4 (IEL 1.3%; LPL 0.7%) contrasted with the very low numbers of spontaneously IFN-γ SC and the absence of spontaneously IL-4 SC among peripheral blood mononuclear cells. In the basal state, both IFN-γ and IL-4 were mainly produced by CD4+ cells. Within the colon, only 0.2% of IEL and LPL secreted IFN-γ in the basal state, and 0.1% secreted IL-4.Conclusions—Compared with peripheral lymphocytes substantial proportions of intestinal epithelial and lamina propria lymphocytes spontaneously secrete IFN-γ and/or IL-4. These cytokines are probably involved in the normal homoeostasis of the human intestinal mucosa. Disturbances in their secretion could play a role in the pathogenesis of gastrointestinal diseases.


Blood ◽  
2011 ◽  
Vol 117 (5) ◽  
pp. 1555-1564 ◽  
Author(s):  
Nona Janikashvili ◽  
Collin J. LaCasse ◽  
Claire Larmonier ◽  
Malika Trad ◽  
Amanda Herrell ◽  
...  

AbstractTherapeutic strategies combining the induction of effective antitumor immunity with the inhibition of the mechanisms of tumor-induced immunosuppression represent a key objective in cancer immunotherapy. Herein we demonstrate that effector/memory CD4+ T helper-1 (Th-1) lymphocytes, in addition to polarizing type-1 antitumor immune responses, impair tumor-induced CD4+CD25+FoxP3+ regulatory T lymphocyte (Treg) immunosuppressive function in vitro and in vivo. Th-1 cells also inhibit the generation of FoxP3+ Tregs from naive CD4+CD25−FoxP3− T cells by an interferon-γ–dependent mechanism. In addition, in an aggressive mouse leukemia model (12B1), Th-1 lymphocytes act synergistically with a chaperone-rich cell lysate (CRCL) vaccine, leading to improved survival and long-lasting protection against leukemia. The combination of CRCL as a source of tumor-specific antigens and Th-1 lymphocytes as an adjuvant has the potential to stimulate efficient specific antitumor immunity while restraining Treg-induced suppression.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4134-4141 ◽  
Author(s):  
Domenico Vittorio Delfino ◽  
Massimiliano Agostini ◽  
Stefania Spinicelli ◽  
Pasquale Vito ◽  
Carlo Riccardi

Abstract Glucocorticoids promote thymocyte apoptosis and modulate transcription of numerous genes. GILZ (glucocorticoid-induced leucine zipper), being one of them, is strongly up-regulated in the thymus. To elucidate its function we generated transgenic mice overexpressing it specifically in the T-cell lineage and characterized its influence on thymus function. In young adult transgenic mice CD4+CD8+ thymocyte number was significantly decreased and ex vivo thymocyte apoptosis was increased. Apoptotic pathway analysis detected reduced antiapoptotic B-cell leukemia XL (Bcl-xL) expression and increased activation of caspase-8 and caspase-3. Time-course experiments showed that in wild-type (WT) thymocytes GILZ up-regulation was followed by sequential Bcl-xL decreased expression and activation of caspase-8 and of caspase-3. Moreover, GILZ delivered inside WT thymocytes by a fusion protein with the transactivator of transcription (TAT) peptide decreased Bcl-xL and promoted their apoptosis. In aged mice perturbation of thymic subset numbers was amplified over time, as demonstrated by a further decrease in CD4+CD8+ cells and increases in CD4+CD8-, CD4-CD8-, and CD8+CD4- cell counts. These results support the hypothesis that GILZ participates in the regulation of thymocyte apoptosis by glucocorticoids. (Blood. 2004;104:4134-4141)


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2346-2351 ◽  
Author(s):  
Andrei I. Chapoval ◽  
Koji Tamada ◽  
Lieping Chen

Dendritic cells (DCs) are critical subsets of leukocytes providing antigen presentation for initiation of humoral and cellular immune responses. Their role as effector cells in tumor resistance, however, is less known. We report here that human DCs generated by culturing plastic-adherent peripheral blood monocytes in the presence of granulocyte-monocyte colony–stimulating factor (GM-CSF) and interleukin-4 have potent growth-inhibition activity in vitro on a wide spectrum of human tumor lines of different tissue origin. Proinflammatory stimuli lipopolysaccharide (LPS) and interferon-γ, but not tumor necrosis factor– and CD40 signaling, can further enhance DC-mediated inhibition of tumor growth. The growth inhibition requires contact between DCs and tumor cells while LPS treatment enhances the antitumor activity in DC culture supernatants. Our results suggest that in addition to their predominant role as regulatory cells, activated DCs are also potential effector cells in tumor immunity.


2004 ◽  
Vol 72 (4) ◽  
pp. 2369-2378 ◽  
Author(s):  
Adriana Pina ◽  
Rita C. Valente-Ferreira ◽  
Eugênia E. W. Molinari-Madlum ◽  
Celidéia A. C. Vaz ◽  
Alexandre C. Keller ◽  
...  

ABSTRACT Host resistance to paracoccidiodomycosis, the main deep mycosis in Latin America, is mainly due to cellular immunity and gamma interferon (IFN-γ) production. To assess the role of interleukin-4 (IL-4), a Th2-inducing cytokine, pulmonary paracoccidioidomycosis was studied in IL-4-deficient (IL-4−/−) and wild-type (WT) C57BL/6 mice at the innate and acquired phases of immune response. Forty-eight hours after infection, equivalent numbers of viable Paracoccidioides brasiliensis yeast cells were recovered from the lungs of IL-4−/− and WT mice intratracheally infected with one million fungal cells. Alveolar macrophages from infected IL-4−/− mice controlled in vitro fungal growth more efficiently than macrophages from WT mice and secreted higher levels of nitric oxide. Compared with WT mice, IL-4−/− animals presented increased levels of pulmonary IFN-γ and augmented polymorphonuclear leukocyte influx to the lungs. Decreased pulmonary fungal loads were characterized in deficient mice at week 2 postinfection, concomitant with diminished presence of IL-10. At week 8, lower numbers of yeasts were recovered from lungs and liver of IL-4−/− mice associated with increased production of IFN-γ but impaired synthesis of IL-5 and IL-10. However, a clear shift to a Th1 pattern was not characterized, since IL-4−/− mice did not alter delayed-type hypersensitivity anergy or IL-2 levels. In addition, IL-4 deficiency resulted in significantly reduced levels of pulmonary IL-12, granulocyte-macrophage colony-stimulating factor, IL-3, monocyte chemotactic protein 1, and specific antibody isotypes. In IL-4−/− mice, well-organized granulomas restraining fungal cells replaced the more extensive lesions containing high numbers of fungi and inflammatory leukocytes developed by IL-4-sufficient mice. These results clearly showed that genetically determined deficiency of IL-4 can exert a protective role in pulmonary paracoccidioidomycosis.


2001 ◽  
Vol 69 (11) ◽  
pp. 6981-6986 ◽  
Author(s):  
Mineo Watanabe ◽  
Masaaki Nagai

ABSTRACT The protective immunity induced by infection with Bordetella pertussis and with Bordetella parapertussis was examined in a murine model of respiratory infection. Convalescent mice that had been infected by aerosol with B. pertussis or with B. parapertussis exhibited a protective immune response against B. pertussis and also against B. parapertussis. Anti-filamentous hemagglutinin (anti-FHA) serum immunoglobulin G (IgG) and anti-FHA lung IgA antibodies were detected in both mice infected with B. pertussis and those infected with B. parapertussis. Antibodies against pertussis toxin (anti-PT) and against killed B. pertussis cells were detected in mice infected with B. pertussis. Pertactin-specific antibodies and antibodies against killed B. parapertussis cells were detected in mice infected with B. parapertussis. Spleen cells from mice infected with B. pertussis secreted interferon-γ (IFN-γ) in response to stimulation by FHA or PT. Spleen cells from mice infected with B. parapertussis also secreted IFN-γ in response to FHA. Interleukin-4 was not produced in response to any of the antigens tested. The profiles of cytokine secretion in vitro revealed induction of a Th1-biased immune response during convalescence from infection by B. pertussis and byB. parapertussis. It is possible that Th1 and Th2 responses against FHA might be related to the reciprocal protection achieved in our murine model.


2005 ◽  
Vol 202 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Datsen G. Wei ◽  
Hyunji Lee ◽  
Se-Ho Park ◽  
Lucie Beaudoin ◽  
Luc Teyton ◽  
...  

Unlike conventional major histocompatibility complex–restricted T cells, Vα14-Jα18 NKT cell lineage precursors engage in cognate interactions with CD1d-expressing bone marrow–derived cells that are both necessary and sufficient for their thymic selection and differentiation, but the nature and sequence of these interactions remain partially understood. After positive selection mediated by CD1d-expressing cortical thymocytes, the mature NKT cell lineage undergoes a series of changes suggesting antigen priming by a professional antigen-presenting cell, including extensive cell division, acquisition of a memory phenotype, the ability to produce interleukin-4 and interferon-γ, and the expression of a panoply of NK receptors. By using a combined transgenic and chimeric approach to restrict CD1d expression to cortical thymocytes and to prevent expression on other hematopoietic cell types such as dendritic cells, macrophages, or B cells, we found that, to a large extent, expansion and differentiation events could be imparted by a single-cognate interaction with CD1d-expressing cortical thymocytes. These surprising findings suggest that, unlike thymic epithelial cells, cortical thymocytes can provide unexpected, cell type–specific signals leading to lineage expansion and NKT cell differentiation.


2014 ◽  
Vol 42 (04) ◽  
pp. 921-934 ◽  
Author(s):  
Jinjin Feng ◽  
Yingchun Wu ◽  
Yang Yang ◽  
Weiqi Jiang ◽  
Shaoping Hu ◽  
...  

Humulus scandens, rich in flavonoids, is a traditional Chinese medicine. It is widely used in China to treat tuberculosis, dysentery and chronic colitis. In this study, the major active faction of Humulus scandens (H.S) was prepared. Then, its immunosuppressive effects and underlying mechanisms on T cell activation were investigated in vitro and in vivo. Results showed that H.S significantly inhibited the proliferation of splenocytes induced by concanavalin A, lipopolysaccharides, and mixed-lymphocyte reaction in vitro. Additionally, H.S could dramatically suppress the proliferation and interferon-γ (IFN-γ) production from T cells stimulated by anti-CD3 and anti-CD28. Flow cytometric results confirmed that H.S could suppress the differentiation of IFN-γ-producing type 1 helper T cells (Th1). Furthermore, using ovalbumin immunization-induced T cell reaction and CD4+ T-cell-mediated delayed type hypersensitivity reaction, H.S the immunosuppressive effects of H.S was also demonstrated in vivo. Western blot results showed that H.S could impede the activation of both Erk1/2 and P38 in primary T cells triggered by anti-CD3/28. Collectively, the active fraction of H.S showed promising immunosuppressive activities both in vitro and in vivo.


1994 ◽  
Vol 179 (2) ◽  
pp. 425-438 ◽  
Author(s):  
M P Cooke ◽  
A W Heath ◽  
K M Shokat ◽  
Y Zeng ◽  
F D Finkelman ◽  
...  

The specificity of antibody (Ab) responses depends on focusing helper T (Th) lymphocyte signals to suitable B lymphocytes capable of binding foreign antigens (Ags), and away from nonspecific or self-reactive B cells. To investigate the molecular mechanisms that prevent the activation of self-reactive B lymphocytes, the activation requirements of B cells specific for the Ag hen egg lysozyme (HEL) obtained from immunoglobulin (Ig)-transgenic mice were compared with those of functionally tolerant B cells isolated from Ig-transgenic mice which also express soluble HEL. To eliminate the need for surface (s)Ig-mediated Ag uptake and presentation and allow the effects of sIg signaling to be studied in isolation, we assessed the ability of allogeneic T cells from bm12 strain mice to provide in vivo help to C57BL/6 strain-transgenic B cells. Interestingly, non-tolerant Ig-transgenic B cells required both allogeneic Th cells and binding of soluble HEL for efficient activation and Ab production. By contrast, tolerant self-reactive B cells from Ig/HEL double transgenic mice responded poorly to the same combination of allogeneic T cells and soluble HEL. The tolerant B cells were nevertheless normally responsive to stimulation with interleukin 4 and anti-CD40 Abs in vitro, suggesting that they retained the capacity to respond to mediators of T cell help. However, the tolerant B cells exhibited a proximal block in the sIg signaling pathway which prevented activation of receptor-associated tyrosine kinases in response to the binding of soluble HEL. The functional significance of this sIg signaling defect was confirmed by using a more potent membrane-bound form of HEL capable of triggering sIg signaling in tolerant B cells, which markedly restored their ability to collaborate with allogeneic Th cells and produce Ab. These findings indicate that Ag-specific B cells require two signals for mounting a T cell-dependent Ab response and identify regulation of sIg signaling as a mechanism for controlling self-reactive B cells.


Sign in / Sign up

Export Citation Format

Share Document