scholarly journals Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma B cells from tumor-infiltrating nonmalignant B cells

Blood ◽  
2006 ◽  
Vol 108 (9) ◽  
pp. 3135-3142 ◽  
Author(s):  
Jonathan M. Irish ◽  
Debra K. Czerwinski ◽  
Garry P. Nolan ◽  
Ronald Levy

Abstract The B-cell receptor (BCR) transmits life and death signals throughout B-cell development, and altered BCR signaling may be required for survival of B-lymphoma cells. We used single-cell signaling profiles to compare follicular lymphoma (FL) B cells and nonmalignant host B cells within individual patient biopsies and identified BCR-mediated signaling events specific to lymphoma B cells. Expression of CD20, Bcl-2, and BCR light chain isotype (κ or λ) distinguished FL tumor B-cell and nontumor host B-cell subsets within FL patient biopsies. BCR-mediated signaling via phosphorylation of Btk, Syk, Erk1/2, and p38 occurred more rapidly in tumor B cells from FL samples than in infiltrating nontumor B cells, achieved greater levels of per-cell signaling, and sustained this level of signaling for hours longer than nontumor B cells. The timing and magnitude of BCR-mediated signaling in nontumor B cells within an FL sample instead resembled that observed in mature B cells from the peripheral blood of healthy subjects. BCR signaling pathways that are potentiated specifically in lymphoma cells should provide new targets for therapeutic attention.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 283-283
Author(s):  
Jonathan M. Irish ◽  
Debra K. Czerwinski ◽  
Garry P. Nolan ◽  
Ronald Levy

Abstract The B cell receptor (BCR) drives life and death signaling throughout B cell development, and dysregulation of BCR signaling might be expected to play a role in aberrant proliferation of lymphoma B cells. We have previously used flow cytometry based cell signaling profiles to identify patterns of altered signaling in acute myeloid leukemia that were informative of clinical outcome (Irish et al., Cell, 2004). Here we used a similar signaling profiles approach to compare BCR signaling in normal and lymphoma B cells. However, in addition to comparing follicular lymphoma (FL) B cells with peripheral blood B cells from normal donors, we also interrogated signaling within individual non-tumor B cells infiltrating FL tumor biopsies. By staining for CD20 and BCR light chain isotype (κ vs. λ), we could distinguish tumor and normal B cells within each patient biopsy. Following crosslinking of BCR heavy chains (shared by tumor and non-tumor B cells), we measured phosphorylation of Syk and Btk proteins, as markers of early BCR signaling activity, and Erk1/2 and p38, as markers of downstream BCR signaling effector activity. The BCR signaling network in FL tumor B cells was activated more rapidly than infiltrating non-tumor B cells, achieved greater levels of per-cell signaling, and sustained high levels of signaling over a period of hours. In lymphoma B cells, BCR-mediated Btk and Erk1/2 phosphorylation could reach the normal maximum in as little as 4 minutes, which was much more rapid than the 30–60 minutes required for peak signaling in non-tumor B cells. Strikingly, the timing and magnitude of BCR pathway protein phosphorylation we measured in non-tumor B cells within tumor biopsies was the same as that of normal, mature B cells from peripheral blood. These results suggest that the altered BCR signaling we identified in lymphoma is cell-intrinsic and associated with lymphomagenesis, as opposed to being a general change in tumor microenviornment affecting all B cells within a biopsy. FL tumor B cells from different patients were distinguished by the degree and number of changes to BCR signaling, such that variable profiles of lymphoma signaling kinetics distinguished each patient from the consistent signaling of normal B cells. These results identify cell-intrinsic changes to BCR signaling that may contribute to immortalization of lymphoma B cells and suggest that single cell profiles could identify lymphoma specific BCR-mediated signaling responsible for clinical outcomes.


2016 ◽  
Vol 90 (21) ◽  
pp. 9782-9796 ◽  
Author(s):  
Lingbing Tan ◽  
Chaocan Zhang ◽  
Julien Dematos ◽  
Linlin Kuang ◽  
Jae U. Jung ◽  
...  

ABSTRACTWhile CD95 is an apoptosis-inducing receptor and has emerged as a potential anticancer therapy target, mounting evidence shows that CD95 is also emerging as a tumor promoter by activating nonapoptotic signaling pathways. Gammaherpesviral infection is closely associated with lymphoproliferative diseases, including B cell lymphomas. The nonapoptotic function of CD95 in gammaherpesvirus-associated lymphomas is largely unknown. Here, we show that stimulation of CD95 agonist antibody drives the majority of sensitive gammaherpesvirus-transformed B cells to undergo caspase-dependent apoptosis and promotes the survival and proliferation of a subpopulation of apoptosis-resistant B cells. Surprisingly, CD95-mediated nonapoptotic signaling induced beta interferon (IFN-β) expression and correlatively inhibited B cell receptor (BCR)-mediated gammaherpesviral replication in the apoptosis-resistant lymphoma cells without influencing BCR signaling. Further analysis showed that IFN-β alone or synergizing with CD95 blocked the activation of lytic switch proteins and the gene expression of gammaherpesviruses. Our findings indicate that, independent of its apoptotic activity, CD95 signaling activity plays an important role in blocking viral replication in apoptosis-resistant, gammaherpesvirus-associated B lymphoma cells, suggesting a novel mechanism that indicates how host CD95 prototype death receptor controls the life cycle of gammaherpesviruses independent of its apoptotic activity.IMPORTANCEGammaherpesviruses are closely associated with lymphoid malignancies and other cancers. Viral replication and persistence strategies leading to cancer involve the activation of antiapoptotic and proliferation programs, as well as evasion of the host immune response. Here, we provide evidence that the stimulation of CD95 agonist antibody, mimicking one of the major mechanisms of cytotoxic T cell killing, inhibits B cell receptor-mediated gammaherpesviral replication in CD95 apoptosis-resistant lymphoma cells. CD95-induced type I interferon (IFN-β) contributes to the inhibition of gammaherpesviral replication. This finding sheds new light on the CD95 nonapoptotic function and provides a novel mechanism for gammaherpesviruses that helps them to escape host immune surveillance.


2020 ◽  
Vol 117 (42) ◽  
pp. 26318-26327
Author(s):  
Kamonwan Fish ◽  
Federico Comoglio ◽  
Arthur L. Shaffer ◽  
Yanlong Ji ◽  
Kuan-Ting Pan ◽  
...  

Epstein–Barr virus (EBV) infects human B cells and reprograms them to allow virus replication and persistence. One key viral factor in this process is latent membrane protein 2A (LMP2A), which has been described as a B cell receptor (BCR) mimic promoting malignant transformation. However, how LMP2A signaling contributes to tumorigenesis remains elusive. By comparing LMP2A and BCR signaling in primary human B cells using phosphoproteomics and transcriptome profiling, we identified molecular mechanisms through which LMP2A affects B cell biology. Consistent with the literature, we found that LMP2A mimics a subset of BCR signaling events, including tyrosine phosphorylation of the kinase SYK, the calcium initiation complex consisting of BLNK, BTK, and PLCγ2, and its downstream transcription factor NFAT. However, the majority of LMP2A-induced signaling events markedly differed from those induced by BCR stimulation. These included differential phosphorylation of kinases, phosphatases, adaptor proteins, transcription factors such as nuclear factor κB (NF-κB) and TCF3, as well as widespread changes in the transcriptional output of LMP2A-expressing B cells. LMP2A affected apoptosis and cell-cycle checkpoints by dysregulating the expression of apoptosis regulators such as BCl-xL and the tumor suppressor retinoblastoma-associated protein 1 (RB1). LMP2A cooperated with MYC and mutant cyclin D3, two oncogenic drivers of Burkitt lymphoma, to promote proliferation and survival of primary human B cells by counteracting MYC-induced apoptosis and by inhibiting RB1 function, thereby promoting cell-cycle progression. Our results indicate that LMP2A is not a pure BCR mimic but rather rewires intracellular signaling in EBV-infected B cells that optimizes cell survival and proliferation, setting the stage for oncogenic transformation.


Blood ◽  
2010 ◽  
Vol 115 (5) ◽  
pp. 985-994 ◽  
Author(s):  
Samar Kheirallah ◽  
Pierre Caron ◽  
Emilie Gross ◽  
Anne Quillet-Mary ◽  
Justine Bertrand-Michel ◽  
...  

Abstract Rituximab (RTX), a monoclonal antibody directed against the CD20 protein, is a drug commonly used in the treatment of B-cell–derived lymphoid neoplasias and of antibody-mediated autoimmune diseases. In addition to cell- and complement-mediated B-cell depletion, RTX is thought to inhibit B-cell survival and proliferation through negative regulation of canonical signaling pathways involving Akt, ERK, and mammalian target of rapamycin. However, surprisingly, although B-cell receptor (BCR) signaling has been considered critical for normal and more recently, for neoplastic B cells, the hypothesis that RTX could target BCR has never been investigated. Using follicular lymphoma cell lines as models, as well as normal B cells, we show here, for the first time, that pretreatment with RTX results in a time-dependent inhibition of the BCR-signaling cascade involving Lyn, Syk, PLCγ2, Akt, and ERK, and calcium mobilization. The inhibitory effect of RTX correlates with decrease of raft-associated cholesterol, complete inhibition of BCR relocalization into lipid raft microdomains, and down-regulation of BCR immunoglobulin expression. Thus, RTX-mediated alteration of BCR expression, dynamics, and signaling might contribute to the immunosuppressive activity of the drug.


2017 ◽  
Vol 114 (44) ◽  
pp. E9328-E9337 ◽  
Author(s):  
Dan Su ◽  
Stijn Vanhee ◽  
Rebeca Soria ◽  
Elin Jaensson Gyllenbäck ◽  
Linda M. Starnes ◽  
...  

B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4143-4143
Author(s):  
Marvyn T. Koning ◽  
Sander A.J. van der Zeeuw ◽  
Marcelo Navarrete ◽  
Cornelis A.M. van Bergen ◽  
Valeri Nteleah ◽  
...  

Abstract Peptides of the B-cell receptor (BCR) may be presented in HLA molecules and therefore be recognized as epitopes by T cells. Bioinformatic evidence indicates that follicular lymphoma cells are selected against expression of a clonal BCR with a high cumulative predicted binding of BCR-derived peptides to the respective patient's HLA complex (Strothmeyer, Blood 2010). This observation suggests T-cell-mediated immunosurveillance against outgrowth of follicular lymphoma cells according to BCR HLA binding strength. Here, we investigate whether this phenomenon pertains to peripheral B cells in 6 healthy donors: 2 donors homozygous for HLA A01*01 / B08*01, 2 homozygous for HLA A02*01 / B7*02, and 2 donors heterozygous for these alleles. Unbiased representation of full-length V(D)J sequences was considered essential for correct data interpretation. PCR primers annealing to conserved motifs of BCR variable regions (e.g. BIOMED-2 protocol) fail to amplify a fraction of BCR, particularly those modified by somatic hypermutation. Therefore, we developed an improved anchored PCR strategy: cDNA was synthesized from poly(A)-RNA from peripheral blood with primers that anneal to specific Ig constant regions. In the same reaction, the 3' cDNA end is extended by switching to an oligonucleotide template containing an anchor sequence (SMART technology; Clontech). Anchor-tagged cDNA was amplified with a primer annealing to the anchor in combination with a nested constant region-specific reverse primer. Dumbbell adapters were added to the termini of 250 ng of purified PCR products. Circular consensus sequencing of single molecules was performed on the PacBio platform (Pacific Biosciences). Using one SMRT PacBio cell per amplicon, separate sequence libraries were created for μ, γ, κ, and λ BCR transcripts. Sequences covered by at least five reads were selected with SMRT Portal software to obtain >95% of sequences without sequence errors as demonstrated on multiple B-cell lines. Selected sequences were analysed by HighV-QUEST software (Alamyar, Immunome Research 2012). After exclusion of non-BCR sequences and duplicate BCR transcripts, a median of 5318 (range: 670-8752) individual BCR sequences was obtained per library. Binding affinity of nonamers in in-silico-translated BCR were calculated for the 4 HLA alleles by the NetMHC 3.4 algorithm. The fractions of BCR lacking any weak HLA binding peptide (NetMHC IC50 <500nM) within a library were compared between donors positive or negative for any HLA molecule. μ VDJ transcripts without HLA binding peptides were significantly more frequent for all HLA alleles in donors that actually express that particular allele (Table). With the exception of HLA A01*01, similar results were observed for γ transcripts. While the fraction of κ VJ transcripts without an HLA binder was overall higher in HLA A01*01 and B08*01, HLA-positive individuals had higher proportions of non-HLA binding sequences. λ transcripts were less likely to contain HLA binders with respect to HLA B07*02 and B08*01 but not to the HLA A alleles. Analogous analyses were performed for CDR3 regions as annotated by HighV-QUEST plus six amino acids on either flank. In 10 of 16 analyses, CDR3 sequences were less likely to contain an HLA binder in HLA-positive individuals; in three analyses an opposite effect was seen (Table). These results indicate that the peripheral BCR repertoire is shaped by HLA alleles in healthy individuals, most likely by T-cell mediated recognition of BCR peptides. Ongoing studies expand this fundamental finding with respect to the IC50 threshold, the number of nonamers, and additional HLA alleles. Our results warrant investigation of the potential role of HLA-dependent shaping of the BCR repertoire for the immune defense and the development of autoimmune disease and B-cell lymphoma. Table 1V(D)J without HLA binding peptideCDR3 without HLA binding peptideHLADonorμγκλμγΚλ A01*01Positive21%41%61%37%87%90%98%70%Negative16%42%59%38%92%92%96%65%P<0.001n.s.<0.01n.s.<0.001n.s.<0.01<0.001 A02*01Positive6%4%3%32%77%77%77%70%Negative4%1%2%32%75%69%78%78%P<0.001<0.001<0.01n.s.<0.01<0.001n.s.<0.001 B07*02Positive31%13%3%13%79%73%91%96%Negative27%8%2%6%79%69%90%98%P<0.001<0.01<0.01<0.001n.s.<0.05<0.05<0.001 B08*01Positive30%35%64%64%89%87%92%96%Negative14%28%62%61%88%82%90%93%P<0.001<0.001<0.01<0.001<0.01<0.001<0.01<0.001 Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 282 (10) ◽  
pp. 7405-7415 ◽  
Author(s):  
Catherine M. Radcliffe ◽  
James N. Arnold ◽  
David M. Suter ◽  
Mark R. Wormald ◽  
David J. Harvey ◽  
...  

2006 ◽  
Vol 281 (52) ◽  
pp. 39806-39818 ◽  
Author(s):  
Jiyuan Ke ◽  
Murali Gururajan ◽  
Anupam Kumar ◽  
Alan Simmons ◽  
Lilia Turcios ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5023-5023
Author(s):  
Y. Lynn Wang ◽  
Zibo Song ◽  
Pin Lu ◽  
John P. Leonard ◽  
Morton Coleman ◽  
...  

Abstract B cell receptor (BCR) signaling plays an essential role in the pathogenesis of chronic lymphocytic leukemia. In a subset of patients with a poor clinical outcome, BCR ligation leads to increased cell metabolism and cell survival (Cancer Research66, 7158–66, 2006). Based on these findings, we tested whether targeting BCR signaling with dasatinib, an inhibitor of Src kinase, would interfere with the signaling cascade and cause death of CLL B cells. CLL leukemic cells were isolated from 34 patients and were incubated with or without dasatinib at a low dose of 128 nM. Among 34 cases, viability of leukemic cells was reduced by 2% to 90%, with an average of ~50% reduction on day 4 of ex vivo culture. Further study showed that CLL B cells undergo death by apoptosis via the intrinsic pathway which involves the generation of reactive oxygen species. Analysis of the Src family kinases showed that phosphorylation of Src, Lyn and Hck was inhibited by dasatinib not only in those cases that responded to dasatinib with apoptosis, but also in those that did not respond well (&lt;20% apoptosis). Further analysis revealed that suppressed activity of two downstream molecules, Syk and PLC Statistical analysis showed a significant correlation between CLL dasatinib response and their IgVH mutation and ZAP70 status. Cases with worse prognoses by these criteria have a better response to the kinase inhibitor. Lastly, we have also found that ZAP70 positive cases showed a greater degree of PLC


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1314-1314
Author(s):  
Kolandaswamy Anbazhagan ◽  
Vincent Fuentes ◽  
Eliane Bissac ◽  
Remy Nyga ◽  
Naomi Taylor ◽  
...  

Abstract Abstract 1314 Background: Pre-B cell receptor (pre-BCR) constitutes a major check point in the early steps of mouse and human B cell development. Several functions have been attributed to this receptor which include a delivery of proliferation and survival signals, increased sensitivity to interleukin-7 (IL-7) and down modulation of recombinase activating genes (RAG) and surrogate light chain (SLC) encoding genes. Pre-BCR is also involved in shaping the VH repertoire and preventing autoimmunity. Finally, there is increasing evidence that pre-BCR might be implicated in leukemogenesis. Most of the functions of pre-BCR have been predicted based on studies in knockout mice and leukemic cell lines. In a previous study we have shown that pre-BCR aggregation resulted in the activation of src and Syk kinases which in turn activated the PI-3K/Akt, Btk, PLCγ-2 and Ras/MAPK. In this study, we examined the pre-BCR signalling cascade using human normal primary pre-B cells with a particular focus on transcription factors activation and Rag modulation and their regulatory aspects. Methods: Pre-B cells were sorted from adult human bone marrow samples, treated or not with inhibitors of Syk (BAY61–3606), Akt (LY294002) and MEKK1 (UO126) prior to crosslink the pre-BCR by means of F(ab')2 anti-μHC. The effect of Pre-BCR signaling was examined by quantifying the transcript levels of Rag1, Rag2, E2A, EBF1, Pax5, FoxO1 and FoxO3, IRF4/8. Activation of transcription factors such as NF-κB p50, c-Fos, IRF4 and FoxO3A, was assessed by analyzing their nuclear translocation by immunofluorescence microscopy. Results: We show that NF-κB p50 is translocated into nucleus within 3h after pre-BCR stimulation. Crosslinking of pre-BCR also resulted in an enhancement of nuclear c-Fos translocation. BAY61-3606 (Syk inhibitor) treatment resulted in complete apoptosis (100 % cell death within 48h). Although treatment of normal pre-B cells with LY294002 or U0126 did not alter cell survival, nuclear translocation of pre-BCR-induced p50 NF-κB was prevented by former and enhanced by later. Conversely, c-Fos nuclear expression was inhibited by U0126 and slightly but consistently enhanced by LY294002 in association with a decrease in its cytoplasmic location. Pre-BCR stimulation also induced IRF4 translocation to the nucleus. Pre-BCR stimulation also resulted in the down regulation of Rag1 (− 48 %, P<0.01), Pax5 (− 40%, P<0.01) and E2A (− 35 %, P< 0.01) transcripts, whereas EBF1 and FoxO1 and 3 expression remained unchanged. In LY294002-treated cells, Rag1/Rag2 expression was up regulated (+130%, P< 0.01 and +251%, P< 0.01, respectively) following pre-BCR crosslinking, whereas in the presence of U0126 the pre-BCR induced Rag1/Rag2 down modulation remained unchanged. Conclusion: Our results indicate that the pre-BCR has the potential to promote pre-B cell proliferation, survival and differentiation by activating NF-kB, c-Fos and IRF4. It also has the ability to protect pre-B cells from genome instability by down-regulating Rag1/2, probably through down modulation of Pax5 and E2A. We bring evidence that PI-3 K/Akt pathway plays a crucial role in the regulation of the pre-BCR signaling cascade and that Akt-mediated NF-kB and c-Fos activation is antagonized by MAPK. Up-regulation of Rag transcripts upon Akt inhibition suggests either a feed-back negative loop or a dual effect of pre-BCR on Rag expression with an Akt-dependent Rag down regulation and an accessory pathway that enhances Rag expression. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document