scholarly journals When is a mouse basophil not a basophil?

Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 859-861 ◽  
Author(s):  
James J. Lee ◽  
Michael P. McGarry

Abstract The identification and characterization of mouse basophils have historically been hampered by the extreme rarity of this cell type. Virtually no photomicrographs of hematologically stained (eg, Wright-Giemsa) examples of mouse basophils exist in the literature. However, 4 recent studies in the past 2 years have used flow cytometry and a defined set of cell-surface markers to identify and subsequently isolate mouse “basophils,” including the publication of stained cytospin preparations of these cells. Surprisingly, a reevaluation of the data from all 4 of the studies revealed several issues of concern that suggest that the cells under study are not necessarily basophils. Nonetheless, we propose that these studies do provide the foundation for a reevaluation of the defining characteristics of a basophil and/or provide support for the provocative conclusion that a new previously overlooked leukocyte subtype has been identified. The purpose of this commentary is to revisit these previously published studies, highlight the relevant issues, and provide a different perspective in the hope of developing a consensus within the research community as to the true identity of the “basophils” described in these studies.

Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S69-S70
Author(s):  
W.A. Bova ◽  
V.R. Mantripragada ◽  
V. Luangphakdy ◽  
G.F. Muschler

2019 ◽  
Vol 3 (s1) ◽  
pp. 134-135
Author(s):  
Henrietta Fasanya ◽  
Pablo Joaquin Dopico ◽  
Zachary J. Yeager ◽  
Hugh Fan ◽  
Dietmar W. Siemann

OBJECTIVES/SPECIFIC AIMS: The objective of our collaboration is to develop a strong trans-disciplinary team consisting of microfluidics engineers, cancer biologists, and clinicians, to identify a universal marker to detect circulating osteosarcoma cells (COC) using microfluidic devices. Our goals are 3 fold: 1) Identify cell surface markers unique to osteosarcoma (OS) for COC isolation, 2) Develop a Geometrically Enhanced Mixing (GEM) device to isolate COCs, and 3) Evaluate the efficacy of GEM device to detect COCs in patients with OS. The long term goal of this collaboration is to utilize this cell detection approach to evaluate treatment efficacy and correlate the presence of circulating osteosarcoma cells with metastatic incidence. METHODS/STUDY POPULATION: In this phase of our study, we have identified an abundant and conserved cell surface marker across a panel of OS cell lines. Flow cytometry was used to evaluate the relative expression of Epithelial Cell Adhesion Molecule (EpCAM), and Ganglioside 2 or/and 3 (GD2/3) on a panel of OS cell lines. An antibody coated GEM microfluidic device is used to affirm the efficacy of GD2/3 to capture COCs. Further capture studies will be conducted using OS cell spiked blood samples. Analysis of variance (ANOVA) will be used to determine any significant difference in capture efficiency between EpCAM, GD2/3 cell surface markers. RESULTS/ANTICIPATED RESULTS: Our results demonstrate that EpCAM is not a suitable marker for COC detection. Results from our flow cytometry studies demonstrate that GD2/3 expression is significantly higher than EpCAM expression, across all OS cell lines within our panel. The cell capture efficiency strongly correlates with the cell surface expression data obtained from flow cytometry analysis. DISCUSSION/SIGNIFICANCE OF IMPACT: OS is the most common primary bone tumor and the third leading cause of pediatric cancer deaths. At diagnosis, 80% of patients will present with metastasis, however only 20% of these cases are clinically detectable. Innovative strategies to identify patients at risk of metastasis would allow for stratification of intervention therapies. Liquid biopsies are a novel alternative to current diagnostic imaging systems to monitor metastatic incidence and treatment efficacy. The detection of circulating tumor cells (CTCs) through routine blood sampling has the potential to be used clinically for earlier detection, monitoring the treatment of metastatic cancers and surveying the effect of therapeutic interventions on metastasis. To date, the majority of the studies on CTCs have evaluated their presence in carcinomas. Although sarcomas are rare, they generally have a poorer prognosis. This study will address one of the unmet medical needs in the field of CTC detection; the identification of cell surface OS makers to improve binding specificity, increase purity, and maintain a high capture efficiency.


2018 ◽  
Vol 2 (S1) ◽  
pp. 33-33
Author(s):  
Pablo J. Dopico ◽  
Henrietta Fasanya ◽  
Dietmar W. Siemann ◽  
Hugh Z. Fan

OBJECTIVES/SPECIFIC AIMS: The objective of our collaboration is to develop a strong transdisciplinary team consisting of microfluidics engineers, cancer biologists, and clinicians, to identify cell surface markers capable of detecting circulating osteosarcoma cells (COC) using microfluidic devices. Our goals are 3-fold: (1) Identify cell surface markers unique to osteosarcoma (OS) for COC isolation, (2) develop a Geometrically Enhanced Mixing (GEM) device to isolate COCs, and (3) Evaluate the efficacy of GEM device to detect COCs in OS patients under treatment. The long-term goal is to utilize this cell detection approach to correlate the presence of COC with metastatic incidence. METHODS/STUDY POPULATION: To identify a marker to capture COCs we are utilizing flow cytometry and microfluidic capture devices. Flow cytometry will be used to evaluate the relative expression of epithelial cell adhesion molecule (EpCAM), CD45, cell surface vimentin (CSV), insulin-like growth factor 2 (IGF2R), interleukin 11 receptor subunit alpha (IL-11Rɑ), ganglioside 2 (GD2), and receptor activator of nuclear factor κ-B (RANK) on a panel of OS cell lines. These cell surface markers were selected based on an extensive review of OS cell surface markers. OS cell capture efficacy will be assessed by passaging a known concentration of OS cells through a GEM microfluidic device coated with antibodies targeting the selected marker, as indicated by flow cytometry. Once captured, COCs on the device will be analyzed and the capture efficiency for the indicated marker will be measured. ANOVA will be used to determine any significant difference in capture efficiency between marker types. Once an optimal marker or panel of markers has been selected we will conduct capture studies using OS cell spiked blood samples followed by clinical samples obtained from OS patients. In clinical samples, COC detection will be validated using the FDA approved triple immunocytochemistry technical definition of a circulating tumor cell (CTC). This will enable COCs to be differentiated from the normal whole blood cell population by selecting for CD45−, EpCAM+, and cytokeratin+ cells. RESULTS/ANTICIPATED RESULTS: Our preliminary studies have shown that on our microfluidic device, EpCAM, a marker commonly used to identify circulating tumor cells in other cancer settings, has a poor capture efficiency (15.9%+7.7%) for HU09 OS cells while the same setup with EpCAM has a capture efficiency of 56.9%+2.7% for BXPc-3 pancreatic cells. We therefore anticipate our flow cytometry studies to show a low expression of EpCAM and CD45 for OS cell lines, while showing a moderate to high expression of CSV, IGF2R, IL-11Rɑ, GD2, and RANK. We expect to show a 60%–80% capture efficiency for markers selected for COC capture. Currently, CSV and GD2 are particularly promising as markers based on previously published studies. DISCUSSION/SIGNIFICANCE OF IMPACT: OS is the most common primary bone tumor and the third leading cause of pediatric cancer deaths. At diagnosis 80% of patients will present with metastasis, however only 20% of these cases are clinically detectable. Innovative strategies to identify patients at risk of metastasis would allow for stratification of intervention therapies. Currently, tumor recurrence and metastasis are primarily dependent on diagnostic-imaging modalities such as computerized tomography or positron emission tomography scans. Unfortunately, these imaging modalities can only detect tumor masses of significant size (106 tumor cells). Liquid biopsies are a novel alternative to current diagnostic imaging systems to monitor metastatic incidence and treatment efficacy. The detection of CTCs through routine blood sampling has the potential to be used clinically for earlier detection, monitoring the treatment of metastatic cancers and surveying the effect of therapeutic interventions on metastasis. To date, the majority of the studies on CTCs have evaluated their presence in carcinomas. Although sarcomas are rare, they generally have a poor prognosis. This study will address one of the unmet medical needs in the field of CTC detection; the identification of cell surface OS makers to improve binding specificity, increase purity, and maintain a high capture efficiency. This phase of our proposal will evaluate the most abundant and conserved markers across a panel of OS cell lines. Once a marker or panel of markers is selected, we will begin to develop a microfluidic device that can be used clinically to detect CTCs in this disease setting.


Author(s):  
Celeste Limoli ◽  
Paolo Giuseppe Limoli ◽  
Marcella Nebbioso

Background: Developing an efficient and standardized method to isolate and characterize adipose-derived stem cells (ASCs) from the stromal vascular fraction (SVF) of the adipose tissue for clinical application represents one of the major challenges in cell therapy and tissue engineering. Methods: In this study, we proposed an innovative, non-enzymatic protocol to collect clinically useful ASCs within freshly isolated SVF from adipose tissue by centrifugation of the infranatant portion of lipoaspirate and to determine the characteristic cytofluorimetric pattern, prior to in vitro culture. Results: The SVF yielded a mean of 73,32 \pm\ 10,89% cell viability evaluated with CALCEINA-FITC, i.e. cell-permeant dye. The ASCs were positive for PC7-labeled mAb anti-CD34 and negative for both PE-labeled mAb anti-CD31 and APC-labeled mAb anti-CD45. The frequency of ASCs estimated according to the panel of cell surface markers used was 51,06%\ \pm 5,26% versus the unstained ASCs subpopulation that was 0,74%\pm0,84% (P<0.0001). The ASCs events/\muL were 1602,13/\muL \pm 731,87/\muL. Conclusion: Our findings suggested that ASCs found in freshly isolated adipose SVF obtained by centrifugation of lipoaspirate can be immunophenotypically identified with a basic panel of cell surface markers. These findings aimed to provide standardization and contribute to reducing the inconsistency on reported cell surface antigens of ASC derived from the existing literature.


Author(s):  
Alexander Patera Nugraha ◽  
Fedik Abdul Rantam ◽  
Ida Bagus Narmada ◽  
Diah Savitri Ernawati ◽  
Igo Syaiful Ihsan

Abstract Objective This study aims to confirm whether the GDMSCs isolated from rabbit’s (Oryctolagus cuniculus) gingiva are mesenchymal stem cells (MSCs). Materials and Methods This study design was partly quasi-experimental with an observational design. GDMSCs were isolated from the gingiva of healthy male rabbits (O. cuniculus) (n = 2), 6 months old, and 3 to 5 kg of body weight. The specific cell surface markers of MSCs; clusters of differentiation (CD), namely, CD44, CD73, CD90, CD105, and CD200 expressions; and hematopoietic stem cell surface markers CD34 and CD45 were examined using flow cytometry and immunohistochemistry with immunofluorescence. The osteogenic differentiation of isolated GDMSCs was examined using alizarin red staining. Results GDMSCs in the fourth passage showed a spindle-like formation and fibroblast-like cells that attached to the base of the culture plate. GDMSCs were MSCs that positively expressed CD44, CD73, CD90, CD105, and CD200 but did not express CD34 and CD45 when examined using flow cytometry and immunohistochemical analysis. GDMSCs had osteogenic differentiation confirmed by calcified deposits in vitro with a red–violet and brownish color after alizarin red staining. Conclusion GDMSCs isolated from the rabbits (O. cuniculus) were confirmed as MSCs in vitro documented using immunohistochemistry and flow cytometry. GDMSCs can differentiate into osteogenic lineage in vitro that may be suitable for regenerative dentistry.


1986 ◽  
Vol 22 (5) ◽  
pp. 273-279 ◽  
Author(s):  
Robert W. Engelman ◽  
Katsuhiko Machida ◽  
Ross E. Longley ◽  
Wing T. Liu ◽  
Liem Q. Trang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document