MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines

Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 4055-4063 ◽  
Author(s):  
Christian Ries ◽  
Virginia Egea ◽  
Marisa Karow ◽  
Helmut Kolb ◽  
Marianne Jochum ◽  
...  

Abstract Human mesenchymal stem cells (hMSCs) represent promising tools in various clinical applications, including the regeneration of injured tissues by endogenous or transplanted hMSCs. The molecular mechanisms, however, that control hMSC mobilization and homing which require invasion through extracellular matrix (ECM) barriers are almost unknown. We have analyzed bone marrow–derivedhMSCs and detected strong expression and synthesis of matrix metalloproteinase 2 (MMP-2), membrane type 1 MMP (MT1-MMP), tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2. The ability of hMSCs to traverse reconstituted human basement membranes was effectively blocked in the presence of synthetic MMP inhibitors. Detailed studies by RNA interference revealed that gene knock-down of MMP-2, MT1-MMP, or TIMP-2 substantially impaired hMSC invasion, whereas silencing of TIMP-1 enhanced cell migration, indicating opposing roles of both TIMPs in this process. Moreover, the inflammatory cytokines TGF-β1, IL-1β, and TNF-α up-regulated MMP-2, MT1-MMP, and/or MMP-9 production in these cells, resulting in a strong stimulation of chemotactic migration through ECM, whereas the chemokine SDF-1α exhibited minor effects on MMP/TIMP expression and cell invasion. Thus, induction of specific MMP activity in hMSCs by inflammatory cytokines promotes directed cell migration across reconstituted basement membranes in vitro providing a potential mechanism in hMSC recruitment and extravasation into injured tissues in vivo.

2016 ◽  
Vol 879 ◽  
pp. 2444-2449 ◽  
Author(s):  
Ekaterina Chudinova ◽  
Maria Surmeneva ◽  
Andrey Koptioug ◽  
Irina V. Savintseva ◽  
Irina Selezneva ◽  
...  

Custom orthopedic and dental implants may be fabricated by additive manufacturing (AM), for example using electron beam melting technology. This study is focused on the modification of the surface of Ti6Al4V alloy coin-like scaffolds fabricated via AM technology (EBM®) by radio frequency (RF) magnetron sputter deposition of hydroxyapatite (HA) coating. The scaffolds with HA coating were characterized by Scanning Electron microscopy, X-ray diffraction. HA coating showed a nanocrystalline structure with the crystallites of an average size of 32±9 nm. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells was studied using biological short-term tests in vitro. In according to in vitro assessment, thin HA coating stimulated the attachment and proliferation of cells. Human mesenchymal stem cells cultured on the HA-coated scaffold also formed mineralized nodules.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Virginia Egea ◽  
Kai Kessenbrock ◽  
Devon Lawson ◽  
Alexander Bartelt ◽  
Christian Weber ◽  
...  

AbstractBone marrow-derived human mesenchymal stem cells (hMSCs) are recruited to damaged or inflamed tissues where they contribute to tissue repair. This multi-step process involves chemokine-directed invasion of hMSCs and on-site release of factors that influence target cells or tumor tissues. However, the underlying molecular mechanisms are largely unclear. Previously, we described that microRNA let-7f controls hMSC differentiation. Here, we investigated the role of let-7f in chemotactic invasion and paracrine anti-tumor effects. Incubation with stromal cell-derived factor-1α (SDF-1α) or inflammatory cytokines upregulated let-7f expression in hMSCs. Transfection of hMSCs with let-7f mimics enhanced CXCR4-dependent invasion by augmentation of pericellular proteolysis and release of matrix metalloproteinase-9. Hypoxia-induced stabilization of the hypoxia-inducible factor 1 alpha in hMSCs promoted cell invasion via let-7f and activation of autophagy. Dependent on its endogenous level, let-7f facilitated hMSC motility and invasion through regulation of the autophagic flux in these cells. In addition, secreted let-7f encapsulated in exosomes was increased upon upregulation of endogenous let-7f by treatment of the cells with SDF-1α, hypoxia, or induction of autophagy. In recipient 4T1 tumor cells, hMSC-derived exosomal let-7f attenuated proliferation and invasion. Moreover, implantation of 3D spheroids composed of hMSCs and 4T1 cells into a breast cancer mouse model demonstrated that hMSCs overexpressing let-7f inhibited tumor growth in vivo. Our findings provide evidence that let-7f is pivotal in the regulation of hMSC invasion in response to inflammation and hypoxia, suggesting that exosomal let-7f exhibits paracrine anti-tumor effects.


2021 ◽  
Vol 95 (2) ◽  
pp. 727-747
Author(s):  
Simone Rothmiller ◽  
Niklas Jäger ◽  
Nicole Meier ◽  
Thimo Meyer ◽  
Adrian Neu ◽  
...  

AbstractWound healing is a complex process, and disturbance of even a single mechanism can result in chronic ulcers developing after exposure to the alkylating agent sulfur mustard (SM). A possible contributor may be SM-induced chronic senescent mesenchymal stem cells (MSCs), unable to fulfil their regenerative role, by persisting over long time periods and creating a proinflammatory microenvironment. Here we show that senescence induction in human bone marrow derived MSCs was time- and concentration-dependent, and chronic senescence could be verified 3 weeks after exposure to between 10 and 40 µM SM. Morphological changes, reduced clonogenic and migration potential, longer scratch closure times, differences in senescence, motility and DNA damage response associated genes as well as increased levels of proinflammatory cytokines were revealed. Selective removal of these cells by senolytic drugs, in which ABT-263 showed initial potential in vitro, opens the possibility for an innovative treatment strategy for chronic wounds, but also tumors and age-related diseases.


Injury ◽  
2006 ◽  
Vol 37 (3) ◽  
pp. S33-S42 ◽  
Author(s):  
Lucy DiSilvio ◽  
Jacqueline Jameson ◽  
Zakareya Gamie ◽  
Peter V. Giannoudis ◽  
Eleftherios Tsiridis

Sign in / Sign up

Export Citation Format

Share Document