The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+CD25+ regulatory T cells

Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 1788-1796 ◽  
Author(s):  
Andrea Annoni ◽  
Manuela Battaglia ◽  
Antonia Follenzi ◽  
Angelo Lombardo ◽  
Lucia Sergi-Sergi ◽  
...  

Abstract Systemic delivery of lentiviral vector (LV) in immunocompetent mice leads to efficient in vivo cell transduction and expression of the encoded protein under the control of the ubiquitous promoter of human cytomegalovirus (CMV). However, antitransgene immune response results in clearance of transduced cells 4 weeks after injection. T regulatory cells (Tregs), which have been demonstrated to control immune responses in vivo, were tested for their ability to suppress antitransgene response leading to stable long-term expression. Adoptive transfer of natural CD4+CD25+ Tregs (nTregs) isolated from wild type (wt) mice or from transgene tolerant transgenic (tg) mice did not suppress the antitransgene immune response after LV delivery. These data demonstrate that neither increasing the endogenous pool of natural Tregs nor transferring nTregs selected in a transgene-expressing thymus can modulate the immune response and mediate sustained transgene expression. Conversely, adoptive transfer of antigen-presenting cells (APCs) isolated from transgene-tolerant tg mice efficiently reduced the immune response leading to stable LV-encoded protein expression in vivo. Reduction of CD8+ effector T cells was observed in LV-treated mice coinjected with transgene-expressing APCs compared with control mice. These data indicate that antitransgene immune response can be modulated by transgene-expressing APCs possibly through deletion of effector T cells.

2021 ◽  
Vol 12 ◽  
Author(s):  
Sophia Giang ◽  
David A. Horwitz ◽  
Sean Bickerton ◽  
Antonio La Cava

Artificial antigen-presenting cells (aAPCs) are synthetic versions of naturally occurring antigen-presenting cells (APCs) that, similar to natural APCs, promote efficient T effector cell responses in vitro. This report describes a method to produce acellular tolerogenic aAPCs made of biodegradable poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) and encapsulating IL-2 and TGF-β for a paracrine release to T cells. We document that these aAPCs can induce both human CD4+ and CD8+ T cells to become FoxP3+ T regulatory cells (Tregs). The aAPC NP-expanded human Tregs are functional in vitro and can modulate systemic autoimmunity in vivo in humanized NSG mice. These findings establish a proof-of-concept to use PLGA NPs as aAPCs for the induction of human Tregs in vitro and in vivo, highlighting the immunotherapeutic potential of this targeted approach to repair IL-2 and/or TGF-β defects documented in certain autoimmune diseases such as systemic lupus erythematosus.


1976 ◽  
Vol 144 (3) ◽  
pp. 776-787 ◽  
Author(s):  
R M Zinkernagel

In mice, primary footpad swelling after local infection with lymphocytic choriomeningitis virus (LCMV) and delayed-type hypersensitivity (DTH) adoptively transferred by LCMV immune lymphocytes are T-cell dependent. Nude mice do not develop primary footpad swelling, and T-cell depletion abrogates the capacity to transfer LCMV-specific DTH. Effector T cells involved in eliciting dose-dependent DTH are virus specific in that vaccinia virus-immune lymphocytes could not elicit DTH in LCMV-infected mice. The adoptive transfer of DTH is restricted to H-2K or H-2D compatible donor-recipient combinations. Distinct from the fowl-gamma-globulin DTH model, I-region compatibility is neither necessary nor alone sufficient. Whatever the mechanisms involved in this K- or D-region associated restriction in vivo, it most likely operates at the level of T-cell recognition of "altered self" coded in K or D. T cells associated with the I region (helper T cells and DTH-T cells to fowl-gamma-globulin) are specific for soluble, defined, and inert antigens. T cells associated with the K and D region (T cells cytotoxic in vitro and in vivo for acute LCMV-infected cells, DTH effector T cells, and anti-viral T cells) are specific for infectious, multiplying virus. The fact that T-cell specificity is differentially linked with the I region or with the K and D regions of H-2 may reflect the fundamental biological differences of these antigens. Although it cannot be excluded that separate functional subclasses of T-effector cells could have self-recognizers for different cell surface structures coded in I or K and D, it is more likely that the antigen parameters determine whether T cells are specific for "altered" I or "altered" K- or D-coded structures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manoj Patidar ◽  
Naveen Yadav ◽  
Sarat K. Dalai

IL-15 is one of the important biologics considered for vaccine adjuvant and treatment of cancer. However, a short half-life and poor bioavailability limit its therapeutic potential. Herein, we have structured IL-15 into a chimeric protein to improve its half-life enabling greater bioavailability for longer periods. We have covalently linked IL-15 with IgG2 base to make the IL-15 a stable chimeric protein, which also increased its serum half-life by 40 fold. The dimeric structure of this kind of IgG based biologics has greater stability, resistance to proteolytic cleavage, and less frequent dosing schedule with minimum dosage for achieving the desired response compared to that of their monomeric forms. The structured chimeric IL-15 naturally forms a dimer, and retains its affinity for binding to its receptor, IL-15Rβ. Moreover, with the focused action of the structured chimeric IL-15, antigen-presenting cells (APC) would transpresent chimeric IL-15 along with antigen to the T cell, that will help the generation of quantitatively and qualitatively better antigen-specific memory T cells. In vitro and in vivo studies demonstrate the biological activity of chimeric IL-15 with respect to its ability to induce IL-15 signaling and modulating CD8+ T cell response in favor of memory generation. Thus, a longer half-life, dimeric nature, and anticipated focused transpresentation by APCs to the T cells will make chimeric IL-15 a super-agonist for memory CD8+ T cell responses.


1998 ◽  
Vol 187 (10) ◽  
pp. 1611-1621 ◽  
Author(s):  
Sarah E. Townsend ◽  
Christopher C. Goodnow

Antigen-specific B cells are implicated as antigen-presenting cells in memory and tolerance responses because they capture antigens efficiently and localize to T cell zones after antigen capture. It has not been possible, however, to visualize the effect of specific B cells on specific CD4+ helper T cells under physiological conditions. We demonstrate here that rare T cells are activated in vivo by minute quantities of antigen captured by antigen-specific B cells. Antigen-activated B cells are helped under these conditions, whereas antigen-tolerant B cells are killed. The T cells proliferate and then disappear regardless of whether the B cells are activated or tolerant. We show genetically that T cell activation, proliferation, and disappearance can be mediated either by transfer of antigen from antigen-specific B cells to endogenous antigen-presenting cells or by direct B–T cell interactions. These results identify a novel antigen presentation route, and demonstrate that B cell presentation of antigen has profound effects on T cell fate that could not be predicted from in vitro studies.


1992 ◽  
Vol 175 (1) ◽  
pp. 267-273 ◽  
Author(s):  
N Bhardwaj ◽  
S M Friedman ◽  
B C Cole ◽  
A J Nisanian

Dendritic cells are a small subset of human blood mononuclear cells that are potent stimulators of several T cell functions. Here we show they are 10-50-fold more potent than monocytes or B cells in inducing T cell responses to a panel of superantigens. Furthermore, dendritic cells can present femtomolar concentrations of superantigen to T cells even at numbers where other antigen-presenting cells (APCs) are inactive. Although dendritic cells express very high levels of the major histocompatibility complex products that are required to present superantigens, it is only necessary to pulse these APCs for 1 hour with picomolar levels of one superantigen, staphylococcal enterotoxin B, to maximally activate T cells. Our results suggest that very small amounts of superantigen will be immunogenic in vivo if presented on dendritic cells.


2009 ◽  
Vol 69 (24) ◽  
pp. 9376-9384 ◽  
Author(s):  
Stefano Ugel ◽  
Alessia Zoso ◽  
Carmela De Santo ◽  
Yu Li ◽  
Ilaria Marigo ◽  
...  

Hematology ◽  
2003 ◽  
Vol 2003 (1) ◽  
pp. 331-349 ◽  
Author(s):  
Helen E. Heslop ◽  
Freda K. Stevenson ◽  
Jeffrey J. Molldrem

Abstract Over the past few years, improved understanding of the molecular basis of interactions between antigen presenting cells and effector cells and advances in informatics have both led to the identification of many candidate antigens that are targets for immunotherapy. However, while immunotherapy has successfully eradicated relapsed hematologic malignancy after allogeneic transplant as well as virally induced tumors, limitations have been identified in extending immunotherapy to a wider range of hematologic malignancies. This review provides an overview of three immunotherapy strategies and how they may be improved. In Section I, Dr. Stevenson reviews the clinical experience with genetic vaccines delivered through naked DNA alone or viral vectors, which are showing promise in clinical trials in lymphoma and myeloma patients. She describes efforts to manipulate constructs genetically to enhance immunogenicity and to add additional elements to generate a more sustained immune response. In Section II, Dr. Molldrem describes clinical experience with peptide vaccines, with a particular focus on myeloid tissue-restricted proteins as GVL target antigens in CML and AML. Proteinase 3 and other azurophil granule proteins may be particularly good targets for both autologous and allogeneic T-cell responses. The potency of peptide vaccines may potentially be increased by genetically modifying peptides to enhance T-cell receptor affinity. Finally, in Section III, Dr. Heslop reviews clinical experience with adoptive immunotherapy with T cells. Transferred T cells have clinical benefit in treating relapsed malignancy post transplant, and Epstein-Barr virus associated tumors. However, T cells have been less successful in treating other hematologic malignancies due to inadequate persistence or expansion of adoptively transferred cells and the presence of tumor evasion mechanisms. An improved understanding of the interactions of antigen presenting cells with T cells should optimize efforts to manufacture effector T cells, while manipulation of lymphocyte homeostasis in vivo and development of gene therapy approaches may enhance the persistence and function of adoptively transferred T cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2587-2587
Author(s):  
Hideto Matsui ◽  
Margareth Ozelo ◽  
Carol Hegadorn ◽  
Andrea Labelle ◽  
Erin Burnett ◽  
...  

Abstract Hemophilia A is an excellent candidate disorder for the use of gene therapy as a treatment modality. To date, although lentiviral delivery of the factor VIII (FVIII) transgene has the potential to provide sustained therapeutic correction of the hemophilia A phenotype, this has not been achieved in adult animals because of the anti-FVIII immune response. We have used lentiviral vectors to deliver the canine FVIII transgene to hemophilia A neonates and although no anti-FVIII immune response occurred, and indeed the treated mice displayed long-term tolerance to the canine FVIII antigen, this strategy did not provide sustained therapeutic levels of plasma FVIII. To overcome these limitations, we modified our lentiviral vector and the protocol for viral delivery to enhance transduction of hepatocytes and direct transgene expression away from antigen presenting cells. We engineered lentiviral vectors that encode the B-domain deleted canine FVIII cDNA under the transcriptional control of either a non-viral ubiquitous promoter or two different liver-restricted promoters. However, no plasma FVIII was detected in any of the adult hemophilia A mice after intravenous injection of the various lentiviral vectors because of an anti-canine FVIII immune response. An alternate pseudotype (GP64) was used to enhance transduction of hepatocytes and a target sequence for a hematopoietic-specific microRNA was incorporated into the transgene to prevent FVIII expression in antigen presenting cells that may arise from promoter trapping. When hemophilia A mice received intravenous infusions of these modified vectors, where the cFVIII trangene is under the control of either of the liver-restricted promoters, all treated mice (n=4) showed sustained FVIII expression (mean FVIII levels 28.2±2.4 mU/mL) for more than 150 days (last time analyzed) without developing anti-FVIII antibodies. Moreover, temporary depletion of Kuppfer cells prior to viral administration resulted in a 3-fold elevation of levels of plasma FVIII (mean FVIII levels 83.3±2.1mU/mL; n=4). Analysis of the biodistribution of the integrated FVIII transgene and expression of canine FVIII mRNA indicate an enhanced restriction of FVIII expression in hepatocytes with the use of the modified lentiviral vectors. These results demonstrate, for the first time, the long-term therapeutic potential of modified lentiviral vectors for treating adult pre-clinical animal models of hemophilia A.


2008 ◽  
Vol 253 (1-2) ◽  
pp. 110-115 ◽  
Author(s):  
Friderike Blumenthal-Barby ◽  
Arnhild Schrage ◽  
Katharina Eulenburg ◽  
Martin Zeitz ◽  
Alf Hamann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document