MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML

Blood ◽  
2007 ◽  
Vol 110 (5) ◽  
pp. 1639-1647 ◽  
Author(s):  
Michael Heuser ◽  
Bob Argiropoulos ◽  
Florian Kuchenbauer ◽  
Eric Yung ◽  
Jessica Piper ◽  
...  

AbstractOverexpression of wild-type MN1 is a negative prognostic factor in patients with acute myeloid leukemia (AML) with normal cytogenetics. We evaluated whether MN1 plays a functional role in leukemogenesis. We demonstrate using retroviral gene transfer and bone marrow (BM) transplantation that MN1 overexpression rapidly induces lethal AML in mice. Insertional mutagenesis and chromosomal instability were ruled out as secondary aberrations. MN1 increased resistance to all-trans retinoic acid (ATRA)–induced cell-cycle arrest and differentiation by more than 3000-fold in vitro. The differentiation block could be released by fusion of a transcriptional activator (VP16) to MN1 without affecting the ability to immortalize BM cells, suggesting that MN1 blocks differentiation by transcriptional repression. We then evaluated whether MN1 expression levels in patients with AML (excluding M3-AML) correlated with resistance to ATRA treatment in elderly patients uniformly treated within treatment protocol AMLHD98-B. Strikingly, patients with low MN1 expression who received ATRA had a significantly prolonged event-free (P = .008) and overall (P = .04) survival compared with patients with either low MN1 expression and no ATRA, or high MN1 expression with or without ATRA. MN1 is a unique oncogene in hematopoiesis that both promotes proliferation/self-renewal and blocks differentiation, and may become useful as a predictive marker in AML treatment.

Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3391-3402 ◽  
Author(s):  
Chi Keung Cheng ◽  
Libby Li ◽  
Suk Hang Cheng ◽  
Kin Mang Lau ◽  
Natalie P. H. Chan ◽  
...  

Abstract RUNX3/AML2 is a Runt domain transcription factor like RUNX1/AML1 and RUNX2/AML3. Regulated by 2 promoters P1 and P2, RUNX3 is frequently inactivated by P2 methylation in solid tumors. Growing evidence has suggested a role of this transcription factor in hematopoiesis. However, genetic alterations have not been reported in blood cancers. In this study on 73 acute myeloid leukemia (AML) patients (44 children and 29 adults), we first showed that high RUNX3 expression among childhood AML was associated with a shortened event-free survival, and RUNX3 was significantly underexpressed in the prognostically favorable subgroup of AML with the t(8;21) and inv(16) translocations. We further demonstrated that this RUNX3 repression was mediated not by P2 methylation, but RUNX1-ETO and CBFβ-MYH11, the fusion products of t(8;21) and inv(16), via a novel transcriptional mechanism that acts directly or indirectly in collaboration with RUNX1, on 2 conserved RUNX binding sites in the P1 promoter. In in vitro studies, ectopically expressed RUNX1-ETO and CBFβ-MYH11 also inhibited endogenous RUNX3 expression. Taken together, RUNX3 was the first transcriptional target found to be commonly repressed by the t(8;21) and inv(16) fusion proteins and might have an important role in core-binding factor AML.


2014 ◽  
Vol 93 (11) ◽  
pp. 1931-1933 ◽  
Author(s):  
Esperanza Such ◽  
Lourdes Cordón ◽  
Amparo Sempere ◽  
Eva Villamón ◽  
Mariam Ibañez ◽  
...  

Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 3895-3905 ◽  
Author(s):  
Shuchi Agrawal ◽  
Wolf-Karsten Hofmann ◽  
Nicola Tidow ◽  
Mathias Ehrich ◽  
Dirk van den Boom ◽  
...  

Abstract Aberrant DNA methylation is the most frequent molecular alteration in acute myeloid leukemia (AML). To identify methylation-silenced genes in AML, we performed microarray analyses in U937 cells exposed to the demethylating agent 5-aza-deoxy-cytidine. Overall, 274 transcripts were significantly induced. Interestingly, C/EBPδ expression was significantly induced (more than 10-fold) by demethylation whereas expression of all other C/EBP family members remained unchanged. The C/EBPδ promoter was strongly methylated in different leukemic cell lines and showed signs of a repressed chromatin state. Analyses of the promoter regions of the entire C/EBP family (α, β, γ, δ, ϵ, ζ) in bone marrow samples from AML patients (n = 80) and controls (n = 15) by mass spectrometry revealed that C/EBPδ is the most commonly hypermethylated C/EBP gene in AML. Hypermethylation occurred in more than 35% of AML patients at primary diagnosis. A significant correlation (P = .016) was observed between hypermethylation of the C/EBPδ promoter and low expression of C/EBPδ in AML patients. C/EBPδ promoter activity was strongly repressed by methylation in vitro, and transcriptional repression partially depended on MeCP2 activity. C/EBPδ exhibited growth-inhibitory properties in primary progenitor cells as well as in Flt3-ITD–transformed cells. Taken together, C/EBPδ is a novel tumor suppressor gene in AML that is silenced by promoter methylation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3786-3786 ◽  
Author(s):  
Ronan T. Swords ◽  
Aymee Perez ◽  
Ana Rodriguez ◽  
Justin M. Watts ◽  
Tino Schenk ◽  
...  

Abstract The histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2), a component of the polycomb group complex, is critical for normal hematopoietic stem cell development. EZH2 mediates transcriptional repression through histone tri-methylation (H3K27me3). The activity of EZH2 influences cell fate regulation, namely the balance between self-renewal and differentiation. The contribution of aberrant EZH2 expression to tumorigenesis is becoming increasingly recognized. Its role in hematological malignancies however, is complex. Both gain-of-function and loss-of-function mutations have been respectively reported in lymphoma and leukemia, suggesting that EZH2 may serve a dual purpose as an oncogene and tumor-suppressor gene. Impaired self-renewal via EZH2 inhibition has been observed and offers a potentially attractive therapeutic approach in acute myeloid leukemia. Indeed, overexpression of EZH2 has been reported in patients with AML, particularly in those with complex karyotypes. In the present study, we show that deletion of EZH2 compromises the growth potential of AML cells by promoting their differentiation. To understand the role of EZH2 in vitro, we first examined the cell growth and colony-forming ability of EZH2 knockdown vs WT HL-60 cells. We found that proliferation of HL-60 cells was severely compromised following deletion of EZH2. Additionally, EZH2 deletion resulted in retarded cell-cycle entry and resulted in increased apoptotic cell death Similarly, the number of total colonies generated by EZH2 deleted cells in the secondary and tertiary re-plating assays was considerably less than that of controls. EZH2 deleted cells tended to form dispersed colonies that were mainly composed of differentiated myeloid cells, whereas control cells mostly formed compact colonies composed of myeloblasts. The proportion of dispersed colonies in the EZH2deleted cell culture increased with serial replatings. Deletion of EZH2 affects the growth and replating capacity of AML cell in vitro. When EZH2 deleted HL-60 cells were treated with the retinoid all-trans-retinoic acid (ATRA), we observed a marked induction of differentiation (as measured by the myeloid maturation marker CD11b) compared to the effects of ATRA on differentiation in wild type (WT) cells. Similarly, impaired clonogenic survival was more pronounced following ATRA treatment in EZH2 deleted vs WT HL-60 cells (see figure). We then profiled a number of small molecule inhibitors of EZH2 alone (EPZ005687, EPZ-6438, GSK126, El1, DZNeP, UNC1999 and GSK343) and in combination with ATRA, confirming these phenotypic changes. To elucidate the mechanism for how EZH2 regulates the balance of self-renewal vs differentiation in AML, we examined the genome-wide distribution of H3K27me3 by ChIP-seq analysis. First, western blot analysis revealed a marked decrease in the levels of H3K27me3 in EZH2 deleted AML cells. Next, we examined the presence of H3K27me3 marks in leukemia cells purified by ChIP-seq analysis. We focused on the region from 5.0 kb upstream to 3.0 kb downstream of transcription start sites (TSSs) of reference sequence (RefSeq) genes (http://www.ncbi.nlm.nih.gov/RefSeq/) because H3K27me3 marks are usually enriched near TSSs or across the body of genes. As expected, the deletion of EZH2 caused a drastic reduction in these H3K27me3 marks. Targeting EZH2 presents and interesting dichotomy as a novel drug target since inhibition of this protein could potentially be beneficial or detrimental depending on the context of the disease. In the case of AML, EZH2 mutations likely impede differentiation and block retinoic acid led differentiation programs. Updated studies outlining the interaction between the retinoic acid signaling pathway and EZH2 will be presented. These studies justify clinical investigation of EZH2 inhibitors combined with ATRA for patients with AML. Figure 1. Knockdown of EZH2 (C) promotes differentiation of AML cells (A), impairs clonogenic survival and synergistically enhances the anti-leukemic effects of the retinoid all-trans-retinoic acid (ATRA) (B). Figure 1. Knockdown of EZH2 (C) promotes differentiation of AML cells (A), impairs clonogenic survival and synergistically enhances the anti-leukemic effects of the retinoid all-trans-retinoic acid (ATRA) (B). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3898-3905 ◽  
Author(s):  
Michael Heuser ◽  
Gernot Beutel ◽  
Juergen Krauter ◽  
Konstanze Döhner ◽  
Nils von Neuhoff ◽  
...  

AbstractThe translocation t(12;22) involves MN1 and TEL and is rarely found in acute myeloid leukemia (AML). Recently, it has been shown in a mouse model that the fusion protein MN1-TEL can promote growth of primitive hematopoietic progenitor cells (HPCs) and, in cooperation with HOXA9, induce AML. We quantified MN1 expression by real-time reverse transcriptase–polymerase chain reaction (RT-PCR) in 142 adult patients with AML with normal cytogenetics treated uniformly in trial AML-SHG 01/99. AML samples were dichotomized at the median MN1 expression. High MN1 expression was significantly correlated with unmutated NPM1 (P < .001), poor response to the first course of induction treatment (P = .02), a higher relapse rate (P = .03), and shorter relapse-free (P = .002) and overall survivals (P = .03). In multivariate analysis, MN1 expression was an independent prognostic marker (P = .02) in addition to age and Eastern Cooperative Oncology Group (ECOG) performance status. Excluding patients with NPM1mutated/FLT3ITDnegative, high MN1 expression was associated with shorter relapse-free survival (P = .057). MN1 was highly expressed in some patients with acute lymphoblastic but not chronic lymphocytic or myeloid leukemia. MN1 was highly expressed in HPCs compared with differentiated cells and was down-regulated during in vitro differentiation of CD34+ cells, suggesting a functional role in HPCs. In conclusion, our data suggest MN1 overexpression as a new prognostic marker in AML with normal cytogenetics.


2020 ◽  
Vol 21 (14) ◽  
pp. 5084
Author(s):  
Fabian Freisleben ◽  
Lena Behrmann ◽  
Vanessa Thaden ◽  
Jana Muschhammer ◽  
Carsten Bokemeyer ◽  
...  

Aberrant activation of the hedgehog (HH) pathway is observed in many neoplasms, including acute myeloid leukemia (AML). The glioma-associated oncogene homolog (GLI) transcription factors are the main downstream effectors of the HH signaling cascade and are responsible for the proliferation and maintenance of leukemic stem cells, which support chemotherapy resistance and leukemia relapse. Cytarabine (Ara-C)-resistant variants of AML cell lines were established through long-term cultivation with successively increasing Ara-C concentrations. Subsequently, differences in GLI expression were analyzed by RT-qPCR. GLI3 mRNA levels were detectable in parental Kasumi-1, OCI-AML3, and OCI-AML5 cells, whereas GLI3 expression was completely silenced in all resistant counterparts. Therefore, we generated GLI3-knockdown cell lines using small hairpin RNAs (shRNA) and evaluated their sensitivity to Ara-C in vitro. The knockdown of GLI3 partly abolished the effect of Ara-C on colony formation and induction of apoptosis, indicating that GLI3 downregulation results in Ara-C resistance. Moreover, we analyzed the expression of several genes involved in Ara-C metabolism and transport. Knockdown of GLI3 resulted in the upregulation of SAM and HD domain-containing protein 1 (SAMHD1), cytidine deaminase (CDA), and ATP-binding cassette C11 (ABCC11)/multidrug resistance-associated protein 8 (MRP8), each of which has been identified as a predictive marker for Ara-C response in acute myeloid leukemia. Our results demonstrate that GLI3 downregulation is a potential mechanism to induce chemotherapy resistance in AML.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2187-2194 ◽  
Author(s):  
W Terpstra ◽  
A Prins ◽  
RE Ploemacher ◽  
BW Wognum ◽  
G Wagemaker ◽  
...  

Acute myeloid leukemia (AML) proliferation in vivo is maintained by a small fraction of progenitor cells. These cells have been assumed to express an immature phenotype and to produce most colony-forming units (CFU-AML). For one case of AML (French-American-British [FAB] M1, normal cytogenetics), we examined the capacity of the CD34+ (25% of unseparated AML cells) and CD34- fractions to initiate leukemia in severe combined immunodeficient (SCID) mice. In addition, the production of CFU-AML and nucleated cells (NC) of these subsets was investigated in long-term bone marrow culture (LTBMC). The frequencies of cobblestone area-forming cells (CAFC) were also estimated; early appearing cobblestone areas (CAs) are indicative of relatively mature progenitors and late CAs represent the progeny of primitive progenitors. In mice transplanted with CD34- (98% pure) or CD34+ (98% pure) grafts, similar AML cell growth was seen throughout an observation period of 106 days. The capacity to establish long-term growth from the CD34- cells was confirmed by renewed outgrowth after retransplantation. In vitro, the CD34- fraction contained both immature and mature CAFCs and produced high numbers of CFU-AML and NC in LTBMC. The CD34+ fraction produced only small numbers of CFU-AML, NC, and mature CAFCs. Therefore, the expression of CD34 and the content of CFU- AML were not associated with long-term growth of AML. However, similar frequencies of primitive CAFCs were observed in both fractions. Thus, both CD34- and CD34+ subsets of this AML sample contained immature progenitors with the capacity to initiate long-term AML growth as characterized in vivo (in SCID mice) as well as in vitro (in CAFC assay), indicating asynchrony between functional and immunophenotypical maturation of AML progenitor cell compartments.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2143
Author(s):  
Maria Hernandez-Valladares ◽  
Rebecca Wangen ◽  
Elise Aasebø ◽  
Håkon Reikvam ◽  
Frode S. Berven ◽  
...  

All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.


Sign in / Sign up

Export Citation Format

Share Document