Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells

Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4278-4284 ◽  
Author(s):  
Gerben Bouma ◽  
Siobhan Burns ◽  
Adrian J. Thrasher

The Wiskott-Aldrich syndrome (WAS) is characterized by defective cytoskeletal dynamics affecting multiple immune cell lineages, and leading to immunodeficiency and autoimmunity. The contribution of dendritic cell (DC) dysfunction to the immune dysregulation has not been defined, although both immature and mature WAS knockout (KO) DCs exhibit significant abnormalities of chemotaxis and migration. To exclude environmental confounders as a result of WAS protein (WASp) deficiency, we studied migration and priming activity of WAS KO DCs in vivo after adoptive transfer into wild-type recipient mice. Homing to draining lymph nodes was reduced and WAS KO DCs failed to localize efficiently in T-cell areas. Priming of both CD4+ and CD8+ T lymphocytes by WAS KO DCs preloaded with antigen was significantly decreased. At low doses of antigen, activation of preprimed wild-type CD4+ T lymphocytes by WAS KO DCs in vitro was also abrogated, suggesting that there is a threshold-dependent impairment even if successful DC–T cell colocalization is achieved. Our data indicate that intrinsic DC dysfunction due to WASp deficiency directly impairs the T-cell priming response in vivo, most likely as a result of inefficient migration, but also possibly influenced by suboptimal DC-mediated cognate interaction.

1997 ◽  
Vol 186 (5) ◽  
pp. 705-717 ◽  
Author(s):  
William L. Stanford ◽  
Salma Haque ◽  
Robert Alexander ◽  
Xuemei Liu ◽  
Anne M. Latour ◽  
...  

Ly-6A is a murine antigen which is implicated in lymphocyte activation and may be involved in activation of hematopoietic stem cells. Antibody cross-linking studies and antisense experiments have suggested that Ly-6A is a lymphocyte coactivation molecule. To better understand the function of Ly-6A, we used gene targeting to produce Ly-6A null mice which are healthy and have normal numbers and percentages of hematopoietic lineages. However, T lymphocytes from Ly-6A–deficient animals proliferate at a significantly higher rate in response to antigens and mitogens than wild-type littermates. In addition, Ly-6A mutant splenocytes generate more cytotoxic T lymphocytes compared to wild-type splenocytes when cocultured with alloantigen. This enhanced proliferation is not due to alterations in kinetics of response, sensitivity to stimulant concentration, or cytokine production by the T cell population, and is manifest in both in vivo and in vitro T cell responses. Moreover, T cells from Ly-6A–deficient animals exhibit a prolonged proliferative response to antigen stimulation, thereby suggesting that Ly-6A acts to downmodulate lymphocyte responses.


Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1176-1183 ◽  
Author(s):  
Najib El Haddad ◽  
Dean Heathcote ◽  
Robert Moore ◽  
Sunmi Yang ◽  
Jamil Azzi ◽  
...  

Abstract Clinical trials using mesenchymal stem cells (MSCs) have been initiated worldwide. An improved understanding of the mechanisms by which allogeneic MSCs evade host immune responses is paramount to regulating their survival after administration. This study has focused on the novel role of serine protease inhibitor (SPI) in the escape of MSCs from host immunosurveillance through the inhibition of granzyme B (GrB). Our data indicate bone marrow–derived murine MSCs express SPI6 constitutively. MSCs from mice deficient for SPI6 (SPI6−/−) exhibited a 4-fold higher death rate by primed allogeneic cytotoxic T cells than did wild-type MSCs. A GrB inhibitor rescued SPI6−/− MSCs from cytotoxic T-cell killing. Transduction of wild-type MSCs with MigR1-SPI6 also protected MSCs from cytotoxic T cell–mediated death in vitro. In addition, SPI6−/− MSCs displayed a shorter lifespan than wild-type MSCs when injected into an allogeneic host. We conclude that SPI6 protects MSCs from GrB-mediated killing and plays a pivotal role in their survival in vivo. Our data could serve as a basis for future SPI-based strategies to regulate the survival and function of MSCs after administration and to enhance the efficacy of MSC-based therapy for diseases.


2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Xueli Zhang ◽  
Ying Wang ◽  
Jian Song ◽  
Hanna Gerwien ◽  
Omar Chuquisana ◽  
...  

The endothelial cell basement membrane (BM) is a barrier to migrating leukocytes and a rich source of signaling molecules that can influence extravasating cells. Using mice lacking the major endothelial BM components, laminin 411 or 511, in murine experimental autoimmune encephalomyelitis (EAE), we show here that loss of endothelial laminin 511 results in enhanced disease severity due to increased T cell infiltration and altered polarization and pathogenicity of infiltrating T cells. In vitro adhesion and migration assays reveal higher binding to laminin 511 than laminin 411 but faster migration across laminin 411. In vivo and in vitro analyses suggest that integrin α6β1- and αvβ1-mediated binding to laminin 511–high sites not only holds T cells at such sites but also limits their differentiation to pathogenic Th17 cells. This highlights the importance of the interface between the endothelial monolayer and the underlying BM for modulation of immune cell phenotype.


Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 667-671 ◽  
Author(s):  
F Lauria ◽  
D Raspadori ◽  
S Tura

Abstract Abnormalities of T lymphocytes in B cell chronic lymphocytic leukemia (B-CLL) have been extensively documented by several immunologic investigations. Following recent studies pointing to the favorable effect of TP-1, a partially purified extract of calf thymus, on the T cell-mediated immunity of several diseases, including Hodgkin's disease, we have used monoclonal antibodies and the enriched T lymphocytes of 16 untreated B-CLL patients to evaluate the proportion of T cell subsets before and after the administration of TP-1. In addition, the proliferative response to phytohemagglutinin (PHA) and the helper function in a pokeweed mitogen (PWM) system were assessed. In ten cases, the effect of TP-1 was also studied in vitro by evaluating the same parameters before and after incubation of B-CLL T cells with the drug. The study demonstrated that in vivo administration of TP-1 increases significantly (P less than .001) the proportion of the defective helper/inducer T cell population (OKT4-positive cells) in B-CLL, leading to a near normal OKT4/OKT8 ratio. Furthermore, the improved phenotypic profile was accompanied by an increased proliferative response to PHA and, in particular, by a significant increase (P less than .01) of T helper capacity; this increase was, however, insufficient to enable the normalization of the serum immunoglobulin levels. The in vitro incubation of B-CLL T lymphocytes did not succeed in producing significant modifications in distribution and function.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi129-vi129
Author(s):  
Marilin Koch ◽  
Mykola Zdioruk ◽  
M Oskar Nowicki ◽  
Estuardo Aguilar ◽  
Laura Aguilar ◽  
...  

Abstract RATIONALE Dexamethasone is frequently used in symptomatic treatment of glioma patients, although it is known to cause immune suppression. Checkpoint inhibitor immunotherapies have not yet been successful in glioma treatments. Gene-mediated cytotoxic immunotherapy (GMCI) is an immunotherapeutic approach that uses aglatimagene besadenovec with an anti-herpetic prodrug to induce immunogenic tumor cell death and immune cell attraction to the tumor site with potent CD8 T cell activation. GMCI is currently in clinical trials for solid tumors including glioblastoma, where it showed encouraging survival results in a Phase 2 study that did not limit the use of dexamethasone. However, the effects of dexamethasone on its efficacy have not been explored. METHODS We investigated the effects of dexamethasone on GMCI in vitro using cytotoxicity and T-cell-killing assays in glioblastoma cell lines. The impact of dexamethasone in vivo was assessed in an orthotopic syngeneic murine glioblastoma model. RESULTS Cyotoxicity assays showed that Dexamethasone has a slight impact on GMCI in vitro. In contrast, we observed a highly significant effect in T-cell-functional assays in which killing was greatly impaired. Immune cell response assays revealed a reduced T-cell proliferation after co-culture with supernatant from dexamethasone or combination treated glioblastoma cells in contrast to GMCI alone. In a murine model, the combination of GMCI and dexamethasone resulted in a significant reduction in median symptom-free survival (29d) in comparison to GMCI alone (39.5d) (P = 0.0184). CONCLUSION Our data suggest that high doses of dexamethasone may negatively impact the efficacy of immunotherapy for glioma, which may be a consequence of impaired T cell function. These results support the idea that there is a need in identifying possible alternatives to dexamethasone to maximize the effectiveness of immunostimulatory therapies such as GMCI.


PLoS ONE ◽  
2009 ◽  
Vol 4 (7) ◽  
pp. e6453 ◽  
Author(s):  
Tobias Müller ◽  
Thorsten Dürk ◽  
Britta Blumenthal ◽  
Melanie Grimm ◽  
Sanja Cicko ◽  
...  

2007 ◽  
Vol 204 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Tim Worbs ◽  
Thorsten R. Mempel ◽  
Jasmin Bölter ◽  
Ulrich H. von Andrian ◽  
Reinhold Förster

In contrast to lymphocyte homing, little is known about molecular cues controlling the motility of lymphocytes within lymphoid organs. Applying intravital two-photon microscopy, we demonstrate that chemokine receptor CCR7 signaling enhances the intranodal motility of CD4+ T cells. Compared to wild-type (WT) cells, the average velocity and mean motility coefficient of adoptively transferred CCR7-deficient CD4+ T lymphocytes in T cell areas of WT recipients were reduced by 33 and 55%, respectively. Both parameters were comparably reduced for WT T lymphocytes migrating in T cell areas of plt/plt mice lacking CCR7 ligands. Importantly, systemic application of the CCR7 ligand CCL21 was sufficient to rescue the motility of WT T lymphocytes inside T cell areas of plt/plt recipients. Comparing the movement behavior of T cells in subcapsular areas that are devoid of detectable amounts of CCR7 ligands even in WT mice, we failed to reveal any differences between WT and plt/plt recipients. Furthermore, in both WT and plt/plt recipients, highly motile T cells rapidly accumulated in the subcapsular region after subcutaneous injection of the CCR7 ligand CCL19. Collectively, these data identify CCR7 and its ligands as important chemokinetic factors stimulating the basal motility of CD4+ T cells inside lymph nodes in vivo.


2003 ◽  
Vol 225 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Tazio Storni ◽  
Martin F. Bachmann
Keyword(s):  
T Cell ◽  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 864-864
Author(s):  
Barbara J. Varnum-Finney ◽  
Lia M. Halasz ◽  
Irwin D. Bernstein

Abstract Spatially restricted in vivo expression of the Notch ligands Delta1 and Jagged1 suggests their differential roles in inducing hematopoietic cell fates, and studies have shown that each induces alternative fates during in vitro culture. We hypothesize that the ligands induce alternative fates via differential activation of Notch1 and/or Notch2. To address this, we assessed fate outcomes of Notch1- and Notch2-deficient murine bone marrow derived lin−Sca-1+c-kit+ Hoescht side population progenitors (LSKSP) after 14-days incubation with either purified Delta1 or Jagged1 in serum containing medium. Ligands consisted of purified Delta1 and Jagged1 extracellular domains fused to HumanIgG1 (Delta1ext-IgG or Jagged1ext-IgG). Equal amounts of ligand, as determined by ELISA, were immobilized to plastic surfaces of culture wells along with fibronectin. Notch deficient cells were generated by infecting either Notch1fl/fl or Notch2fl/fl LSKSP with lentivirus encoding cre recombinase. We show here that both ligands inhibit myeloid differentiation, since after 14 days, LSKSP incubated with either ligand generated multi-log increased numbers of immature progeny with significantly reduced percentages of GR1+ and/or F480+ cells compared to LSKSP incubated with control-IgG. However, only Delta1ext-IgG promotes T-cell progenitor differentiation, since a higher percentage of progeny cultured with Delta1ext-IgG expressed CD25 (37.0+/−0.6%) compared to Jagged1ext-IgG (1.7+/−1.0%; p=0.01). In contrast, Jagged1ext-IgG is less effective at inhibiting myeloid differentiation, since a higher percentage of progeny cultured with Jagged1ext-IgG (2.1+/−0.9%) expressed GR1 and F4/80 compared to Delta1ext-IgG (56.5+/−6.3; p=0.02). Furthermore, Delta1ext-IgG is more effective than Jagged1ext-IgG at inducing Notch activation as measured by increased expression of Notch target Hes1, since we found 3.3-fold more expression of Hes1 mRNA following incubation of LSKSP cells with Delta1ext-IgG compared to Jagged1ext-IgG. We further show that Notch2 is required to prevent myeloid differentiation, since Notch2 deficient LSKSP incubated with either Delta1ext-IgG or Jagged1ext-IgG generated cultures containing fewer numbers of cells and a higher percentage of GR1+ and/or F480+ myeloid progeny (83% with Delta1ext-IgGor 86% with Jagged1ext-IgG) similarly to those generated with control-IgG. Likewise, we found a reduced percentage of immature Sca-1+c-kit+ cells (19.3+/−4.4 or 13.0+/−5.2) than wild-type cells incubating with Delta1ext-IgG or Jagged1ext-IgG (92.2+/−3.0 or 71.0+/−15.0: p=0.004 or p=0.05). We found that Notch1 is required to induce T-cell differentiation, since Notch1 deficient LSKSP incubated with Delta1ext-IgG had a reduced percentage of CD25+ cells compared to wild-type cells (4.4+/−1.9% to 30.3+/− 3.3) even though myeloid differentiation was inhibited. In summary, we show that both Delta1ext-IgG and Jagged1ext-IgG induce signaling via Notch2 to prevent myeloid differentiation, whereas only Delta1ext-IgG induces signaling via Notch1 to promote generation of T-cell progenitors. Our results indicate unique Notch ligands differentially activate Notch1 or Notch2, resulting in alternative cell fate choices and lay a framework for investigating the mechanisms underlying differential activation, including determining the role of Notch modifiers such as Fringe.


Sign in / Sign up

Export Citation Format

Share Document