scholarly journals Locally produced C5a binds to T cell–expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis

Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1759-1766 ◽  
Author(s):  
Peter N. Lalli ◽  
Michael G. Strainic ◽  
Min Yang ◽  
Feng Lin ◽  
M. Edward Medof ◽  
...  

Abstract Our recent studies have shown that immune cell–produced complement provides costimulatory and survival signals to naive CD4+ T cells. Whether these signals are similarly required during effector cell expansion and what molecular pathways link locally produced complement to T-cell survival were not clarified. To address this, we stimulated monoclonal and polyclonal T cells in vitro and in vivo with antigen-presenting cells (APCs) deficient in the complement regulatory protein, decay accelerating factor (DAF), and/or the complement component C3. We found that T-cell expansion induced by DAF-deficient APCs was augmented with diminished T-cell apoptosis, whereas T-cell expansion induced by C3−/− APCs was reduced because of enhanced T-cell apoptosis. These effects were traced to locally produced C5a, which through binding to T cell–expressed C5aR, enhanced expression of Bcl-2 and prevented Fas up-regulation. The results show that C5aR signal transduction in T cells is important to allow optimal T-cell expansion, as well as to maintain naive cell viability, and does so by suppressing programmed cell death.

2005 ◽  
Vol 201 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Rong Zeng ◽  
Rosanne Spolski ◽  
Steven E. Finkelstein ◽  
SangKon Oh ◽  
Panu E. Kovanen ◽  
...  

Interleukin (IL)-21 is the most recently recognized of the cytokines that share the common cytokine receptor γ chain (γc), which is mutated in humans with X-linked severe combined immunodeficiency. We now report that IL-21 synergistically acts with IL-15 to potently promote the proliferation of both memory (CD44high) and naive (CD44low) phenotype CD8+ T cells and augment interferon-γ production in vitro. IL-21 also cooperated, albeit more weakly, with IL-7, but not with IL-2. Correspondingly, the expansion and cytotoxicity of CD8+ T cells were impaired in IL-21R−/− mice. Moreover, in vivo administration of IL-21 in combination with IL-15 boosted antigen-specific CD8+ T cell numbers and resulted in a cooperative effect on tumor regression, with apparent cures of large, established B16 melanomas. Thus, our studies reveal that IL-21 potently regulates CD8+ T cell expansion and effector function, primarily in a synergistic context with IL-15.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sai Zhang ◽  
Zhenglu Wang ◽  
Shunli Fan ◽  
Tao Liu ◽  
Sei Yoshida ◽  
...  

Capecitabine (CAP) is now widely used in the comprehensive treatment of digestive system tumors. Some clinical observations have shown that CAP may have immunosuppressive effects, but there is still a lack of clear experimental verification. In this study, different doses of CAP were administered to normal mice by gavage. Our results confirmed that CAP did not cause myelosuppression in bone marrow tissue; CAP selectively reduced the proportion of T cells and the concentration of related pro-inflammatory cytokines, while it increased the concentration of anti-inflammatory cytokines. Thymidylate phosphorylase (TP) is the key enzyme for the transformation of CAP in vivo; this study confirmed that T cells express TP, but the bone marrow tissue lacks TP expression, which explains the selectivity in pharmacodynamic effects of CAP. In addition, it was confirmed that CAP can induce T cell apoptosis in vivo and in vitro. In vitro experiments showed that CAP-induced T cell apoptosis was related to TP expression, endoplasmic reticulum stress (ERS) induction, reactive oxygen species (ROS) production, and mitochondria-mediated apoptosis activation. Therefore, this study confirmed that the differential expression of TP in cells and tissues explains why CAP avoids the toxic effects of myelosuppression while inducing T cell apoptosis to exert the immunosuppressive effect. Therefore, CAP may become an immunosuppressive agent with a simultaneous anti-cancer effect, which is worthy of further studies.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Lisa Thiele née Schrewe ◽  
Kirsten Guse ◽  
Silvia Tietz ◽  
Jana Remlinger ◽  
Seray Demir ◽  
...  

Abstract Background The multi-drug resistance transporter ABCG2, a member of the ATP-binding cassette (ABC) transporter family, mediates the efflux of different immunotherapeutics used in multiple sclerosis (MS), e.g., teriflunomide (teri), cladribine, and mitoxantrone, across cell membranes and organelles. Hence, the modulation of ABCG2 activity could have potential therapeutic implications in MS. In this study, we aimed at investigating the functional impact of abcg2 modulation on teri-induced effects in vitro and in vivo. Methods T cells from C57BL/6 J wild-type (wt) and abcg2-knockout (KO) mice were treated with teri at different concentrations with/without specific abcg2-inhibitors (Ko143; Fumitremorgin C) and analyzed for intracellular teri concentration (HPLC; LS-MS/MS), T cell apoptosis (annexin V/PI), and proliferation (CSFE). Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6J by active immunization with MOG35–55/CFA. Teri (10 mg/kg body weight) was given orally once daily after individual disease onset. abcg2-mRNA expression (spinal cord, splenic T cells) was analyzed using qRT-PCR. Results In vitro, intracellular teri concentration in T cells was 2.5-fold higher in abcg2-KO mice than in wt mice. Teri-induced inhibition of T cell proliferation was two fold increased in abcg2-KO cells compared to wt cells. T cell apoptosis demonstrated analogous results with 3.1-fold increased apoptosis after pharmacological abcg2-inhibition in wt cells. abcg2-mRNA was differentially regulated during different phases of EAE within the central nervous system and peripheral organs. In vivo, at a dosage not efficacious in wt animals, teri treatment ameliorated clinical EAE in abcg2-KO mice which was accompanied by higher spinal cord tissue concentrations of teri. Conclusion Functional relevance of abcg2 modulation on teri effects in vitro and in vivo warrants further investigation as a potential determinant of interindividual treatment response in MS, with potential implications for other immunotherapies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A812-A812
Author(s):  
Pia Aehnlich ◽  
Per Thor Straten ◽  
Ana Micaela Carnaz Simoes ◽  
Signe Skadborg ◽  
Gitte Olofsson

BackgroundAdoptive cell therapy (ACT) is an approved treatment option for certain hematological cancers and has also shown success for some solid cancers. Still, benefit and eligibility do not extend to all patients. ACT with Vγ9Vδ2 T cells is a promising approach to overcome this hurdle.MethodsIn this study, we explored the effect of different cytokine conditions on the expansion of Vγ9Vδ2 T cells in vitro.ResultsWe could show that Vγ9Vδ2 T cell expansion is feasible with two different cytokine conditions: (a) 1000U/ml interleukin (IL)-2 and (b) 100U/ml IL-2+100U/ml IL-15. We did not observe differences in expansion rate or Vγ9Vδ2 T cell purity between the conditions; however, IL-2/IL-15-expanded Vγ9Vδ2 T cells displayed enhanced cytotoxicity against tumor cells, also in hypoxia. While this increase in killing capacity was not reflected in phenotype, we demonstrated that IL-2/IL-15-expanded Vγ9Vδ2 T cells harbor increased amounts of perforin, granzyme B and granulysin in a resting state and release more upon activation. IL-2/IL-15-expanded Vγ9Vδ2 T cells also showed higher levels of transcription factor T-bet, which could indicate that T-bet and cytotoxic molecule levels confer the increased cytotoxicity.ConclusionsThese results advocate the inclusion of IL-15 into ex vivo Vγ9Vδ2 T cell expansion protocols in future clinical studies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2870-2870 ◽  
Author(s):  
Pengcheng He ◽  
Hong Liu ◽  
Haibo Liu ◽  
Mina Luo ◽  
Hui Feng ◽  
...  

Background : CD19-targeted CAR-T therapies have shown promising efficacy in treating B-cell malignancies. However, treatment-related toxicities, such as cytokine-release syndrome (CRS) and CAR T-cell-related encephalopathy syndrome (CRES), have been one of the major obstacles limiting the use of CAR-T therapies. How to minimize occurrence and severity of toxicity while maintaining efficacy is a major focus for T-cell therapies in development. ET019003 is a next generation CD19-targeted T-cell therapy developed by Eureka Therapeutics, built on the proprietary ARTEMISTM T-cell platform. The ET019003 construct is optimized with the co-expression of an ET190L1 Antibody-TCR (Xu et al, 2018) and novel co-stimulation molecule. We are conducting a First-in-human (FIH) study of ET019003 T cells in CD19+ r/r DLBCL patients. Methods: This FIH study aims to evaluate the safety and efficacy of ET019003 T-cell therapy in CD19+ patients with r/r DLBCL. As of July 2019, six subjects were administered ET019003 T cells. These subjects were pathologically confirmed with DLBCL that is CD19+ (by immunohistochemistry), whose disease have progressed or relapsed after 2-5 lines of prior therapies. All were high-risk patients with rapid tumor progression and heavy tumor burden. Each subject had a Ki67 proliferative index over 60%, 2/6 of the subjects had a Ki67 proliferative index over 90%. Moreover, 5/6 of the subjects had extra-nodal involvement. Following a 3-day preconditioning treatment with Fludarabine (25mg/m2/day)/ Cyclophosphamide (250mg/m2/day), patients received i.v. infusions of ET019003 T cells at an initial dose of 2-3×106 cells/kg. Additional doses at 3×106 cells/kg were administered at 14 to 30-day intervals. Adverse events were monitored and assessed based on CTCAE 5.0. Clinical responses were assessed based on Lugano 2014 criteria. Results: As of July 2019, six subjects have received at least one ET019003 T-cell infusion, and four subjects have received two or more ET019003 T-cell infusions. No Grade 2 or higher CRS was observed in the six subjects. One subject developed convulsions and cognitive disturbance. This subject had lymphoma invasion in the central nervous system before ET019003 T-cell therapy. The subject was treated with glucocorticoid and the symptoms resolved within 24 hours. Other adverse events included fever (6/6, 100%), fatigue (3/6, 50%), thrombocytopenia (3/6, 50%), diarrhea (2/6, 33%), and herpes zoster (1/6, 17%). ET019003 T-cell expansion in vivo (monitored by flow cytometry and qPCR) was observed in all six subjects after first infusion. The absolute peak value of detected ET019003 T cells ranged between 26,000 - 348,240 (median 235,500) per ml of peripheral blood. Tmax (time to reach the absolute peak value) was 6 - 14 days (median 7.5 days). For the four subjects who received multiple ET019003 T-cell infusions, the absolute peak values of detected ET019003 T cells after the second infusion were significantly lower than the absolute peak values achieved after the first infusion. For the two subjects who received three or more infusions of ET019003 T cells, no significant ET019003 T-cell expansion in vivo was observed after the third infusion. All six subjects completed the evaluation of clinical responses at 1 month after ET019003 T-cell therapy. All subjects responded to ET019003 T cells and achieved either a partial remission (PR) or complete response (CR). Conclusions: Preliminary results from six CD19+ r/r DLBCL patients in a FIH study show that ET019003 T-cell therapy is safe with robust in vivo T-cell expansion. The clinical study is on-going and we are monitoring safety as well as duration of response in longer follow-up. Reference: Xu et al. Nature Cell Discovery, 2018 Disclosures Liu: Eureka Therapeutics: Employment, Equity Ownership. Chang:Eureka Therapeutics: Equity Ownership. Liu:Eureka Therapeutics: Employment, Equity Ownership.


AIDS ◽  
2002 ◽  
Vol 16 (3) ◽  
pp. 329-339 ◽  
Author(s):  
Luzia Maria de Oliveira Pinto ◽  
Hervé Lecoeur ◽  
Eric Ledru ◽  
Christophe Rapp ◽  
Olivier Patey ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2974-2974
Author(s):  
Xiaofan Li ◽  
Wei He ◽  
Ruishu Deng ◽  
Can Liu ◽  
Miao Wang ◽  
...  

Abstract Abstract 2974 Alloreactive donor CD8+ T cells facilitate engraftment and mediate graft versus leukemia (GVL) effects but also cause graft versus host disease (GVHD) in murine and human recipients after allogeneic hematopoietic cell transplantation (HCT). B7-H1 (PD-L1) expression by antigen-presenting cells has an important role in tolerizing activated T cells by binding to PD-1. We and others previously reported that disruption of binding between B7-H1 and PD-1 augments acute GVHD. Parenchymal cells do not usually express B7-H1 but can be induced by inflammatory cytokines (i.e. IFN-g) to express B7-H1. The role of B7-H1 expression by parenchymal tissue cells in regulating the expansion and persistence of donor CD8+ cells in tissues of mice with GVHD has not yet been evaluated. In the current studies, we evaluated the role of B7-H1 expression by GVHD target tissues in regulating donor CD8+ T cell function in 3 different experimental GVHD systems, using in vivo bioluminescent imaging (BLI), in vivo BrdU-labeling, and in vitro proliferation assays. The first system evaluated the role of B7-H1 expression in TBI-conditioned recipients. In these recipients, injected donor CD8+ T cells showed two waves of expansion that correlated with two phases of clinical GVHD. The first wave of donor CD8+ T cell expansion was associated with upregulated expression of B7-H1 in GVHD target tissues and only weak clinical GVHD. The second wave of donor CD8+ T cell expansion was associated with loss of B7-H1 expression, vigorous donor CD8+ T proliferation and expansion in the GVHD target tissues, and lethal GVHD. In a gain-of-function experiment, B7-H1 expression was induced in hepatocytes by hydrodynamic injection of B7-H1 cDNA during the second wave of T cell expansion in mice with GVHD; this subsequently decreased T cell expansion in the liver and ameliorated GVHD. The second system evaluated the role of B7-H1 expression in anti-CD3-conditioned recipients. In wild-type recipients, injected donor CD8+ T cells had only a single wave of expansion, and the mice had no signs of GVHD. B7-H1 expression by tissue cells (i.e. hepatocytes) was up-regulated, and the tissue infiltrating donor CD8+ T cells were anergic. In B7-H1−/− recipients, injected donor CD8+ T cells proliferated vigorously in GVHD target tissues and caused lethal GVHD.The third system evaluated the role of B7-H1 in unconditioned Rag-2−/− recipients after administration of blocking anti-B7-H1 and in the B7-H1−/−Rag-2−/− chimeras with B7-H1 sufficient Rag-2−/− bone marrow cells, in which B7-H1 deficiency was only in tissue parenchymal cells. Both blockade of B7-H1 and B7-H1 deficiency in parenchymal cells resulted in vigorous donor CD8+ T proliferation in GVHD target tissues and caused lethal GVHD. Taken together, these results show that expression of B7-H1 in GVHD target tissue parenchymal cells plays an important role in regulating the proliferation of infiltrating donor CD8+ T cells and preventing the persistence of GVHD. Our studies also indicate that TBI but not anti-CD3 conditioning can lead to loss of GVHD target tissue cell expression of B7-H1 and persistence of GVHD. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 206 (7) ◽  
pp. 1515-1523 ◽  
Author(s):  
Divya Purushothaman ◽  
Apurva Sarin

Cellular dependence on growth factors for survival is developmentally programmed and continues in adult metazoans. Antigen-activated T cell apoptosis in the waning phase of the immune response is thought to be triggered by depletion of cytokines from the microenvironment. T cell apoptosis resulting from cytokine deprivation is mediated by reactive oxygen species (ROS), but their source and position in the apoptotic cascade is poorly understood. RNA interference approaches implicated the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in neglect-induced apoptosis in T cells. Using mice deficient for the catalytic subunit gp91phox to characterize the molecular link to activated T cell apoptosis, we show that gp91phox-deficient T (T−/−) cells generated mitochondrial superoxide but had diminished hydrogen peroxide production in response to neglect, which, in turn, regulated Jun N-terminal kinase–dependent Bax activation and apoptosis. Activated T−/− cells were distinguished by improved survival after activation by superantigens in vivo, adoptive transfers into congenic hosts, and higher recall responses after immunization. Thus, the NADPH oxidase may regulate adaptive immunity in addition to its previously well-characterized role in the innate response.


2004 ◽  
Vol 78 (10) ◽  
pp. 5184-5193 ◽  
Author(s):  
Diana M. Brainard ◽  
William G. Tharp ◽  
Elva Granado ◽  
Nicholas Miller ◽  
Alicja K. Trocha ◽  
...  

ABSTRACT Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.


Sign in / Sign up

Export Citation Format

Share Document