scholarly journals HES1 is a novel interactor of the Fanconi anemia core complex

Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 2062-2070 ◽  
Author(s):  
Cédric S. Tremblay ◽  
Feng F. Huang ◽  
Ouassila Habi ◽  
Caroline C. Huard ◽  
Chantal Godin ◽  
...  

Abstract Fanconi anemia (FA) proteins are thought to play a role in chromosome stability and repair of DNA cross-links; however, these functions may not fully explain the developmental abnormalities and bone marrow failure that are characteristic of FA individuals. Here we associate the FA proteins with the Notch1 developmental pathway through a direct protein-protein interaction between the FA core complex and the hairy enhancer of split 1 (HES1). HES1 interaction with FA core complex members is dependent on a functional FA pathway. Cells depleted of HES1 exhibit an FA-like phenotype that includes cellular hypersensitivity to mitomycin C (MMC) and lack of FANCD2 monoubiquitination and foci formation. HES1 is also required for proper nuclear localization or stability of some members of the core complex. Our results suggest that HES1 is a novel interacting protein of the FA core complex.

Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 5215-5222 ◽  
Author(s):  
Jung Min Kim ◽  
Younghoon Kee ◽  
Allan Gurtan ◽  
Alan D. D'Andrea

Abstract Fanconi anemia (FA) is a genetic disease characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. A total of 13 FA proteins are involved in regulating genome surveillance and chromosomal stability. The FA core complex, consisting of 8 FA proteins (A/B/C/E/F/G/L/M), is essential for the monoubiquitination of FANCD2 and FANCI. FANCM is a human ortholog of the archaeal DNA repair protein Hef, and it contains a DEAH helicase and a nuclease domain. Here, we examined the effect of FANCM expression on the integrity and localization of the FA core complex. FANCM was exclusively localized to chromatin fractions and underwent cell cycle–dependent phosphorylation and dephosphorylation. FANCM-depleted HeLa cells had an intact FA core complex but were defective in chromatin localization of the complex. Moreover, depletion of the FANCM binding partner, FAAP24, disrupted the chromatin association of FANCM and destabilized FANCM, leading to defective recruitment of the FA core complex to chromatin. Our results suggest that FANCM is an anchor required for recruitment of the FA core complex to chromatin, and that the FANCM/FAAP24 interaction is essential for this chromatin-loading activity. Dysregulated loading of the FA core complex accounts, at least in part, for the characteristic cellular and developmental abnormalities in FA.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2684 ◽  
Author(s):  
Giacomo Milletti ◽  
Luisa Strocchio ◽  
Daria Pagliara ◽  
Katia Girardi ◽  
Roberto Carta ◽  
...  

Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder characterized by the variable presence of congenital somatic abnormalities, bone marrow failure (BMF), and a predisposition to develop cancer. Monoallelic germline mutations in at least five genes involved in the FA pathway are associated with the development of sporadic hematological and solid malignancies. The key function of the FA pathway is to orchestrate proteins involved in the repair of interstrand cross-links (ICLs), to prevent genomic instability and replication stress. Recently, many studies have highlighted the importance of FA genes in noncanonical pathways, such as mitochondria homeostasis, inflammation, and virophagy, which act, in some cases, independently of DNA repair processes. Thus, primary defects in DNA repair mechanisms of FA patients are typically exacerbated by an impairment of other cytoprotective pathways that contribute to the multifaceted clinical phenotype of this disease. In this review, we summarize recent advances in the understanding of the pathogenesis of FA, with a focus on the cytosolic noncanonical roles of FA genes, discussing how they may contribute to cancer development, thus suggesting opportunities to envisage novel therapeutic approaches.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 723-723
Author(s):  
Alexandra Sobeck ◽  
Stacie Stone ◽  
Bendert deGraaf ◽  
Vincenzo Costanzo ◽  
Johan deWinter ◽  
...  

Abstract Fanconi anemia (FA) is a genetic disorder characterized by hypersensitivity to DNA crosslinking agents and diverse clinical symptoms, including developmental anomalies, progressive bone marrow failure, and predisposition to leukemias and other cancers. FA is genetically heterogeneous, resulting from mutations in any of at least eleven different genes. The FA proteins function together in a pathway composed of a mulitprotein core complex that is required to trigger the DNA-damage dependent activation of the downstream FA protein, FANCD2. This activation is thought to be the key step in a DNA damage response that functionally links FA proteins to major breast cancer susceptibility proteins BRCA1 and BRCA2 (BRCA2 is FA gene FANCD1). The essential function of the FA proteins is unknown, but current models suggest that FA proteins function at the interface between cell cycle checkpoints, DNA repair and DNA replication, and are likely to play roles in the DNA damage response during S phase. To provide a platform for dissecting the key functional events during S-phase, we developed cell-free assays for FA proteins based on replicating extracts from Xenopus eggs. We identified the Xenopus homologs of human FANCD2 (xFANCD2) and several of the FA core complex proteins (xCCPs), and biochemically characterized these proteins in replicating cell-free extracts. We found that xCCPs and a modified isoform of xFANCD2 become associated with chromatin during normal and disrupted DNA replication. Blocking initiation of replication with geminin demonstrated that association of xCCPs and xFANCD2 with chromatin occurs in a strictly replication-dependent manner that is enhanced following DNA damage by crosslinking agents or by addition of aphidicolin, an inhibitor of replicative DNA polymerases. In addition, chromatin binding of xFANCD2, but not xBRCA2, is abrogated when xFANCA is quantitatively depleted from replicating extracts suggesting that xFANCA promotes the loading of xFANCD2 on chromatin. The chromatin-association of xFANCD2 and xCCPs is diminished in the presence of caffeine, an inhibitor of checkpoint kinases. Taken together, our data suggest a model in which the ordered loading of FA proteins on chromatin is required for processing a subset of DNA replication-blocking lesions that are resolved during late stages of replication.


2009 ◽  
Vol 284 (20) ◽  
pp. 13384-13395 ◽  
Author(s):  
Cédric S. Tremblay ◽  
Caroline C. Huard ◽  
Feng-Fei Huang ◽  
Ouassila Habi ◽  
Valérie Bourdages ◽  
...  

2020 ◽  
Vol 64 (5) ◽  
pp. 807-817 ◽  
Author(s):  
Landing Li ◽  
Winnie Tan ◽  
Andrew J. Deans

Abstract The Fanconi anemia (FA) pathway coordinates a faithful repair mechanism for DNA damage that blocks DNA replication, such as interstrand cross-links. A key step in the FA pathway is the conjugation of ubiquitin on to FANCD2 and FANCI, which is facilitated by a large E3 ubiquitin ligase complex called the FA core complex. Mutations in FANCD2, FANCI or FA core complex components cause the FA bone marrow failure syndrome. Despite the importance of these proteins to DNA repair and human disease, our molecular understanding of the FA pathway has been limited due to a deficit in structural studies. With the recent development in cryo-electron microscopy (EM), significant advances have been made in structural characterization of these proteins in the last 6 months. These structures, combined with new biochemical studies, now provide a more detailed understanding of how FANCD2 and FANCI are monoubiquitinated and how DNA repair may occur. In this review, we summarize these recent advances in the structural and molecular understanding of these key components in the FA pathway, compare the activation steps of FANCD2 and FANCI monoubiquitination and suggest molecular steps that are likely to be involved in regulating its activity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anne Helbling-Leclerc ◽  
Françoise Dessarps-Freichey ◽  
Caroline Evrard ◽  
Filippo Rosselli

AbstractFanconi Anemia (FA), due to the loss-of-function of the proteins that constitute the FANC pathway involved in DNA replication and genetic stability maintainance, is a rare genetic disease featuring bone marrow failure, developmental abnormalities and cancer predisposition. Similar clinical stigmas have also been associated with alterations in the senescence program, which is activated in physiological or stress situations, including the unscheduled, chronic, activation of an oncogene (oncogene induced senescence, OIS). Here, we wanted to determine the crosstalk, if any, between the FANC pathway and the OIS process. OIS was analyzed in two known cellular models, IMR90-hTERT/ER:RASG12V and WI38-hTERT/ER:GFP:RAF1, harboring 4-hydroxytamoxifen-inducible oncogenes. We observed that oncogene activation induces a transitory increase of both FANCA and FANCD2 as well as FANCD2 monoubiquitination, readout of FANC pathway activation, followed by their degradation. FANCD2 depletion, which leads to a pre-senescent phenotype, anticipates OIS progression. Coherently, FANCD2 overexpression or inhibition of its proteosomal-dependent degradation slightly delays OIS progression. The pro-senescence protease cathepsin L, which activation is anticipated during OIS in FANCD2-depleted cells, also participates to FANCD2 degradation. Our results demonstrate that oncogene activation is first associated with FANCD2 induction and activation, which may support initial cell proliferation, followed by its degradation/downregulation when OIS proceeds.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3372-3372
Author(s):  
Kenneth H. Shain ◽  
Liang Nong ◽  
Danielle Yarde ◽  
Vasco Oliveira ◽  
William S. Dalton

Abstract Abstract 3372 Enhanced expression of the Fanconi Anemia (FA)/BRCA DNA repair pathway correlates with melphalan-resistance in multiple myeloma (MM) cell lines. Continued investigation demonstrated a bortezomib sensitive RelB/p50-mediated regulation of the FA/BRCA pathway contributed to the observed melphalan resistance.(Yarde et al 2009) The FA/BRCA pathway represents a co-dependent DNA damage response pathway involving thirteen loss of function complementation groups cloned from FA patients. The key functional event of this pathway is the interdependent mono-ubiquitination (Ub) of FANCD2 and FANCI (ID complex) by the E3 Ub-ligase activity of the FA core complex a multimer consisting of 8 FA (FANCA, B, C, E, F, G, L and M) and three non-FA proteins (FAAP100, FAAP24 and HES1). Formation of the core complex and mono-Ub of the ID complex appears to revolve around the flexible adapter protein FANCF. Nuclear localization of the core complex components requires binding of FANCA/G and FANCC/E subcomplexes to the C- terminal domain (CTD) and NTD domains of FANCF, respectively. This complex associates with FANCM:FAAP24 at sites of interstand crosslinks (ICL) via the FANCM-binding domain of FANCF, culminating in ID complex mono-Ub, recruitment of BRCA1, BRCA2/FANCD1, FANCJ and FANCN, and homologous recombination (HR) repair. Reduced function of this pathway has been associated with increased genomic instability, cancer susceptibility, and increased sensitivity to DNA cross-linking agents in FA. However, as predicted by the role of the FA/BRCA pathway in DNA repair, enhanced expression of the FA/BRCA pathway has been shown to play an important role in resistance to agents requiring HR for ICL repair. We next examined expression of this pathway in models of resistance to DNA damaging agents not predicted to utilize FA/BRCA activity. We screened 8226/Dox40 doxorubicin resistant and 8226/MR20 mitoxantrone resistant MM cell lines for expression of the 12 FA/BRCA pathway members with quantitative PCR (qPCR) using customized micro-fluidic cards. Interestingly, in these models of topoisomerase (topo) II inhibitor resistance qPCR demonstrated a 2.6 (p<0.05) and 1.7 (p<0.05) fold over expression of FANCF mRNA relative to drug sensitive RPMI8226 cells. Importantly, mRNA expression of other the eleven FA/BRCA pathway constituents was not increased relative to sensitive cells. To further characterize the relationship between FANCF and doxorubicin resistance, we examined mRNA and protein expression of FANCF in RMPI8226, 8226/Dox6 and 8226/Dox40 MM cell lines (representing progressive levels of doxorubicin resistance). FANCF qPCR demonstrated a 2 and 4.7 fold increased in mRNA expression in the 8226/Dox6 and 8226/Dox40 cell lines, respectively (p= 0.103 and p= 0.034) suggesting that increasing expression of FANCF correlated with increasing dox resistance. A similar doxorubicin resistance- dependent increase in FANCF protein was demonstrated by Western blot analysis of these cell lines. Consistent with mRNA results, FANCD2 or FANCG protein levels remained unchanged in the doxorubicin resistant versus sensitive cell lines These observations suggest that FANCF may contribute to topoII inhibitor-mediated DNA double strand break repair, a process that primarily thought to involve non-homologous end joining (NHEJ) independent of the FA/BRCA pathway. To determine if FANCF expression alone could facilitate doxorubicin resistance, pQCXIP-control or pQCXIP-FANCF constructs were expressed in RPMI8226 sensitive MM cells. MTT assays demonstrated a greater than 2 fold resistance to doxorubicin in FANCF over expressing cells at 48 and 96 hours (IC50: 1.33 ×10−6 and 5.3×10−9M) as compared to control cells (3.26×10−6 and 1.13×10−8M). Taken together, these results indicate that the flexible adaptor protein FANCF may participate in doxorubicin resistance independently of other FA/BRCA members. However, future studies will be needed to elucidate the nature of FANCF in doxorubicin resistance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (6) ◽  
pp. 2072-2080 ◽  
Author(s):  
Annette L. Medhurst ◽  
El Houari Laghmani ◽  
Jurgen Steltenpool ◽  
Miriam Ferrer ◽  
Chantal Fontaine ◽  
...  

AbstractFanconi anemia (FA) is a genomic instability disorder, clinically characterized by congenital abnormalities, progressive bone marrow failure, and predisposition to malignancy. Cells derived from patients with FA display a marked sensitivity to DNA cross-linking agents, such as mitomycin C (MMC). This observation has led to the hypothesis that the proteins defective in FA are involved in the sensing or repair of interstrand cross-link lesions of the DNA. A nuclear complex consisting of a majority of the FA proteins plays a crucial role in this process and is required for the monoubiquitination of a downstream target, FANCD2. Two new FA genes, FANCB and FANCL, have recently been identified, and their discovery has allowed a more detailed study into the molecular architecture of the FA pathway. We demonstrate a direct interaction between FANCB and FANCL and that a complex of these proteins binds FANCA. The interaction between FANCA and FANCL is dependent on FANCB, FANCG, and FANCM, but independent of FANCC, FANCE, and FANCF. These findings provide a framework for the protein interactions that occur “upstream” in the FA pathway and suggest that besides the FA core complex different subcomplexes exist that may have specific functions other than the monoubiquitination of FANCD2.


Blood ◽  
2011 ◽  
Vol 117 (19) ◽  
pp. 5078-5087 ◽  
Author(s):  
Stacy A. Williams ◽  
Simonne Longerich ◽  
Patrick Sung ◽  
Cyrus Vaziri ◽  
Gary M. Kupfer

Abstract Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and an increased risk for cancer and leukemia. Components of the FA-BRCA pathway are thought to function in the repair of DNA interstrand cross-links. Central to this pathway is the monoubiquitylation and chromatin localization of 2 FA proteins, FA complementation group D2 (FANCD2) and FANCI. In the present study, we show that RAD18 binds FANCD2 and is required for efficient monoubiquitylation and chromatin localization of both FANCD2 and FANCI. Human RAD18-knockout cells display increased sensitivity to mitomycin C and a delay in FANCD2 foci formation compared with their wild-type counterparts. In addition, RAD18-knockout cells display a unique lack of FANCD2 and FANCI localization to chromatin in exponentially growing cells. FANCD2 ubiquitylation is normal in cells containing a ubiquitylation-resistant form of proliferating cell nuclear antigen, and chromatin loading of FA core complex proteins appears normal in RAD18-knockout cells. Mutation of the RING domain of RAD18 ablates the interaction with and chromatin loading of FANCD2. These data suggest a key role for the E3 ligase activity of RAD18 in the recruitment of FANCD2 and FANCI to chromatin and the events leading to their ubiquitylation during S phase.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2835-2835
Author(s):  
Tsukasa Oda ◽  
Hidenobu Miyaso ◽  
Takayuki Yamashita

Abstract Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, cancer susceptibility and cellular hypersensitivity to DNA crosslinkers such as mitomycin C (MMC). Current evidence indicates that formation of a nuclear multiprotein complex (core complex) including six FA proteins FANCA/C/E/F/G/L is essential for FANCL/PHF9 ubiquitin ligase-mediated activation of FANCD2 into a monoubiquinated form, which participates in BRCA1 and FANCD1/BRCA2-mediated DNA repair (the FA/BRCA pathway). Subcellular distribution of FANCA plays a crucial role in the regulation of the FA/BRCA pathway. However, the underlying molecular mechanisms are not fully understood. To address this issue, we tried to identify FANCA-associated proteins. To this end, Flag-FANCA ectopically expressed in HeLa cells was immunopurified from the cytoplasmic fraction, using anti-Flag antibody-conjugated sepharose beads. Analysis of the immune complex on SDS polyacrylamide gel electrophoresis revealed that several proteins of Mr. 60–70 kD specifically associated with Flag-FANCA. These proteins were identified as FANCG and Hsc (heat shock cognate protein) 70 by LC-MS/MS. Immunoblot analysis showed that FANCA associated with Hsp90 as well as Hsc70. Hsc70 is an ATP-dependent molecular chaperone highly homologous to Hsp70 and often cooperates with Hsp90 to form a chaperone machinery involved in the regulation of diverse protein functions. Patient-derived FANCA mutants failed to bind FANCC but associated with larger amounts of Hsc70 than wt-FANCA, indicating that the interaction between FANCA and Hsc70 is not mediated by FANCC, as suggested by previous observations of the interaction of FANCC with Hsp70. To study the role of Hsc70 and Hsp90 in the regulation of FANCA, we examined effects of a dominant-negative (dn) form of Hsc70 with inactivated ATPase activity, and a specific inhibitor of Hsp90, 17-AAG (a geldanamycin analog). Overexpression of dn-Hsc70 inhibited nuclear localization of FANCA and inhibited its core complex formation, whereas wt-Hsc70 did not. 17-AAG induced cytoplasmic distribution and proteosomal degradation of FANCA and suppressed FANCD2 mono-ubiquitination. Taken together, these results suggest that Hsc70/Hsp90 chaperone machinery interacts with FANCA and regulates its subcellular distribution and stability, thereby controlling activation of the FA/BRCA pathway.


Sign in / Sign up

Export Citation Format

Share Document