scholarly journals MT1-MMP controls human mesenchymal stem cell trafficking and differentiation

Blood ◽  
2010 ◽  
Vol 115 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Changlian Lu ◽  
Xiao-Yan Li ◽  
Yuexian Hu ◽  
R. Grant Rowe ◽  
Stephen J. Weiss

Abstract Human mesenchymal stem cells (hMSCs) localized to bone marrow, nonhematopoietic organs, as well as perivascular niches are postulated to traffic through type I collagen-rich stromal tissues to first infiltrate sites of tissue damage, inflammation, or neoplasia and then differentiate. Nevertheless, the molecular mechanisms supporting the ability of hMSCs to remodel 3-dimensional (3D) collagenous barriers during trafficking or differentiation remain undefined. Herein, we demonstrate that hMSCs degrade and penetrate type I collagen networks in tandem with the expression of a 5-member set of collagenolytic matrix metalloproteinases (MMPs). Specific silencing of each of these proteases reveals that only a single membrane-tethered metalloenzyme, termed MT1-MMP, plays a required role in hMSC-mediated collagenolysis, 3D invasion, and intravasation. Further, once confined within type I collagen-rich tissue, MT1-MMP also controls hMSC differentiation in a 3D-specific fashion. Together, these data demonstrate that hMSC invasion and differentiation programs fall under the control of the pericellular collagenase, MT1-MMP.

2010 ◽  
Vol 9999A ◽  
pp. NA-NA ◽  
Author(s):  
Kuo-Shu Tsai ◽  
Shou-Yen Kao ◽  
Chien-Yuan Wang ◽  
Yng-Jiin Wang ◽  
Jung-Pan Wang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hongliang He ◽  
Xiaozhen Liu ◽  
Liang Peng ◽  
Zhiliang Gao ◽  
Yun Ye ◽  
...  

Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimickedin vivoliver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.


2021 ◽  
Vol 11 (8) ◽  
pp. 1630-1635
Author(s):  
Bin Wu ◽  
Fenghua Bai ◽  
Jianping Lin ◽  
Guangji Wang ◽  
Wentao Cai ◽  
...  

Aging affects bone marrow mesenchymal stem cells (BMSC) differentiation. PTEN12 regulates cell proliferation and apoptosis. However, whether PTEN12 affects BMSCs osteogenic differentiation during aging is unknown. Two BMSCs derived from Zempster24−/− (senescence) and Zempster24+/+ (normal) mice were cultured in vitro. Real-time PCR analysis was used to analyze PTEN12 expression. PTEN12 siRNA was transfected into senescent Zempster24-/-BMSCs and after 14 days of osteogenic induction, cell proliferation was analyzed by MTT method along with measuring expression of osteocalcin, type I collagen, RUNX2 and OPN by Real time PCR, ALP activity, and TGFβ/smad signaling protein expression by Western blot. Compared to normal BMSCs, PTEN12 level in aging BMSCs was significantly elevated, osteocalcin, type I collagen, RUNX2 and OPN mRNA level was decreased along with reduced ALP activity and TGFβ1 and Smad2 expression (P < 0.05). PTEN12 siRNA transfection into senescent BMSCs significantly down-regulated PTEN12, upregulated osteocalcin, type I collagen, RUNX2 and OPN mRNA, increased ALP activity and TGFβ1 and Smad2 expression (P <0.05). Aging increases PTEN12 level and inhibits BMSCs osteogenic differentiation. Down-regulation of PTEN12 in BMSCs during aging can promote BMSCs osteogenic differentiation by regulating TGFβ/smad signaling pathway.


Blood ◽  
2003 ◽  
Vol 102 (8) ◽  
pp. 2798-2802 ◽  
Author(s):  
Anthony D. Whetton ◽  
Yuning Lu ◽  
Andrew Pierce ◽  
Louise Carney ◽  
Elaine Spooncer

Abstract Hematopoiesis is sustained by the proliferation and development of an extremely low number of hematopoietic stem cells resident in the bone marrow. These stem cells can migrate from their bone marrow microenvironment and can be found at low levels in the peripheral blood. The factors that regulate egress or ingress of the stem cells from the marrow include cytokines and chemokines. This process of stem cell trafficking is fundamental to both stem cell biology and stem cell transplantation. We show that primitive hematopoietic cells with cobblestone area–forming cell activity express receptors for and display enhanced motility in response to a new class of stem cell agonists, namely lysophospholipids. These agents synergistically promote chemokinestimulated cell chemotaxis, a process that is crucial in stem cell homing. The response to lysophospholipids is mediated by Rac, Rho, and Cdc42 G proteins and the hematopoietic-specific guanyl nucleotide exchange factor Vav 1. Inhibitor studies also show a critical role for phosphatidylinositol 3 kinase (PI3K). Lipid mediators, therefore, regulate the critical process of primitive hematopoietic cell motility via a PI3K- and Vav-dependent mechanism and may govern stem cell movement in vivo. These results are of relevance to understanding stem cell trafficking during bone marrow transplantation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qi Xing ◽  
Mojtaba Parvizi ◽  
Manuela Lopera Higuita ◽  
Leigh G. Griffiths

AbstractNative bovine pericardium (BP) exhibits anisotropy of its surface ECM niches, with the serous surface (i.e., parietal pericardium) containing basement membrane components (e.g., Laminin, Col IV) and the fibrous surface (i.e., mediastinal side) being composed primarily of type I collagen (Col I). Native BP surface ECM niche anisotropy is preserved in antigen removed BP (AR-BP) extracellular matrix (ECM) scaffolds. By exploiting sideness (serous or fibrous surface) of AR-BP scaffolds, this study aims to determine the mechanism by which ECM niche influences human mesenchymal stem cells (hMSCs) migration. Human mesenchymal stem cells (hMSC) seeding on serous surface promoted more rapid cell migration than fibrous surface seeding. Gene analysis revealed that expression of integrin α3 and α11 were increased in cells cultured on serous surface compared to those on the fibrous side. Monoclonal antibody blockade of α3β1 (i.e., laminin binding) inhibited early (i.e. ≤ 6 h) hMSC migration following serous seeding, while having no effect on migration of cells on the fibrous side. Blockade of α3β1 resulted in decreased expression of integrin α3 by cells on serous surface. Monoclonal antibody blockade of α11β1 (i.e., Col IV binding) inhibited serous side migration at later time points (i.e., 6–24 h). These results confirmed the role of integrin α3β1 binding to laminin in mediating early rapid hMSCs migration and α11β1 binding to Col IV in mediating later hMSCs migration on the serous side of AR-BP, which has critical implications for rate of cellular monolayer formation and use of AR-BP as blood contacting material for clinical applications.


2021 ◽  
Vol 22 (24) ◽  
pp. 13594
Author(s):  
Luis Oliveros Anerillas ◽  
Paul J. Kingham ◽  
Mikko J. Lammi ◽  
Mikael Wiberg ◽  
Peyman Kelk

Autologous bone transplantation is the principal method for reconstruction of large bone defects. This technique has limitations, such as donor site availability, amount of bone needed and morbidity. An alternative to this technique is tissue engineering with bone marrow-derived mesenchymal stem cells (BMSCs). In this study, our aim was to elucidate the benefits of culturing BMSCs in 3D compared with the traditional 2D culture. In an initial screening, we combined BMSCs with four different biogels: unmodified type I collagen (Col I), type I collagen methacrylate (ColMa), an alginate and cellulose-based bioink (CELLINK) and a gelatin-based bioink containing xanthan gum (GelXA-bone). Col I was the best for structural integrity and maintenance of cell morphology. Osteogenic, adipogenic, and chondrogenic differentiations of the BMSCs in 2D versus 3D type I collagen gels were investigated. While the traditional pellet culture for chondrogenesis was superior to our tested 3D culture, Col I hydrogels (i.e., 3D) favored adipogenic and osteogenic differentiation. Further focus of this study on osteogenesis were conducted by comparing 2D and 3D differentiated BMSCs with Osteoimage® (stains hydroxyapatite), von Kossa (stains anionic portion of phosphates, carbonates, and other salts) and Alizarin Red (stains Ca2+ deposits). Multivariate gene analysis with various covariates showed low variability among donors, successful osteogenic differentiation, and the identification of one gene (matrix metallopeptidase 13, MMP13) significantly differentially expressed in 2D vs. 3D cultures. MMP13 protein expression was confirmed with immunohistochemistry. In conclusion, this study shows evidence for the suitability of type I collagen gels for 3D osteogenic differentiation of BMSCs, which might improve the production of tissue-engineered constructs for treatment of bone defects.


2020 ◽  
Vol 10 (2) ◽  
pp. 246-251
Author(s):  
Wenxiao Jiang ◽  
Yijun Zhang ◽  
Ye Huang ◽  
Yunfeng Cheng ◽  
Zhigang Liu

Hepatic kinase B1 (LKB1) is a tumor suppressor and regulates cell proliferation and apoptosis. However, whether LKB1 affects bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation of during aging remains unclear. Two BMSCs derived from Zempster24−/− (aging) and Zempster24+/+ (normal) mice were cultured in vitro followed by measurement of LKB1 expression by real-time quantitative PCR and Western blot. LKB1 siRNA was transfected into Zempster24−/−BMSCs and LKB1 expression was measured. 14 days after osteogenic induction, mineralized nodule formation was evaluated by alizarin red staining, expression of Calcin, type I collagen, RUNX2 and OPN mRNA expression was measured, together with alkaline phosphatase (ALP) activity and the PI3K/mTOR pathway activity. Compared with normal BMSCs, LKB1 expression was significantly increased, calcified nodules were decreased, with reduced expression of osteocalcin, type I collagen, RUNX2 and OPN mRNA as well as decreased ALP activity and PI3K/mTOR signaling protein expression (P < 0.05). LKB1 siRNA transfection into senescent BMSCs down-regulated LKB1 expression, increased calcification nodule formation, expression of osteocalcin, type I collagen, RUNX2 and OPN mRNA, as well as increased ALP activity and PI3K/mTOR pathway protein expression (P < 0.05). Aging can promote the increase of LKB1 expression and inhibit the osteogenic differentiation of BMSCs. Down-regulation of LKB1 expression in BMSCs during senescence can promote osteogenic differentiation through regulating PI3K/mTOR pathway.


Sign in / Sign up

Export Citation Format

Share Document