scholarly journals Transient and persistent effects of IL-15 on lymphocyte homeostasis in nonhuman primates

Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3238-3248 ◽  
Author(s):  
Enrico Lugli ◽  
Carolyn K. Goldman ◽  
Liyanage P. Perera ◽  
Jeremy Smedley ◽  
Rhonda Pung ◽  
...  

Abstract Interleukin-15 (IL-15) is a cytokine with potential therapeutic application in individuals with cancer or immunodeficiency to promote natural killer (NK)– and T-cell activation and proliferation or in vaccination protocols to generate long-lived memory T cells. Here we report that 10-50 μg/kg IL-15 administered intravenously daily for 12 days to rhesus macaques has both short- and long-lasting effects on T-cell homeostasis. Peripheral blood lymphopenia preceded a dramatic expansion of NK cells and memory CD8 T cells in the circulation, particularly a 4-fold expansion of central memory CD8 T cells and a 6-fold expansion of effector memory CD8 T cells. This expansion is a consequence of their activation in multiple tissues. A concomitant inverted CD4/CD8 T-cell ratio was observed throughout the body at day 13, a result of preferential CD8 expansion. Expanded T- and NK-cell populations declined in the blood soon after IL-15 was stopped, suggesting migration to extralymphoid sites. By day 48, homeostasis appears restored throughout the body, with the exception of the maintenance of an inverted CD4/CD8 ratio in lymph nodes. Thus, IL-15 generates a dramatic expansion of short-lived memory CD8 T cells and NK cells in immunocompetent macaques and has long-term effects on the balance of CD4+ and CD8+ T cells.

2019 ◽  
Author(s):  
Daria L. Ivanova ◽  
Steve L. Denton ◽  
Jason P. Gigley

AbstractUsing vaccine challenge model ofT. gondiiinfection, we found that treatments with two commonly used for NK cell depletion antibodies resulted in different survival outcomes during secondary infection. Anti-ASGM1 resulted in 100% death and greater parasite burden at the site of infection than anti-NK1.1. Anti-NK1.1 treatment resulted in increased parasite burdens, but animals did not die. Further we found that anti-ASGM1 treatment depleted T cells. CD8+ T cells were more susceptible that CD4+ T cells to the treatment. ASGM1 was expressed on a higher percentage of CD8+ T cells than CD4+ T cells and CD8+ T cells. InT. gondii-immunized animals ASGM1 was enriched on effector memory (Tem) and central memory (Tcm) CD8+ T cells. However, Tem were more susceptible to the treatment. After secondary infection, Tem, Tcm, effector (Tef) and naïve (Tn) CD8+ T cells were positive for ASGM1. Anti-ASGM1 treatment during reinfection resulted in greater depletion of activated IFNγ+, Granzyme B+, Tem and Tef than Tcm and Tn CD8+ T cells. Anti-ASGM1 also depleted IFNγ+ CD4+ T cells. Recombinant IFNγ supplementation prolonged survival of anti-ASGM1 treated mice, demonstrating that this antibody eliminated IFNγ-producing T and NK cells important for control of the parasite. These results highlight that anti-ASGM1 antibody is not an optimal choice for targeting only NK cells and more precise approaches should be used. This study uncovers ASGM1 as a marker of activated effector T cells and the potential importance of changes in sialylation in lipid rafts for T cell activation duringT. gondiiinfection.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1103-1103
Author(s):  
Caroline Mary Besley ◽  
Eleni Kotsiou ◽  
Robert Petty ◽  
Ajanthah Sangaralingum ◽  
Rifca Le Dieu ◽  
...  

Abstract Introduction IMiDs like lenalidomide have immunostimulatory effects and therefore the potential to reduce relapse after allogeneic haematopoietic cell transplant (AHCT) by increasing graft-versus-tumour (GvT) effects. However, early clinical experience using IMiDs after AHCT has been limited by induction of graft-versus-host disease (GvHD). Although lenalidomide has been shown to augment mitogen-stimulated T cell responses, the effects of this drug on T cell alloresponses that mediate both GvT and GvHD have not been well defined. Better understanding of the immune mechanisms involved would facilitate tracking and manipulation of lenalidomide-potentiated alloresponses and could reveal ways to use the drug to maximise GvT without excess GvHD. Therefore we used an HLA-mismatched in vitro model to analyse in depth the effects of lenalidomide on functional human T cell alloresponses. Materials and Methods We cocultured CFSE-labelled PBMC from healthy donors with irradiated allogeneic PBMC in the presence of 1μM lenalidomide, vehicle control or following pre-incubation with 1μM lenalidomide for 24 hours. Functional alloresponses were quantified after 7-9 days of allo-coculture by flow cytometry. In addition, allo-coculture responders were flow-sorted into alloproliferative or non-proliferative fractions and extracted RNA used for gene expression profiling. Results Addition of lenalidomide to allo-cocultures increased the total number of responder cells (p<0.001) due primarily to increased proliferation (74% median increase) of allospecific responder CD8 (alloCD8) T cells (p<0.001). Proliferation kinetic analysis showed that lenalidomide did not increase the number of cell divisions of alloCD8 cells, but increased the CD8 allospecific precursor frequency within the responder cell pool (from a median of 2.6% to 10%, p<0.001) consistent with lowering the activation threshold of alloCD8 cells. A significant enrichment for effector memory phenotype was observed in these cells (median 48% increased to 59%, p<0.001). Addition of lenalidomide to allo-cocultures also increased the proportion of alloCD8 cells secreting TNF-α, IFN-γ and expressing CD107a, as well as polyfunctional effector cells (Fig. 1A). Although lenalidomide did not increase proliferation of CD4 cells, TNF-α production by proliferative CD4 T cells was increased suggesting they may contribute indirectly to CD8 alloresponses. Pre-treatment of stimulators, responders or both prior to allo-coculture did not result in increased alloCD8 proliferation, indicating that the drug must be present in the co-culture to exert an effect. Finally to assess whether lenalidomide exerted effects via potentiation of intrinsic alloproliferative pathways or by qualitatively different pathways we performed gene expression profiling of CD8 T cells sorted from allo-cocultures. As expected, alloCD8 cells from untreated allo-cocultures demonstrated >2-fold altered expression of >500 genes mostly associated with DNA synthesis and cellular proliferation when compared to non-proliferative CD8 cells. Lenalidomide-treated alloCD8 cells showed further increases in expression of many of these genes; however treatment also resulted in significant changes in expression of additional genes in alloCD8 cells compared to untreated alloCD8 cells (Fig 1B). These included >8 fold increases in expression of genes reported to potentiate T cell immune responses in other settings including PFKFB4,Pirin, and SOCS2 (part of the E3 ubiquitin ligase complex with cereblon), and >5 fold decreases in genes which can suppress T cell activation and memory differentiation including FAIM3 and PMCH. Conclusion We have shown for the first time that lenalidomide potentiates human alloresponses primarily by increasing alloproliferation of effector memory CD8 T cells. This likely results from altered expression of (i) multiple genes common to the intrinsic CD8 alloproliferative response and (ii) additional genes involved in the control of T cell activation and differentiation specific to lenalidomide-potentiated CD8 alloresponses. Furthermore treatment enhances the functional capacity of these cells by conferring greater polyfunctional effector potential. These findings could enable tracking of CD8 alloresponses induced by lenalidomide after AHCT and could inform novel clinical strategies for the use of the drug to augment GvT effects. Figure 1 Figure 1. Disclosures Gribben: Celgene: Research Funding; Pharmacyclics: Honoraria; Roche: Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2096-2096 ◽  
Author(s):  
Laura Moreno ◽  
Aintzane Zabaleta ◽  
Diego Alignani ◽  
Marta Lasa ◽  
Patricia Maiso ◽  
...  

Abstract Novel agents have improved outcomes in MM, but prognosis after patients relapse remains poor and new drugs with novel MoA are needed. The breakthrough of immuno-oncology has rendered new therapeutic options, and most recently we reported on EM801, a novel BCMA-TCB that showed remarkably efficacy when used as single agent in primary bone marrow (BM) samples from MM patients (Seckinger, Blood 2015;126: abstr 117). Because of its novelty, further knowledge about the MoA of BCMA-TCB is of utmost importance to improve its efficacy by designing rational treatment combinations. In order to optimize the in vitro efficacy of the BCMA-TCB, we started by investigating in primary BM samples from 6 MM patients whether longer treatment periods with BCMA-TCB2 (a BCMA-TCB candidate sharing similar "2+1" structure of EM801 but displaying higher affinity to BCMA) would increase MM cell death. Upon treating samples with BCMA-TCB2 for 48h vs 96h, we noted a 2-fold increment in MM tumor cell lysis at 1nM and 10nM concentrations (Panel A). In parallel, the phenotypic profiles of CD4 and CD8 T cells showed that BCMA-TCB2 induced robust activation (ie. dose-dependent increment in CD69, CD25, HLADR after exposure to 100pM, 1nM and 10nM of BCMA-TCB2), but also led to the natural emergence of the checkpoint inhibitor PD-1 in the surface of activated CD4 and CD8 T cells (Panel B). We then investigated if there was a correlation between the percentage of PD-1 positive CD4 and CD8 T cells and the efficacy of BCMA-TCB2; interestingly, those patients with lower frequencies of PD-1 positive CD4 and CD8 T cells prior to treatment showed the highest rates of MM tumor cell lysis after 48h and 96h of BCMA-TCB2 at 10nM of (r=0.6, P=0.04; Panel C). By contrast, upon measuring the concentration of soluble BCMA and APRIL in the supernatants of primary BM samples from 16 MM patients treated with BCMA-TCB, we found no significant differences between responding (n=11) and non-responding (n=5) patients. Similar results were observed upon comparing the density of BCMA in the surface of MM tumor cells from responding vs non-responding patients (1256 vs 1522 SABC units; P=87). Since the efficacy of BCMA-TCB2 was found to be intrinsically related to the phenotype and activation status of T cells, we then investigated whether we could further harness immune cells by combining BCMA-TCB2 with three drugs representing different types of immunotherapy: lenalidomide (IMIDs), anti-PD1 (checkpoint inhibitors) and daratumumab (mAb). H929 MM cells were co-cultured with human leukocytes (n=5) and challenged to suboptimal concentrations of BCMA-TCB2 (10pM) alone, or in combination with standard doses of lenalidomide (1µM), anti-PD1 (10µg/ml) and daratumumab (10µg/ml) (Panel D). Interestingly, we observed that combining BCMA-TCB2 with lenalidomide or daratumumab significantly increased their anti-MM efficacy by 4-fold and 2.5-fold, respectively. Because lenalidomide and daratumumab share in common that they rely, at least in part, on activated NK cells to eradicate MM cells, we hypothesized whether such robust T cell activation induced by BCMA-TCB2 was leading to co-stimulation of NK cells. First, we demonstrated by analyzing the transcriptomes of T cells prior and after treatment exposure (n=3), that BCMA-TCB2 modulated the transcriptomes of CD4 and CD8 T cells (159 and 141 deregulated genes, respectively), consistent with enhanced activation and T-cell mediated inflammatory response (eg. TNFRS18, STAT1, CCL4). Furthermore, we observed a dose-dependent and significant increment of the CD69 (2-fold), CD25 (2.5-fold) and HLADR (4-fold) activation markers in the surface of NK cells from primary BM samples of 11 MM patients treated with BCMA-TCB2 (Panel E), suggesting a functional crosstalk between activated T cells and NK cells. In conclusion, we showed that the promising pre-clinical activity of the first-in-class IgG-based BCMA-TCB can be further enhanced by longer treatment periods followed by robust T cell activation. The observation that the efficacy of BCMA-TCB is intrinsically related to the activation status of T cells suggests its rational combination with IMIDs as demonstrated here. Most interestingly, potential crosstalk between activated T and NK cells could lead to enhanced function of the later immune subset, and provide a rational combination between BCMA-TCB and anti-CD38 antibodies to eradicate MM cells through highly activated T and NK cells. Figure Figure. Disclosures Strein: EngMab: Employment. Vu:EngMab: Employment. Paiva:Celgene: Honoraria, Research Funding; Janssen: Honoraria; Takeda: Honoraria, Research Funding; Sanofi: Consultancy, Research Funding; EngMab: Research Funding; Amgen: Honoraria; Binding Site: Research Funding.


Blood ◽  
2021 ◽  
Author(s):  
Melissa M Berrien-Elliott ◽  
Michelle Becker-Hapak ◽  
Amanda F. Cashen ◽  
Miriam T. Jacobs ◽  
Pamela Wong ◽  
...  

NK cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from two independent clinical trial cohorts treated with MHC-haploidentical NK cell therapy for relapsed/refractory AML revealed that cytokine support by systemic IL-15 (N-803) resulted in reduced clinical activity, compared to IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T cell numbers in patients treated with IL-15/N-803, compared to IL2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T cell activation and proliferation, compared to IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived ML NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15.


2015 ◽  
Author(s):  
Jacob Hanna ◽  
Ofer Mandelboim

Initiation of the adaptive immune response is dependent on the priming of naive T cells by APCs. Proteomic analysis of unactivated and activated human NK cell membrane-enriched fractions demonstrated that activated NK cells can efficiently stimulate T cells, since they upregulate MHC class II molecules and multiple ligands for TCR costimulatory molecules. Furthermore, by manipulating antigen administration, we show that NK cells possess multiple independent unique pathways for antigen uptake. These results highlight NK cell-mediated cytotoxicity and specific ligand recognition by cell surface-activating receptors on NK cells as unique mechanisms for antigen capturing and presentation. In addition, we analyzed the T cell-activating potential of human NK cells derived from different clinical conditions, such as inflamed tonsils and noninfected and CMV-infected uterine decidual samples, and from transporter-associated processing antigen 2–deficient patients. This in vivo analysis revealed that proinflammatory, but not immune-suppressive, microenvironmental requirements can selectively dictate upregulation of T cell-activating molecules on NK cells. Taken together, these observations offer new and unexpected insights into the direct interactions between NK and T cells and suggest novel APC-like activating functions for human NK cells.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1342-1351 ◽  
Author(s):  
Zusen Fan ◽  
Ping Yu ◽  
Yang Wang ◽  
Yugang Wang ◽  
May Lynne Fu ◽  
...  

Natural killer (NK) cells are generally reported as innate effector cells for killing virally infected and transformed cells. It is unclear how NK cells evoke adaptive immunity to eradicate tumors. We now demonstrate that the TNF superfamily member, LIGHT, known as TNFSF14 and a T-cell costimulatory molecule, is a critical ligand for the activation of NK cells. Herpesvirus entry mediator (HVEM) is expressed on NK cells, and its engagement with LIGHT mediates NK-cell activation. The expression of LIGHT inside tumors leads to rapid rejection in a NK-dependent manner. Both NK and CD8+ cells are essential but not sufficient for the rejection of tumors because mice lacking either population fail to reject the tumor. Interestingly, activated NK cells do not kill tumors directly but can facilitate the priming of tumor-specific CD8+ T cells in an IFN-γ–dependent manner. Conversely, intratumor depletion of either NK cells or IFN-γ during tumor progression disrupts CD8+ cell–mediated tumor rejection, suggesting that the tumor is the essential site for the crosstalk between NK and CD8+ cells. Furthermore, IFNG-deficient NK cells fail to effectively activate CD8+ T cells, suggesting IFN-γ plays an important role in NK-mediated activation of cytotoxic T lymphocytes (CTLs). Our findings establish a direct role for LIGHT in NK activation/expansion and a critical helper role of activated NK cells in priming CD8+ T cells and breaking T-cell tolerance at the tumor site.


2006 ◽  
Vol 203 (10) ◽  
pp. 2263-2269 ◽  
Author(s):  
Vaiva Vezys ◽  
David Masopust ◽  
Christopher C. Kemball ◽  
Daniel L. Barber ◽  
Leigh A. O'Mara ◽  
...  

Numerous microbes establish persistent infections, accompanied by antigen-specific CD8 T cell activation. Pathogen-specific T cells in chronically infected hosts are often phenotypically and functionally variable, as well as distinct from T cells responding to nonpersistent infections; this phenotypic heterogeneity has been attributed to an ongoing reencounter with antigen. Paradoxically, maintenance of memory CD8 T cells to acutely resolved infections is antigen independent, whereas there is a dependence on antigen for T cell survival in chronically infected hosts. Using two chronic viral infections, we demonstrate that new naive antigen-specific CD8 T cells are primed after the acute phase of infection. These newly recruited T cells are phenotypically distinct from those primed earlier. Long-lived antiviral CD8 T cells are defective in self-renewal, and lack of thymic output results in the decline of virus-specific CD8 T cells, indicating that newly generated T cells preserve antiviral CD8 T cell populations during chronic infection. These findings reveal a novel role for antigen in maintaining virus-specific CD8 T cells during persistent infection and provide insight toward understanding T cell differentiation in chronic infection.


Author(s):  
Yusra Zaidi ◽  
Alexa Corker ◽  
Valeriia Y. Vasileva ◽  
Kimberly Oviedo ◽  
Conner Graham ◽  
...  

Oral and gum health have long been associated with incidence and outcomes of cardiovascular disease. Periodontal disease increases myocardial infarction (MI) mortality by seven-fold through mechanisms that are not fully understood. The goal of this study was to evaluate whether lipopolysaccharide (LPS) from a periodontal pathogen accelerates inflammation post-MI through memory T-cell activation. We compared 4 groups (no MI, chronic LPS, day 1 post-MI, and day 1 post-MI with chronic LPS (LPS+MI); n=68 mice) using the mouse heart attack research tool 1.0 database and tissue bank coupled with new analyses and experiments. LPS+MI increased total CD8+ T-cells in the left ventricle versus the other groups (p<0.05 versus all). Memory CD8+ T-cells (CD44+CD27+) were 10-fold greater in LPS+MI compared to MI alone (p=0.02). Interleukin (IL)-4 stimulated splenic CD8+ T-cells away from an effector phenotype and towards a memory phenotype, inducing secretion of factors associated with the Wnt/β-catenin signaling that promoted monocyte migration and decreased viability. To dissect the effect of CD8+ T-cells post-MI, we administered a major histocompatibility complex-I blocking antibody starting 7 days before MI, which prevented effector CD8+ T-cell activation without affecting the memory response. The reduction in effector cells diminished infarct wall thinning but had no effect on macrophage numbers or MertK expression. LPS+MI+IgG attenuated macrophages within the infarct without effecting CD8+ T-cells suggesting these two processes were independent. Overall, our data indicate that effector and memory CD8+ T-cells at post-MI day 1 are amplified by chronic LPS to potentially promote infarct wall thinning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David L. Rose ◽  
Katie L. Reagin ◽  
Kimberly E. Oliva ◽  
S. Mark Tompkins ◽  
Kimberly D. Klonowski

AbstractNatural Killer (NK) cells are among the first effectors to directly contact influenza and influenza-infected cells and their activation affects not only their intrinsic functions, but also subsequent CD8+ T cell responses. We utilized a NK cell depletion model to interrogate the contribution of NK cells to the development of anti-influenza CD8+ T cell memory. NK cell ablation increased the number of influenza-specific memory CD8+ T cells in the respiratory tract and lung-draining lymph node. Interestingly, animals depleted of NK cells during primary influenza infection were protected as well as their NK-intact counterparts despite significantly fewer reactivated CD8+ T cells infiltrating the respiratory tract after lethal, heterosubtypic challenge. Instead, protection in NK-deficient animals seems to be conferred by rapid reactivation of an enlarged pool of lung tissue-resident (TRM) memory cells within two days post challenge. Further interrogation of how NK cell ablation enhances respiratory TRM indicated that TRM development is independent of global and NK cell derived IFN-γ. These data suggest that reduction in NK cell activation after vaccination with live, non-lethal influenza virus increases compartmentalized, broadly protective memory CD8+ T cell generation and decreases the risk of CD8+ T cell-mediated pathology following subsequent influenza infections.


Sign in / Sign up

Export Citation Format

Share Document