Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues

Blood ◽  
2010 ◽  
Vol 116 (18) ◽  
pp. 3517-3525 ◽  
Author(s):  
Yasuyuki Saito ◽  
Hiroko Iwamura ◽  
Tetsuya Kaneko ◽  
Hiroshi Ohnishi ◽  
Yoji Murata ◽  
...  

Abstract The molecular basis for regulation of dendritic cell (DC) development and homeostasis remains unclear. Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is predominantly expressed in DCs, mediates cell-cell signaling by interacting with CD47, another immunoglobulin superfamily protein. We now show that the number of CD11chigh DCs (conventional DCs, or cDCs), in particular, that of CD8−CD4+ (CD4+) cDCs, is selectively reduced in secondary lymphoid tissues of mice expressing a mutant form of SIRPα that lacks the cytoplasmic region. We also found that SIRPα is required intrinsically within cDCs or DC precursors for the homeostasis of splenic CD4+ cDCs. Differentiation of bone marrow cells from SIRPα mutant mice into DCs induced by either macrophage-granulocyte colony-stimulating factor or Flt3 ligand in vitro was not impaired. Although the accumulation of the immediate precursors of cDCs in the spleen was also not impaired, the half-life of newly generated splenic CD4+ cDCs was markedly reduced in SIRPα mutant mice. Both hematopoietic and nonhematopoietic CD47 was found to be required for the homeostasis of CD4+ cDCs and CD8−CD4−(double negative) cDCs in the spleen. SIRPα as well as its ligand, CD47, are thus important for the homeostasis of CD4+ cDCs or double negative cDCs in lymphoid tissues.

Blood ◽  
2006 ◽  
Vol 107 (1) ◽  
pp. 341-348 ◽  
Author(s):  
Tomomi Ishikawa-Sekigami ◽  
Yoriaki Kaneko ◽  
Hideki Okazawa ◽  
Takeshi Tomizawa ◽  
Jun Okajo ◽  
...  

Abstract The lifespan of circulating red blood cells (RBCs) produced in bone marrow is determined by their elimination through phagocytosis by splenic macrophages. The mechanism by which RBC elimination is regulated has remained unclear, however. The surface glycoprotein SHPS-1, a member of the immunoglobulin superfamily, is abundant in macrophages. We have now examined the regulation of RBC turnover with the use of mice that express a mutant form of SHPS-1 lacking most of its cytoplasmic region. The mutant mice manifested mild anemia as well as splenomegaly characterized by expansion of the red pulp. The numbers of erythroid precursor cells in the spleen and of circulating reticulocytes were also increased in the mutant mice. In contrast, the half-life of circulating RBCs was reduced in these animals, and the rate of clearance of injected opsonized RBCs from the peripheral circulation was increased in association with their incorporation into splenic macrophages. Phagocytosis of opsonized RBCs by splenic macrophages from mutant mice in vitro was also increased compared with that observed with wild-type macrophages. These results suggest that SHPS-1 negatively regulates the phagocytosis of RBCs by splenic macrophages, thereby determining both the lifespan of individual RBCs and the number of circulating erythrocytes.


Blood ◽  
1990 ◽  
Vol 75 (8) ◽  
pp. 1733-1741 ◽  
Author(s):  
M Kaleko ◽  
JV Garcia ◽  
WR Osborne ◽  
AD Miller

Abstract A high titer retroviral vector was used to transfer a human adenosine deaminase (h-ADA) cDNA into murine bone marrow cells in vitro. The h- ADA cDNA was linked to the retroviral promoter, and the vector also contained a neomycin phosphotransferase gene as a selectable marker. Infected marrow was transplanted into syngeneic W/Wv recipients, and h- ADA expression was monitored for 5.5 months. Several weeks after transplantation, h-ADA was detected in the erythrocytes of all nine recipients, eight of which expressed levels equal to the endogenous enzyme. This level of expression persisted in two of six surviving mice, while expression in three others stabilized at lower, but readily detectable, levels. Only one mouse had no detectable h-ADA after 5.5 months. Vector DNA sequences with common integration sites were found in hematopoietic and lymphoid tissues of the mice at 5.5 months, providing evidence that hematopoietic stem cells had been infected. Furthermore, all mice transplanted with marrow that had been selected in G418 before infusion had multiple vector copies per genome. While this category included the two highest h-ADA expressors, it also included the negative mouse. Thus, multiple copies of the vector were not sufficient to guarantee long-term h-ADA expression. Mice were monitored for “helper virus” infections with an assay designed to detect a wide range of replication-competent retroviruses, including those endogenous to the mouse genome. No helper virus was detected in the two highest h-ADA expressors, ruling out helper-assisted vector spread as a cause of the high h-ADA expression. These results help provide a foundation for the development of somatic gene therapy techniques to be used in the treatment of human disease.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3776-3776
Author(s):  
Lucia Catani ◽  
Daria Sollazzo ◽  
Francesca Ricci ◽  
Francesca Palandri ◽  
Nicola Polverelli ◽  
...  

Abstract Abstract 3776 The CD47 antigen is a transmembrane glycoprotein ubiquitously expressed on hematopoietic and non-hematopoietic cells. It serves as a receptor for Thrombospondin (TSP) and a ligand for signal regulatory protein-alpha (SIRP-alpha) receptor, acting, respectively, as a regulator of apoptosis and as antagonistic to phagocyte activity. Ligation of CD47 with antibodies, its natural physiological ligand TSP or the specific CD47-binding peptide 41NK induces apoptosis in nucleated blood cells. This apoptosis is characterized by mitochondrial damage and the exposure of phosphatydilserine on the outerleaflet of the plasma membrane. Interaction of SIRP-alpha with CD47 is important also for the regulation of phagocytosis. SIRP-alpha is an immunoglobulin superfamily member and is predominantly expressed in neurons, dendritic cells (DCs) and monocytes/macrophages. Phagocytes engulf foreign cells but not “self” in part because “self” cells express CD47 as a ligand for SIRP-alpha, which inhibits phagocytosis. Thus CD47 functions as a “don't eat me” signal. Based on studies in mice, a novel mechanism of platelet destruction involving the CD47/SIRP-alpha system has been recently suggested in Immune Thrombocytopenia (ITP). Specifically, it has been demonstrated that: 1) platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in immune thrombocytopenia in a mouse model; 2) interaction between platelet CD47 and macrophage SIRP-alpha is important in regulating normal platelet turnover and FcgammaR-mediated clearance of IgG-sensitized platelets; 3) CD47-deficient platelets have a shortened half-life in the circulation of CD47 wild-type mice and are also more sensitive to Fcgamma receptor-mediated clearance, both in vivo and in vitro. However, the role of CD47 pathway in the pathogenesis of human ITP has not yet been studied. Therefore, the main purpose of the present study was to evaluate whether alterations of this system (platelets/phagocytes) might play a pathogenetic role in human ITP. In particular, we investigated whether in ITP: i) platelets are more susceptible to CD47-induced cell death; ii) expression of CD47 on fresh and in vitro aged platelets is reduced; iii) the platelet phagocytic capacity of CD14-derived DCs and macrophages is differentially modulated in the presence or absence of antibodies against CD47 and SIRP-alpha. Phenotypical and functional analysis of the expression of CD47 on platelets and SIRP-αlpha on CD14-derived/circulating DCs and on CD14-derived macrophages was performed in 32 ITP patients. Patients were newly diagnosed (14 cases) or with persistent (15 cases) or chronic (3 cases) ITP. At the time of the study, patients with persistent or chronic ITP were off therapy by at least two months. None of the patients were splenectomized. The median platelet count at the time of the study was 49×109/L (range 14–98). We found that in healthy subjects CD47 expression increased in in vitro aged platelets and ligation of CD47 with anti-CD47 antibody induced a dose-dependent increase of platelet apoptosis. Immature and mature CD14-derived DCs and circulating myeloid DCs were strongly positive for SIRP-α. Conversely, we demonstrated that in ITP: 1) CD47 expression was unchanged in freshly isolated and in vitro aged platelets; 2) increased platelet apoptosis was not due to the activation of the CD47-induced cell death pathway, which instead was shown to be blocked; 3) the blockage of SIRP-αlpha on immature CD14-derived DCs or CD47 on platelets by specific antibodies failed to modify platelet uptake/phagocytosis of DCs; in contrast, targeting platelet CD47 with specific antibody significantly increases platelet phagocytosis of CD14-derived macrophages. In conclusion, our data demonstrate that in ITP the increased platelet clearance is not due to reduced CD47 expression on platelets. However, platelets from ITP patients are not healthy because 1) apoptosis is increased; 2) platelet apoptosis is independent from CD47 death signal; 3) CD47 expression is not modified by in vitro ageing/apoptosis. In addition, we show that the CD47 pathway plays a role in platelet phagocytosis of macrophages, but not in DCs. We conclude that in ITP patients platelet homeostasis is differentially modulated by the CD47 pathway. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 26 (21) ◽  
pp. 7953-7965 ◽  
Author(s):  
Harumi Y. Mukai ◽  
Hozumi Motohashi ◽  
Osamu Ohneda ◽  
Norio Suzuki ◽  
Masumi Nagano ◽  
...  

ABSTRACT The nuclear proto-oncogene c-myb plays crucial roles in the growth, survival, and differentiation of hematopoietic cells. We established three lines of erythropoietin receptor-transgenic mice and found that one of them exhibited anemia, thrombocythemia, and splenomegaly. These abnormalities were independent of the function of the transgenic erythropoietin receptor and were observed exclusively in mice harboring the transgene homozygously, suggesting transgenic disruption of a certain gene. The transgene was inserted 77 kb upstream of the c-myb gene, and c-Myb expression was markedly decreased in megakaryocyte/erythrocyte lineage-restricted progenitors (MEPs) of the homozygous mutant mice. In the bone marrows and spleens of the mutant mice, numbers of megakaryocytes were increased and numbers of erythroid progenitors were decreased. These abnormalities were reproducible in vitro in a coculture assay of MEPs with OP9 cells but eliminated by the retroviral expression of c-Myb in MEPs. The erythroid/megakaryocytic abnormalities were reconstituted in mice in vivo by transplantation of mutant mouse bone marrow cells. These results demonstrate that the transgene insertion into the c-myb gene far upstream regulatory region affects the gene expression at the stage of MEPs, leading to an imbalance between erythroid and megakaryocytic cells, and suggest that c-Myb is an essential regulator of the erythroid-megakaryocytic lineage bifurcation.


Blood ◽  
2006 ◽  
Vol 109 (9) ◽  
pp. 4071-4079 ◽  
Author(s):  
Dong Zhang ◽  
Wei Yang ◽  
Nicolas Degauque ◽  
Yan Tian ◽  
Allison Mikita ◽  
...  

Abstract Recent studies have demonstrated that in peripheral lymphoid tissues of normal mice and healthy humans, 1% to 5% of αβ T-cell receptor–positive (TCR+) T cells are CD4−CD8− (double-negative [DN]) T cells, capable of down-regulating immune responses. However, the origin and developmental pathway of DN T cells is still not clear. In this study, by monitoring CD4 expression during T-cell proliferation and differentiation, we identified a new differentiation pathway for the conversion of CD4+ T cells to DN regulatory T cells. We showed that the converted DN T cells retained a stable phenotype after restimulation and that furthermore, the disappearance of cell-surface CD4 molecules on converted DN T cells was a result of CD4 gene silencing. The converted DN T cells were resistant to activation-induced cell death (AICD) and expressed a unique set of cell-surface markers and gene profiles. These cells were highly potent in suppressing alloimmune responses both in vitro and in vivo in an antigen-specific manner. Perforin was highly expressed by the converted DN regulatory T cells and played a role in DN T-cell–mediated suppression. Our findings thus identify a new differentiation pathway for DN regulatory T cells and uncover a new intrinsic homeostatic mechanism that regulates the magnitude of immune responses. This pathway provides a novel, cell-based, therapeutic approach for preventing allograft rejection.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3887-3887
Author(s):  
Moosa Qureshi ◽  
Fernando Calero-Nieto ◽  
Iwo Kucinski ◽  
Sarah Kinston ◽  
George Giotopoulos ◽  
...  

Abstract The C/EBPα transcription factor plays a pivotal role in myeloid differentiation and E2F-mediated cell cycle regulation. Although CEBPA mutations are common in acute myeloid leukaemia (AML), little is known regarding pre-leukemic alterations caused by mutated CEBPA. Here, we investigated early events involved in pre-leukemic transformation driven by CEBPA N321D in the LMPP-like cell line Hoxb8-FL (Redecke et al., Nat Methods 2013), which can be maintained in vitro as a self-renewing LMPP population using Flt3L and estradiol, as well as differentiated both in vitro and in vivo into myeloid and lymphoid cell types. Hoxb8-FL cells were retrovirally transduced with Empty Vector (EV), wild-type CEBPA (CEBPA WT) or its N321D mutant form (CEBPA N321D). CEBPA WT-transduced cells showed increased expression of cd11b and SIRPα and downregulation of c-kit, suggesting that wild-type CEBPA was sufficient to promote differentiation even under LMPP growth conditions. Interestingly, we did not observe the same phenotype in CEBPA N321D-transduced cells. Upon withdrawal of estradiol, both EV and CEBPA WT-transduced cells differentiated rapidly into a conventional dendritic cell (cDC) phenotype by day 7 and died within 12 days. By contrast, CEBPA N321D-transduced cells continued to grow for in excess of 56 days, with an initial cDC phenotype but by day 30 demonstrating a plasmacytoid dendritic cell precursor phenotype. CEBPA N321D-transduced cells were morphologically distinct from EV-transduced cells. To test leukemogenic potential in vivo, we performed transplantation experiments in lethally irradiated mice. Serial monitoring of peripheral blood demonstrated that Hoxb8-FL derived cells had disappeared by 4 weeks, and did not reappear. However, at 6 months CEBPA N321D-transduced cells could still be detected in bone marrow in contrast to EV-transduced cells but without any leukemic phenotype. To identify early events involved in pre-leukemic transformation, the differentiation profiles of EV, CEBPA WT and CEBPA N321D-transduced cells were examined with single cell RNA-seq (scRNA-seq). 576 single cells were taken from 3 biological replicates at days 0 and 5 post-differentiation, and analysed using the Automated Single-Cell Analysis Pipeline (Gardeux et al., Bioinformatics 2017). Visualisation by t-SNE (Fig 1) demonstrated: (i) CEBPA WT-transduced cells formed a distinct cluster at day 0 before withdrawal of estradiol; (ii) CEBPA N321D-transduced cells separated from EV and CEBPA WT-transduced cells after 5 days of differentiation, (iii) two subpopulations could be identified within the CEBPA N321D-transduced cells at day 5, with a cluster of five CEBPA N321D-transduced single cells distributed amongst or very close to the day 0 non-differentiated cells. Differential expression analysis identified 224 genes upregulated and 633 genes downregulated specifically in the CEBPA N321D-transduced cells when compared to EV cells after 5 days of differentiation. This gene expression signature revealed that CEBPA N321D-transduced cells switched on a HSC/MEP/CMP transcriptional program and switched off a myeloid dendritic cell program. Finally, in order to further dissect the effect of the N321D mutation, the binding profile of endogenous and CEBPA N321D was compared by ChIP-seq before and after 5 days of differentiation. Integration with scRNA-seq data identified 160 genes specifically downregulated in CEBPA N321D-transduced cells which were associated with the binding of the mutant protein. This list of genes included genes previously implicated in dendritic cell differentiation (such as NOTCH2, JAK2), as well as a number of genes not previously implicated in the evolution of AML, representing potentially novel therapeutic targets. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2678-2686 ◽  
Author(s):  
Liyun Shi ◽  
Kun Luo ◽  
Dajing Xia ◽  
Taoyong Chen ◽  
Guoyou Chen ◽  
...  

AbstractDendritic cells (DCs) are specialized antigen-presenting cells that play crucial roles in the initiation and regulation of immune responses. Maturation and activation of DCs are controlled by a balance of the inhibitory and activating signals transduced through distinct surface receptors. Many inhibitory receptors expressed by DCs have been identified, whereas the new members and their functions need further investigation. In this study, we functionally characterized DC-derived immunoglobulin receptor 2 (DIgR2) as a novel representative of a family of inhibitory receptors belonging to the immunoglobulin superfamily. We show that DIgR2 contains 2 immunoreceptor tyrosine-based inhibitory motifs (ITIMs) within its cytoplasmic region and that DIgR2 associates with Src homology-2 domain-containing protein tyrosine phosphatases-1 (SHP-1). Blockade of DIgR2 on DCs by pretreatment with DIgR2-Ig fusion protein or by silencing with specific small interfering RNA enhances DC-initiated T-cell proliferation and antigen-specific T-cell responses both in vitro and in vivo. Furthermore, immunization of mice with antigen-pulsed, DIgR2-silenced DCs elicits more potent antigen-specific CD4+ and CD8+ T-cell responses, thus protecting the vaccinated mice from tumor challenge more effectively. Our data suggest that DIgR2 is a functionally inhibitory receptor and can mediate negative signaling to regulate DC-initiated antigen-specific T-cell responses.


1994 ◽  
Vol 40 ◽  
pp. 13
Author(s):  
A.W. Thomson ◽  
L. Lu ◽  
V.M. Subbotin ◽  
Y. Li ◽  
S. Qian ◽  
...  

2015 ◽  
Vol 212 (3) ◽  
pp. 385-399 ◽  
Author(s):  
Jaeyop Lee ◽  
Gaëlle Breton ◽  
Thiago Yukio Kikuchi Oliveira ◽  
Yu Jerry Zhou ◽  
Arafat Aljoufi ◽  
...  

In mice, two restricted dendritic cell (DC) progenitors, macrophage/dendritic progenitors (MDPs) and common dendritic progenitors (CDPs), demonstrate increasing commitment to the DC lineage, as they sequentially lose granulocyte and monocyte potential, respectively. Identifying these progenitors has enabled us to understand the role of DCs and monocytes in immunity and tolerance in mice. In humans, however, restricted monocyte and DC progenitors remain unknown. Progress in studying human DC development has been hampered by lack of an in vitro culture system that recapitulates in vivo DC hematopoiesis. Here we report a culture system that supports development of CD34+ hematopoietic stem cell progenitors into the three major human DC subsets, monocytes, granulocytes, and NK and B cells. Using this culture system, we defined the pathway for human DC development and revealed the sequential origin of human DCs from increasingly restricted progenitors: a human granulocyte-monocyte-DC progenitor (hGMDP) that develops into a human monocyte-dendritic progenitor (hMDP), which in turn develops into monocytes, and a human CDP (hCDP) that is restricted to produce the three major DC subsets. The phenotype of the DC progenitors partially overlaps with granulocyte-macrophage progenitors (GMPs). These progenitors reside in human cord blood and bone marrow but not in the blood or lymphoid tissues.


Blood ◽  
1990 ◽  
Vol 75 (8) ◽  
pp. 1733-1741 ◽  
Author(s):  
M Kaleko ◽  
JV Garcia ◽  
WR Osborne ◽  
AD Miller

A high titer retroviral vector was used to transfer a human adenosine deaminase (h-ADA) cDNA into murine bone marrow cells in vitro. The h- ADA cDNA was linked to the retroviral promoter, and the vector also contained a neomycin phosphotransferase gene as a selectable marker. Infected marrow was transplanted into syngeneic W/Wv recipients, and h- ADA expression was monitored for 5.5 months. Several weeks after transplantation, h-ADA was detected in the erythrocytes of all nine recipients, eight of which expressed levels equal to the endogenous enzyme. This level of expression persisted in two of six surviving mice, while expression in three others stabilized at lower, but readily detectable, levels. Only one mouse had no detectable h-ADA after 5.5 months. Vector DNA sequences with common integration sites were found in hematopoietic and lymphoid tissues of the mice at 5.5 months, providing evidence that hematopoietic stem cells had been infected. Furthermore, all mice transplanted with marrow that had been selected in G418 before infusion had multiple vector copies per genome. While this category included the two highest h-ADA expressors, it also included the negative mouse. Thus, multiple copies of the vector were not sufficient to guarantee long-term h-ADA expression. Mice were monitored for “helper virus” infections with an assay designed to detect a wide range of replication-competent retroviruses, including those endogenous to the mouse genome. No helper virus was detected in the two highest h-ADA expressors, ruling out helper-assisted vector spread as a cause of the high h-ADA expression. These results help provide a foundation for the development of somatic gene therapy techniques to be used in the treatment of human disease.


Sign in / Sign up

Export Citation Format

Share Document