Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival

Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6162-6171 ◽  
Author(s):  
Rogier M. Reijmers ◽  
Richard W. J. Groen ◽  
Annemieke Kuil ◽  
Kees Weijer ◽  
Fiona C. Kimberley ◽  
...  

Abstract The development and antigen-dependent differentiation of B lymphocytes are orchestrated by an array of growth factors, cytokines, and chemokines that require tight spatiotemporal regulation. Heparan sulfate proteoglycans specifically bind and regulate the bioavailability of soluble protein ligands, but their role in the immune system has remained largely unexplored. Modification of heparan sulfate by glucuronyl C5-epimerase (Glce) controls heparan sulfate-chain flexibility and thereby affects ligand binding. Here we show that Glce deficiency impairs B-cell maturation, resulting in decreased plasma cell numbers and immunoglobulin levels. We demonstrate that C5-epimerase modification of heparan sulfate is critical for binding of a proliferation inducing ligand (APRIL) and that Glce-deficient plasma cells fail to respond to APRIL-mediated survival signals. Our results identify heparan sulfate proteoglycans as novel players in B-cell maturation and differentiation and suggest that heparan sulfate conformation is crucial for recruitment of factors that control plasma cell survival.

2010 ◽  
Vol 37 (8) ◽  
pp. 3747-3755 ◽  
Author(s):  
Shaoli Deng ◽  
Tao Yuan ◽  
Xiaoxing Cheng ◽  
Rui Jian ◽  
Jing Jiang

Blood ◽  
2021 ◽  
Author(s):  
Zemin Ren ◽  
Marcel Spaargaren ◽  
Steven T Pals

Plasma cells no longer express a B-cell-antigen-receptor and are hence deprived of signals crucial for survival throughout B-cell development. Instead, normal plasma cells, as well as their malignant myeloma counterparts, heavily rely on communication with the bone-marrow (BM) microenvironment for survival. The plasma cell heparan-sulfate-proteoglycan (HSPG) syndecan-1 (CD138), and HSPGs in the BM-microenvironment, acts as master regulator of this communication by co-opting specific growth- and survival-factors from the BM-niche. This designates syndecan-1/HSPGs, and their synthesis-machinery, as potential treatment targets in MM.


2017 ◽  
Author(s):  
Joanne Dai ◽  
Micah A. Luftig

AbstractApoptosis is critical to B-cell maturation, but studies of apoptotic regulation in primary human B cells is lacking. Previously, we found that infecting human B cells with Epstein-Barr virus induces two different survival strategies (Priceet al., 2017). Here, we sought to better understand the mechanisms of apoptotic regulation in normal and activated B cells. Using intracellular BH3 profiling (iBH3), we defined the Bcl2-dependency of B-cell subsets from human peripheral blood and tonsillar lymphoid tissue as well as mitogen-activated B cells. We found that naïve and memory B cells were BCL-2 dependent, while germinal center B cells were MCL-1 dependent and plasma cells were BCL-XL dependent. Proliferating B cells activated by CpG or CD40L/IL-4 became more dependent upon MCL-1 and BCL-XL. As B-cell lymphomas often rely on survival mechanisms derived from normal and activated B cells, these findings offer new insight into potential therapeutic strategies for lymphomas.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4620-4620
Author(s):  
Howard S Oster ◽  
Naamit Deshet-Unger ◽  
Max Gassmann ◽  
Moshe Mittelman ◽  
Drorit Neumann

Abstract Introduction: Recombinant human erythropoietin (EPO) treats anemia, but EPO also has non-erythroid effects. We have previously shown that EPO has anti-neoplastic immunomodulating effects in both patients and mice (Mittelman PNAS 2001; Mittelman Eur J Haematol 2004). EPO effects were demonstrated in both the cellular and humoral immune systems (Katz Acta Haematol 2005; Katz Eur J Immunol 2007; Prutchi-Sagiv Br J Haematol 2006; Prutchi-Sagiv Exp Hematol 2008; Lifshitz Mol Immunol 2009, Hassan Ren Fail 2003). In a previous study we found that EPO was associated with an improved antibody response to the seasonal influenza vaccine in patients (Oster Exp Hematol 2013). B-cell maturation begins in the bone marrow (BM), and continues primarily in the spleen. The cells mature either to marginal zone (MZ) or to Follicular B-cells, both of which can progress to antibody producing plasma cells (PC). This study evaluates EPO's effects on B-cell maturation and antibody production. Methods and Results: Two murine models: 1) Mice were injected (INJ) with either recombinant human EPO (rHuEPO 180units) or saline 3 times over one week (9+8 mice respectively). 2) Transgenic mice from the Tg6 line (TG), with constitutively increased levels of EPO from birth vs wild type (9+8) mice. The total B220+ (a pan B marker) cell number in EPO mice of both murine models was significantly reduced in the BM (similar to Singbrant Blood 2011; see Table). In the spleen, the total number of B220+ cells was similar, irrespective of EPO exposure. However, some B-cell populations were different (Table): splenic MZ precursor (MZP, B220+/CD21hi/CD24mid/CD23hi) as well as MZ B-cell (B220+/CD21hi/CD24mid/CD23lo) numbers were significantly smaller in EPO mice compared with controls. Splenic PC (B220-/CD138+) were tested in TG mice and their number was greater than in the WT controls (5+6 mice, respectively; see Table). Finally, serum antibodies and light chains were studied and found to be increased in TG compared with WT mice (3+4 mice). IgA: 140±14.1 vs 47±5.0 (x104 ng/ml), p<0.005; kappa TG/WT ratio: 1.6±0.08, p=0.005; and lambda TG/WT ratio: 2.0±0.18, p=0.03. Conclusions: Our findings demonstrate a multistep process, with reduced BM B-cells, reduced splenic MZP and MP cells, followed by increased splenic PC and increased antibody production. EPO may be involved in stimulating this dynamic process and as such may have the additional clinical application of augmenting the humoral immune response in patients.Table.Injected (EPO vs Saline) miceTransgenic vs Wild Type mice(mean%±SEM)EPOSalineTGWTBM B220+, total10.9 ±0.6**28.6 ±1.717.7 ±1.8**30.2 ±1.8Spleen MZP2.1 ±0.2**4.8 ±0.24. 9 ±0.6**9.4 ±1.2Spleen MZ2.2 ±0.4**4.4 ±0.43.8 ±0.5*6.4 ±0.9Spleen PCN/A2.5 ±0.4**0.5 ±0.1*depicts p<0.05; **depicts p<0.005; EPO - erythropoietin, TG - transgenic, WT - wild type, BM - bone marrow, MZ - marginal zone, MZP - marginal zone precursors, PC - plasma cells Disclosures Mittelman: XTL Biotech company, interested in EPO: Consultancy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yi Fang ◽  
Jian Hou

AbstractMultiple myeloma (MM) is the second most common hematologic malignancy, and is characterized by the clonal expansion of malignant plasma cells. Despite the recent improvement in patient outcome due to the use of novel therapeutic agents and stem cell transplantation, all patients eventually relapse due to clone evolution. B cell maturation antigen (BCMA) is highly expressed in and specific for MM cells, and has been implicated in the pathogenesis as well as treatment development for MM. In this review, we will summarize representative anti-BCMA immune therapeutic strategies, including BCMA-targeted vaccines, anti-BCMA antibodies and BCMA-targeted CAR cells. Combination of different immunotherapeutic strategies of targeting BCMA, multi-target immune therapeutic strategies, and adding immune modulatory agents to normalize anti-MM immune system in minimal residual disease (MRD) negative patients, will also be discussed.


Author(s):  
Hanley N. Abramson

During the past two decades there has been a major shift in the choice of agents to treat multiple myeloma, whether newly diagnosed or in the relapsed/refractory stage. The introduction of new drug classes, such as proteasome inhibitors, immunomodulators, and anti-CD38 and anti-SLAMF7 monoclonal antibodies, coupled with autologous stem cell transplantation, have approximately doubled the disease’s five-year survival rate. However, this positive news is tempered by the realization that these measures are not curative and patients eventually relapse and/or become resistant to the drug’s effects. Thus, there is a need to discover newer myeloma-driving molecular markers and develop innovative drugs designed to precisely regulate the actions of such putative targets. B cell maturation antigen (BCMA), which is found almost exclusively on the surfaces of malignant plasma cells to the exclusion of other cell types, including their normal counterparts, has emerged as a specific target of interest in this regard. Immunotherapeutic agents have been at the forefront of research designed to block BCMA activity. These agents encompass monoclonal antibodies, such as the drug conjugate belantamab mafodotin; bispecific T-cell engager strategies exemplified by AMG 420; and chimeric antigen receptor (CAR) T-cell therapeutics that include idecabtagene vicleucel (bb2121) and JNJ-68284528.


Endocrinology ◽  
2006 ◽  
Vol 147 (10) ◽  
pp. 4561-4568 ◽  
Author(s):  
Jacqueline A. Gilbert ◽  
Susan L. Kalled ◽  
Jane Moorhead ◽  
Donna M. Hess ◽  
Paul Rennert ◽  
...  

Hyperthyroid Graves’ disease is a common autoimmune disorder mediated by agonistic antibodies to the TSH receptor, termed thyroid stimulating antibodies (TSAbs). Recently members of the TNF superfamily, B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), have been identified along with their receptors, B cell maturation antigen and transmembrane activator and calcium-modulator and cyclophilin ligand interactor, and the BAFF-specific receptor. BAFF is a fundamental B cell survival/maturation factor, and both BAFF and APRIL have been implicated in antibody production. We investigated the effect of interfering with BAFF- and APRIL-mediated signals in an induced model of Graves’ disease by blockade of these factors using soluble decoy receptors. In a therapeutic setting in mice with established hyperthyroidism, we show that blockade of BAFF or BAFF+APRIL with BAFF-specific receptor-Fc and B cell maturation antigen-Fc, respectively, leads to significant reductions in the induced hyperthyroidism. This was supported by a parallel pattern of declining TSAbs in the responding animals. Histopathological analysis of splenic sections from treated animals revealed marked reductions in the B cell follicle regions, but staining with anti-CD138 revealed the persistence of plasma cells. Thus, the reductions in TSAbs in the treated animals were not related to overall plasma cell numbers in the secondary lymphoid organs. Our results are the first to demonstrate attenuation of established hyperthyroidism by therapeutic intervention aimed at autoreactive B cells and indicate that both BAFF and APRIL appear to play important roles in the development and survival of the autoantibody producing cells in this model.


2020 ◽  
Vol 16 (34) ◽  
pp. 2783-2798 ◽  
Author(s):  
Semira Sheikh ◽  
Eyal Lebel ◽  
Suzanne Trudel

Multiple myeloma remains an incurable disease, with a large proportion of patients in the relapsed/refractory setting often unable to achieve durable responses. Novel, well-tolerated and highly effective therapies in this patient population represent an unmet need. Preclinical studies have shown that B-cell maturation antigen is nearly exclusively expressed on normal and malignant plasma cells, thereby identifying it as a highly selective target for immunotherapeutic approaches. Belantamab mafodotin (GSK2857916, belamaf) is a first-in-class antibody–drug conjugate directed at B-cell maturation antigen and has shown promising activity in clinical trials. In this review, we provide an overview of belantamab mafodotin as a compound and present the available clinical efficacy and safety data in the treatment of relapsed/refractory multiple myeloma.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1179-1179
Author(s):  
Zhongfa Yang ◽  
Yu Zhu ◽  
Rachel Gerstein ◽  
Alan G. Rosmarin

Abstract B lymphocytes develop in the bone marrow and later encounter antigen in lymph nodes, where they complete their development as plasma cells or B memory cells. Several key transcription factors have been identified that are required for B cell development, including Pax5, BCL6, C-MYC, and others. GABP is a tetrameric ets transcription factor that includes the DNA-binding GABP alpha protein, and the unrelated protein, GABP beta, which contains multimerization and transcriptional activation domains. GABP plays key roles in cell cycle control and mitochondrial biogenesis. It is also required for lineage specific gene expression, and it was previously shown to control gene expression of the IL-7 receptor and Pax5, both of which are required for lymphocyte development. Disruption of mouse Gabpα caused cell cycle arrest in hematopoietic stem cells (HSC), profound loss of progenitor cells, and aberrant myeloid differentiation. We created a conditional knockout model of Gabpα in B lymphocytes by breeding mice with lox-P flanked Gabpa to mice that bear Cre recombinase knocked into the B-cell specific CD19 locus; the mice also carry the Rosa 26 lox-STOP-lox YFP transgene, which permits identification and isolation of individual Gabpα null cells, based on expression of YFP. Loss of Gabpα was highly lineage specific for B lymphocytes. Gabpa null mice were healthy and vigorous through young adulthood, but some developed rectal prolapse by nine months of age, and necropsy demonstrated thinning of the intestinal wall and loss of Peyer's Patches and other lymphoid tissue. We immunologically characterized mice between 6 and 8 weeks of age, in order to minimize secondary effects of the inflammatory process associated with rectal prolapse. There was no deletion of Gabpα in T lymphocytes, and no discernable effect on T-cell subpopulations. We observed a significant reduction in Gabpα null (YFP+) B cells, in comparison with the Gabpα replete (YFP-) B cells in bone marrow and spleen. Gabpα null cells contributed to the pro-B cell population, but there was a progressively reduced contribution of Gabpα null cells to later stages of B cell maturation. We detected no Gabpα null cells among mature naive IgD+/IgM+ B cells, indicating a profound block in B cell maturation in cells that lack Gabpα. Importantly, no YFP+ CD138+ cells were detected, indicating that Gabpα null cells could not contribute to plasma cell development. We conclude that Gabp is required for full B cell maturation and plasma cell development in mice, and that its deletion is associated with loss of Peyer's Patches and rectal prolapse. GABP was previously shown to regulate expression of IL-7R and Pax5, which are expressed in lymphoid progenitor cells long before activation of CD19 expression. Thus, failure of B cell development and plasma cell formation in this CD19-Cre Gabpα null model is independent of the effect of GABP on those other B cell factors, and indicates a new, critical role for GABP in later stages of B cell and plasma cell development. Although rectal prolapse has been observed in mice with T cell defects, this represents the first demonstration that B cell defects cause such a phenotype. Disclosures Gerstein: Vertex Pharmaceuticals: Other: employer of spouse.


Sign in / Sign up

Export Citation Format

Share Document