scholarly journals CCL18 differentiates dendritic cells in tolerogenic cells able to prime regulatory T cells in healthy subjects

Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. 3549-3558 ◽  
Author(s):  
Imane Azzaoui ◽  
Saliha Ait Yahia ◽  
Ying Chang ◽  
Han Vorng ◽  
Olivier Morales ◽  
...  

Abstract The aim of this study was to evaluate the nonchemotactic function of CCL18 on human dendritic cells (DCs). In different protocols of DC differentiation, CCL18 was highly produced, suggesting that it may constitute a mandatory mediator of the differentiation process. Differentiation of monocytes from healthy subjects in the presence of granulocyte-macrophage colony-stimulating factor and CCL18 led to the development of DCs with a semimature phenotype, with intermediate levels of costimulatory and MHC class II molecules, increased CCR7 expression, which induced, in coculture with allogenic naive T cells, an increase in IL-10 production. The generated T cells were able to suppress the proliferation of effector CD4+CD25− cells, through a cytokine-dependent mechanism, and exhibited characteristics of type 1 T regulatory cells. The generation of tolerogenic DCs by CCL18 was dependent on the production of indoleamine 2,3-dioxigenase through an interleukin-10-mediated mechanism. Surprisingly, when DCs originated from allergic patients, the tolerogenic effect of CCL18 was lost in relation with a decreased binding of CCL18 to its putative receptor. This study is the first to define a chemokine able to generate tolerogenic DCs. However, this function was absent in allergic donors and may participate to the decreased tolerance observed in allergic diseases.

2006 ◽  
Vol 74 (6) ◽  
pp. 3296-3304 ◽  
Author(s):  
Elena Giacomini ◽  
Ambar Sotolongo ◽  
Elisabetta Iona ◽  
Martina Severa ◽  
Maria Elena Remoli ◽  
...  

ABSTRACT The Mycobacterium tuberculosis genome encodes 13 sigma factors. We have previously shown that mutations in some of these transcriptional activators render M. tuberculosis sensitive to various environmental stresses and can attenuate the virulence phenotype. In this work, we focused on extracytoplasmic factor σE and studied the effects induced by the deletion of its structural gene (sigE) in the infection of human monocyte-derived dendritic cells (MDDC). We found that the wild-type M. tuberculosis strain (H37Rv), the sigE mutant (ST28), and the complemented strain (ST29) were able to infect dendritic cells (DC) to similar extents, although at 4 days postinfection a reduced ability to grow inside MDDC was observed for the sigE mutant ST28. After mycobacterium capture, the majority of MDDC underwent full maturation and expressed both inflammatory cytokines, such as tumor necrosis factor alpha, and the regulatory cytokines interleukin-12 (IL-12), IL-18, and beta interferon (IFN-β). Conversely, a higher level of production of IL-10 was observed in ST28-infected MDDC compared to H37Rv- or ST29-infected cell results. However, in spite of the presence of IL-10, supernatants from ST28-infected DC induced IFN-γ production by T cells similarly to those from H37Rv-infected DC culture. On the other hand, IL-10 impaired CXCL10 production in sigE mutant-infected DC and, indeed, its neutralization restored CXCL10 secretion. In line with these results, supernatants from ST28-infected cells showed a decreased capability to recruit CXCR3+ CD4+ T cells compared to those obtained from H37Rv-infected DC culture. Thus, our findings suggest that the sigE mutant-induced secretion of IL-10 inhibits CXCL10 expression and, in turn, the recruitment of activated-effector cells involved in the formation of granulomas.


2007 ◽  
Vol 204 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Tomoki Ito ◽  
Maria Yang ◽  
Yui-Hsi Wang ◽  
Roberto Lande ◽  
Josh Gregorio ◽  
...  

Although there is evidence for distinct roles of myeloid dendritic cells (DCs [mDCs]) and plasmacytoid pre-DCs (pDCs) in regulating T cell–mediated adaptive immunity, the concept of functional DC subsets has been questioned because of the lack of a molecular mechanism to explain these differences. In this study, we provide direct evidence that maturing mDCs and pDCs express different sets of molecules for T cell priming. Although both maturing mDCs and pDCs upregulate the expression of CD80 and CD86, only pDCs upregulate the expression of inducible costimulator ligand (ICOS-L) and maintain high expression levels upon differentiation into mature DCs. High ICOS-L expression endows maturing pDCs with the ability to induce the differentiation of naive CD4 T cells to produce interleukin-10 (IL-10) but not the T helper (Th)2 cytokines IL-4, -5, and -13. These IL-10–producing T cells are T regulatory cells, and their generation by ICOS-L is independent of pDC-driven Th1 and Th2 differentiation, although, in the later condition, some contribution from endogenous IL-4 cannot be completely ruled out. Thus, in contrast to mDCs, pDCs are poised to express ICOS-L upon maturation, which leads to the generation of IL-10–producing T regulatory cells. Our findings demonstrate that mDC and pDCs are intrinsically different in the expression of costimulatory molecules that drive distinct types of T cell responses.


2009 ◽  
Vol 182 (5) ◽  
pp. 2795-2807 ◽  
Author(s):  
Ingrid E. Dumitriu ◽  
Donald R. Dunbar ◽  
Sarah E. Howie ◽  
Tariq Sethi ◽  
Christopher D. Gregory

2009 ◽  
Vol 182 (6) ◽  
pp. 3372-3379 ◽  
Author(s):  
Vincent Lombardi ◽  
Laurence Van Overtvelt ◽  
Stéphane Horiot ◽  
Philippe Moingeon

1996 ◽  
Vol 184 (1) ◽  
pp. 19-29 ◽  
Author(s):  
H Groux ◽  
M Bigler ◽  
J E de Vries ◽  
M G Roncarolo

Human CD4+ T cells, activated by allogeneic monocytes in a primary mixed lymphocyte reaction in the presence of exogenous interleukin (IL) 10, specifically failed to proliferate after restimulation with the same alloantigens. A comparable state of T cell unresponsiveness could be induced by activation of CD4+ T cells by cross-linked anti-CD3 monoclonal antibodies (mAbs) in the presence of exogenous IL-10. The anergic T cells failed to produce IL-2, IL-5, IL-10, interferon gamma, tumor necrosis factor alpha, and granulocyte/macrophage colony-stimulating factor. The IL-10-induced anergic state was long-lasting. T cell anergy could not be reversed after restimulation of the cells with anti-CD3 and anti-CD28 mAbs, although CD3 and CD28 expression was normal. In addition, restimulation of anergized T cells with anti-CD3 mAbs induced normal Ca2+ fluxes and resulted in increased CD3, CD28, and class II major histocompatibility complex expression, indicating that calcineurin-mediated signaling occurs in these anergic cells. However, the expression of the IL-2 receptor alpha chain was not upregulated, which may account for the failure of exogenous IL-2 to reverse the anergic state. Interestingly, anergic T cells and their nonanergic counterparts showed comparable levels of proliferation and cytokine production after activation with phorbol myristate acetate and Ca2+ ionophore, indicating that a direct activation of a protein kinase C-dependent pathway can overcome the tolerizing effect of IL-10. Taken together, these data demonstrate that IL-10 induces T cell anergy and therefore may play an important role in the induction and maintenance of antigen-specific T cell tolerance.


Blood ◽  
2019 ◽  
Vol 133 (4) ◽  
pp. 319-330 ◽  
Author(s):  
Stéphanie Humblet-Baron ◽  
John S. Barber ◽  
Carlos P. Roca ◽  
Aurelie Lenaerts ◽  
Pandelakis A. Koni ◽  
...  

Abstract Dendritic cells (DCs) are a key cell type in the initiation of the adaptive immune response. Recently, an additional role for DCs in suppressing myeloproliferation was discovered. Myeloproliferative disorder (MPD) was observed in murine studies with constitutive depletion of DCs, as well as in patients with congenital deficiency in DCs caused by mutations in GATA2 or IRF8. The mechanistic link between DC deficiency and MPD was not predicted through the known biology and has remained an enigma. Prevailing models suggest numerical DC deficiency leads to MPD through compensatory myeloid differentiation. Here, we formally tested whether MPD can also arise through a loss of DC function without numerical deficiency. Using mice whose DCs are deficient in antigen presentation, we find spontaneous MPD that is characterized by splenomegaly, neutrophilia, and extramedullary hematopoiesis, despite normal numbers of DCs. Disease development was dependent on loss of the MHC class II (MHCII) antigen-presenting complex on DCs and was eliminated in mice deficient in total lymphocytes. Mice lacking MHCII and CD4 T cells did not develop disease. Thus, MPD was paradoxically contingent on the presence of CD4 T cells and on a failure of DCs to activate CD4 T cells, trapping the cells in a naive Flt3 ligand–expressing state. These results identify a novel requirement for intercellular collaboration between DCs and CD4 T cells to regulate myeloid differentiation. Our findings support a new conceptual framework of DC biology in preventing MPD in mice and humans.


1993 ◽  
Vol 178 (2) ◽  
pp. 633-642 ◽  
Author(s):  
N Bhardwaj ◽  
J W Young ◽  
A J Nisanian ◽  
J Baggers ◽  
R M Steinman

Dendritic cells are potent antigen-presenting cells for several primary immune responses and therefore provide an opportunity for evaluating the amounts of cell-associated antigens that are required for inducing T cell-mediated immunity. Because dendritic cells express very high levels of major histocompatibility complex (MHC) class II products, it has been assumed that high levels of ligands bound to MHC products ("signal one") are needed to stimulate quiescent T cells. Here we describe quantitative aspects underlying the stimulation of human blood T cells by a bacterial superantigen, staphylococcal enterotoxin A (SEA). The advantages of superantigens for quantitative studies of signal one are that these ligands: (a) engage MHC class II and the T cell receptor but do not require processing; (b) are efficiently presented to large numbers of quiescent T cells; and (c) can be pulsed onto dendritic cells before their application to T cells. Thus one can relate amounts of dendritic cell-associated SEA to subsequent lymphocyte stimulation. Using radioiodinated SEA, we noted that dendritic cells can bind 30-200 times more superantigen than B cells and monocytes. Nevertheless, this high SEA binding does not underlie the strong potency of dendritic cells to present antigen to T cells. Dendritic cells can sensitize quiescent T cells, isolated using monoclonals to appropriate CD45R epitopes, after a pulse of SEA that occupies a maximum of 0.1% of surface MHC class II molecules. This corresponds to an average of 2,000 molecules per dendritic cell. At these low doses of bound SEA, monoclonal antibodies to CD3, CD4, and CD28 almost completely block T cell proliferation. In addition to suggesting new roles for MHC class II on dendritic cells, especially the capture and retention of ligands at low external concentrations, the data reveal that primary T cells can generate a response to exceptionally low levels of signal one as long as these are delivered on dendritic cells.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Noelle Zurmühl ◽  
Anna Schmitt ◽  
Ulrike Formentini ◽  
Johannes Weiss ◽  
Heike Appel ◽  
...  

Abstract Background Human plasmacytoid dendritic cells (pDC) have a dual role as interferon-producing and antigen-presenting cells. Their relevance for allergic diseases is controversial. and the impact of pDC on allergic immune responses is poorly understood. Methods This in vitro study on human pDC isolated from peripheral blood was designed to compare side by side the uptake of three clinically relevant representative allergens: fluorochrome-labeled house dust mite Der p 1, Bee venom extract from Apis mellifera (Api) and the food allergen OVA analyzed flow cytometry and confocal microscopy. Results We found that the internalization and its regulation by TLR9 ligation was significantly different between allergens in terms of time course and strength of uptake. Api and OVA uptake in pDC of healthy subjects was faster and reached higher levels than Der p 1 uptake. CpG ODN 2006 suppressed OVA uptake and to a lesser extent Der p 1, while Api internalization was not affected. All allergens colocalized with LAMP1 and EEA1, with Api being internalized particularly fast and reaching highest intracellular levels in pDC. Of note, we could not determine any specific differences in antigen uptake in allergic compared with healthy subjects. Conclusions To our knowledge this is the first study that directly compares uptake regulation of clinically relevant inhalative, injective and food allergens in pDC. Our findings may help to explain differences in the onset and severity of allergic reactions as well as in the efficiency of AIT.


2003 ◽  
Vol 60 (5) ◽  
pp. 531-538 ◽  
Author(s):  
Miodrag Colic ◽  
Dusan Jandric ◽  
Zorica Stojic-Vukanic ◽  
Jelena Antic-Stankovic ◽  
Petar Popovic ◽  
...  

Several laboratories have developed culture systems that allow the generation of large numbers of human dendritic cells (DC) from monocytes using granulocyte-macrophage colony stimulating factor (GM-CSF), and interleukin-4 (IL-4). In this work we provided evidence that GM-CSF (100 ng/ml) in combination with a low concentration of IL-4 (5 ng/ml) was efficient in the generation of immature, non-adherent, monocyte-derived DC as the same concentration of GM-CSF, and ten times higher concentration of IL-4 (50 ng/ml). This conclusion was based on the similar phenotype profile of DC such as the expression of CD1a, CD80, CD86, and HLA-DR, down-regulation of CD14, and the absence of CD83, as well as on their similar allostimulatory activity for T cells. A higher number of cells remained adherent in cultures with lower concentrations of IL-4 than in cultures with higher concentrations of the cytokine. However, most of these adherent cells down-regulated CD14 and stimulated the proliferation of alloreactive T cells. In contrast adherent cells cultivated with GM-CSF alone were predominantly macrophages as judged by the expression of CD14 and the inefficiency to stimulate alloreactive T cells. DC generated in the presence of lower concentrations of IL-4 had higher proapoptotic potential for the Jurkat cell line than DC differentiated with higher concentrations of IL-4, suggesting their stronger cytotoxic, anti-tumor effect.


Sign in / Sign up

Export Citation Format

Share Document