scholarly journals PU.1 is linking the glycolytic enzyme HK3 in neutrophil differentiation and survival of APL cells

Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 4963-4970 ◽  
Author(s):  
Elena A. Federzoni ◽  
Peter J. M. Valk ◽  
Bruce E. Torbett ◽  
Torsten Haferlach ◽  
Bob Löwenberg ◽  
...  

Abstract The transcription factor PU.1 is a master regulator of myeloid differentiation and function. On the other hand, only scarce information is available on PU.1-regulated genes involved in cell survival. We now identified the glycolytic enzyme hexokinase 3 (HK3), a gene with cytoprotective functions, as transcriptional target of PU.1. Interestingly, HK3 expression is highly associated with the myeloid lineage and was significantly decreased in acute myeloid leukemia patients compared with normal granulocytes. Moreover, HK3 expression was significantly lower in acute promyelocytic leukemia (APL) compared with non-APL patient samples. In line with the observations in primary APL patient samples, we observed significantly higher HK3 expression during neutrophil differentiation of APL cell lines. Moreover, knocking down PU.1 impaired HK3 induction during neutrophil differentiation. In vivo binding of PU.1 and PML-RARA to the HK3 promoter was found, and PML-RARA attenuated PU.1 activation of the HK3 promoter. Next, inhibiting HK3 in APL cell lines resulted in significantly reduced neutrophil differentiation and viability compared with control cells. Our findings strongly suggest that HK3 is: (1) directly activated by PU.1, (2) repressed by PML-RARA, and (3) functionally involved in neutrophil differentiation and cell viability of APL cells.

Blood ◽  
2006 ◽  
Vol 107 (8) ◽  
pp. 3330-3338 ◽  
Author(s):  
Beatrice U. Mueller ◽  
Thomas Pabst ◽  
José Fos ◽  
Vibor Petkovic ◽  
Martin F. Fey ◽  
...  

Abstract Tightly regulated expression of the transcription factor PU.1 is crucial for normal hematopoiesis. PU.1 knockdown mice develop acute myeloid leukemia (AML), and PU.1 mutations have been observed in some populations of patients with AML. Here we found that conditional expression of promyelocytic leukemia-retinoic acid receptor α (PML-RARA), the protein encoded by the t(15;17) translocation found in acute promyelocytic leukemia (APL), suppressed PU.1 expression, while treatment of APL cell lines and primary cells with all-trans retinoic acid (ATRA) restored PU.1 expression and induced neutrophil differentiation. ATRA-induced activation was mediated by a region in the PU.1 promoter to which CEBPB and OCT-1 binding were induced. Finally, conditional expression of PU.1 in human APL cells was sufficient to trigger neutrophil differentiation, whereas reduction of PU.1 by small interfering RNA (siRNA) blocked ATRA-induced neutrophil differentiation. This is the first report to show that PU.1 is suppressed in acute promyelocytic leukemia, and that ATRA restores PU.1 expression in cells harboring t(15;17).


Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


2019 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

AbstractLineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a Salt-Inducible Kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF MEF2C. In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. Here, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells underin vitroandin vivoconditions. Similar phenotypes were obtained when exposing cells to YKL-05-099, which caused cell cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele ofSIK3, we found that the anti-proliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated two different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progressionin vivoand extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-positive AML and provide a rationale for developing drug-like inhibitors of SIK3 for definitive pre-clinical investigation and for studies in human patients with leukemia.Key PointsAML cells are uniquely sensitive to genetic or chemical inhibition of Salt-Inducible Kinase 3in vitroandin vivo.A SIK inhibitor YKL-05-099 suppresses MEF2C function and AMLin vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2605-2605
Author(s):  
Lars Bullinger ◽  
Konstanze Dohner ◽  
Richard F. Schlenk ◽  
Frank G. Rucker ◽  
Jonathan R. Pollack ◽  
...  

Abstract Inhibitors of histone deacetylases (HDACIs) like valproic acid (VPA) display activity in murine leukemia models, and induce tumor-selective cytoxicity against blasts from patients with acute myeloid leukemia (AML). However, despite of the existing knowledge of the potential function of HDACIs, there remain many unsolved questions especially regarding the factors that determine whether a cancer cell undergoes cell cycle arrest, differentiation, or death in response to HDACIs. Furthermore, there is still limited data on HDACIs effects in vivo, as well as HDACIs function in combination with standard induction chemotherapy, as most studies evaluated HDACIs as single agent in vitro. Thus, our first goal was to determine a VPA response signature in different myeloid leukemia cell lines in vitro, followed by an in vivo analysis of VPA effects in blasts from adult de novo AML patients entered within two randomized multicenter treatment trials of the German-Austrian AML Study Group. To define an VPA in vitro “response signature” we profiled gene expression in myeloid leukemia cell lines (HL-60, NB-4, HEL-1, CMK and K-562) following 48 hours of VPA treatment by using DNA Microarray technology. In accordance with previous studies in vitro VPA treatment of myeloid cell lines induced the expression of the cyclin-dependent kinase inhibitors CDKN1A and CDKN2D coding for p21 and p19, respectively. Supervised analyses revealed many genes known to be associated with a G1 arrest. In all cell lines except for CMK we examined an up-regulation of TNFSF10 coding for TRAIL, as well as differential regulation of other genes involved in apoptosis. Furthermore, gene set enrichment analyses showed a significant down-regulation of genes involved in DNA metabolism and DNA repair. Next, we evaluated the VPA effects on gene expression in AML samples collected within the AMLSG 07-04 trial for younger (age<60yrs) and within the AMLSG 06-04 trial for older adults (age>60yrs), in which patients are randomized to receive standard induction chemotherapy (idarubicine, cytarabine, and etoposide = ICE) with or without concomitant VPA. We profiled gene expression in diagnostic AML blasts and following 48 hours of treatment with ICE or ICE/VPA. First results from our ongoing analysis of in vivo VPA treated samples are in accordance with our cell line experiments as e.g. we also see an induction of CDKN1A expression. However, the picture observed is less homogenous as concomitant administration of ICE, as well as other factors, like e.g. VPA serum levels, might substantially influence the in vivo VPA response. Nevertheless, our data are likely to provide new insights into the VPA effect in vivo, and this study may proof to be useful to predict AML patients likely to benefit from VPA treatment. To achieve this goal, we are currently analyzing additional samples, and we are planning to correlate gene expression findings with histone acetylation status, VPA serum levels, cytogenetic, and molecular genetic data.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 581-581
Author(s):  
Patrick Griffin ◽  
Steffan T Nawrocki ◽  
Takashi Satou ◽  
Claudia M Espitia ◽  
Kevin R. Kelly ◽  
...  

Abstract Abstract 581 The long-term prognosis for the majority of patients diagnosed with acute myeloid leukemia (AML) is very poor due, in part, to pre-existing myelodysplasia, multidrug resistance, and co-existing morbidities that limit therapeutic options. Novel strategies are essential in order to improve clinical outcomes. TAK-901 is an investigational small molecule kinase inhibitor that is currently being evaluated in Phase I trials. In preclinical studies, TAK-901 has demonstrated significant effects against a number of kinases with important roles in cancer including the Aurora kinases, which are key regulators of mitosis and whose overexpression in cancer promotes genetic instability, malignant pathogenesis, and drug resistance. We hypothesized that simultaneously targeting the activity of the Auroras and other oncogenic kinases with TAK-901 would disrupt AML pathogenesis. In order to test our hypothesis, we investigated the efficacy and pharmacodynamic activity of TAK-901 human AML cell lines, primary AML specimens, and an orthotopic bioluminescent disseminated mouse model of AML. TAK-901 potently diminished the viability of a panel of 8 AML cell lines as well as primary cells obtained from patients with AML. Acute exposure to TAK-901 ablated clonogenic survival, triggered the accumulation of polyploid cells, and induced apoptosis. The cytostatic and cytotoxic effects of TAK-901 were associated with significantly increased expression of the cyclin-dependent kinase inhibitor p27, growth arrest and DNA-damage-inducible 45a (GADD45a), and the BH3-only pro-apoptotic protein PUMA. Chromatin immunoprecipitation (ChIP) assays revealed that the elevation in the expression of these genes caused by administration of TAK-901 was due to increased FOXO3a transcriptional activity. The in vivo anti-leukemic activity of TAK-901 was investigated in a disseminated xenograft mouse model of AML established by intravenous injection of luciferase-expressing MV4-11 cells. IVIS Xenogen imaging was utilized to monitor disease burden throughout the study. In this mouse model, administration of TAK-901 was very well-tolerated and significantly more effective than the standard of care drug cytarabine with respect to suppressing disease progression and prolonging overall survival. Analysis of specimens collected from mice demonstrated that TAK-901 inhibited the homing of AML cells to the bone marrow microenvironment and induced AML cell apoptosis in vivo. Our collective findings indicate that TAK-901 is a novel multi-targeted kinase inhibitor that has significant preclinical activity in AML models and warrants further investigation. Disclosures: Satou: Takeda Pharmaceuticals: Employment. Hasegawa:Takeda Pharmaceuticals: Employment. Romanelli:Millennium Pharmaceuticals: Employment. de Jong:Takeda San Diego: Employment. Carew:Millennium Pharmaceuticals: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3513-3513
Author(s):  
David B. Sykes ◽  
Mark K Haynes ◽  
Nicola Tolliday ◽  
Anna Waller ◽  
Julien M Cobert ◽  
...  

Abstract Abstract 3513 AML in adults is a devastating disease with a 5-year survival rate of 25%. We lack new treatments for AML, and the chemotherapy standard of care remains unchanged in thirty years. One success story in the treatment of AML has been the discovery of drugs that trigger the differentiation of leukemic blasts in the small subset of patients with acute promyelocytic leukemia. However, differentiation therapy is unfortunately not available for the remaining 90% of non-APL acute myeloid leukemia patients. Understanding and targeting the mechanism of differentiation arrest in AML has been under investigation for more than four decades. There is growing evidence to support the role of the homeobox transcription factors in normal hematopoietic differentiation as well as malignant hematopoiesis. The persistent, and inappropriate, expression of the homeobox gene HoxA9 has been described in the majority of acute myeloid leukemias. This implicates HoxA9 dysregulation as a common pathway of differentiation arrest in myeloid leukemias and suggests that by understanding and targeting this pathway, one might be able to overcome differentiation arrest. In cultures of primary murine bone marrow, constitutive expression of HoxA9 blocks myeloid differentiation and results in the outgrowth of immature myeloid cell lines. The mechanism by which HoxA9 causes differentiation arrest is not known and no compounds exist that inhibit HoxA9. We developed a murine cell line model in which the cells were blocked in differentiation by a conditional version of HoxA9. In this system, an estrogen-dependent ER-HoxA9 protein was generated by fusion with the estrogen receptor hormone-binding domain. When expressed in cultures of primary murine bone marrow, immortalized myeloblast cell lines can grow indefinitely in the presence of stem cell factor and beta-estradiol. Upon removal of beta-estradiol, and inactivation of HoxA9, these cell lines undergo synchronous and terminal myeloid differentiation. We took advantage of an available transgenic mouse model in which GFP was expressed downstream of the lysozyme promoter, a promoter expressed only in mature neutrophils and macrophages. Cell lines derived from the bone marrow of this lysozyme-GFP mouse were GFP-negative at baseline and brightly GFP-positive upon differentiation. In this manner, we generated a cell line with a built-in reporter of differentiation. These cells formed the basis of a high-throughput screen in which cells were incubated with small molecules for a period of four days in 384-well plate format. The cells were assayed by multi-parameter flow cytometry to assess for toxicity and differentiation. Compounds that triggered green fluorescence were scored as “HITS” and their pro-differentiation effects confirmed by analysis of morphology and cell surface markers. Given the availability of cells and the simple and reliable assay, we performed both a pilot screen of small molecules at The Broad Institute as well as an extensive screen of the NIH Molecular Libraries Small Molecule Repository. The screen of more than 350,000 small molecules was carried out in collaboration with the University of New Mexico Center for Molecular Discovery. We have identified one lead class of compounds - prostacyclin agonists – capable of promoting myeloid differentiation in this cell line model of AML. Using a parallel cell line derived from a prostacyclin receptor knock-out mouse, we confirmed that activity was due to signaling through the prostacyclin receptor. The role of prostacyclin signaling in myeloid differentiation has not been previously described. Analysis of gene expression demonstrated that the expression of the prostacyclin receptor is seen in ∼60% of in primary human AML samples. This is a potentially exciting finding as prostacyclin agonists (e.g. treprostinil) are clinically relevant as well as FDA-approved. Their potential role in the treatment of acute myeloid leukemia is unknown. Here we present the details of our high-throughput flow cytometry system and preliminary identification of pro-differentiation agents in AML. If successful, we anticipate that one of these small molecules may offer insight into a mechanism for overcoming differentiation arrest, and may also translate into a novel, clinically relevant treatment for acute myeloid leukemia. Disclosures: Sklar: IntelliCyt: Founder of IntelliCyt, the company that sells the HyperCyt high-throughput flow cytometry system. Other. Zon:Fate Therapeutics: Founder Other.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 915-915
Author(s):  
Stuart A Rushworth ◽  
Lyubov Zaitseva ◽  
Megan Y Murray ◽  
Matthew J Lawes ◽  
David J MacEwan ◽  
...  

Abstract Introduction Despite recent significant progress in the understanding of the biology of acute myeloid leukemia (AML) the clinical outcomes for the majority of patients diagnosed with AML presently remain poor. Consequently, there is an urgent need to identify pharmacological strategies in AML, which are not only effective but can be tolerated by the older, less well patient. Recently our group and others have shown that there is high Bruton’s Tyrosine Kinase (BTK) phosphorylation and RNA expression in AML. Moreover, our recent study described for the first time that ibrutinib and BTK-targeted RNA interference reduced factor-induced proliferation of both AML cell lines and primary AML blasts, as well as reducing AML blast adhesion to bone marrow stromal cells. Inhibition of BTK has been shown to regulate chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma cell migration by inhibiting SDF1 (stromal derived factor 1) induced CXCR4 regulated cell trafficking. Here we report that in human AML ibrutinib in addition functions in a similar way to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. Methods To investigate the role of BTK in regulating AML migration we used both pharmacological inhibitor ibrutinib and genetic knockdown using a lentivirus mediated BTK targeted miRNA in primary AML blasts and AML cell lines. We examined migration of AML blasts and AML cells to SDF-1 using Transwell permeable plates with 8.0µM pores. Western blotting was used to examine the role of SDF-1 in regulating BTK, AKT and MAPK activation in primary AML blasts. Results We initially examined the expression of CXCR4 in human AML cell lines and found that 4/4 cell lines were positive for CXCR4 expression. Next we examined the effects of ibrutinib on the migration of the AML cell lines U937, MV4-11, HL60 and THP-1 in response to SDF1. We found that ibrutinib can inhibit the migration of all AML cell lines tested. We tested the in-vitro activity of ibrutinib on SDF-1 induced migration in a spectrum of primary AML blasts from a wide age spectrum of adult patients and across a range of WHO AML subclasses and found that ibrutinib significantly inhibits primary AML blast migration (n=12). Next we found that ibrutinib can inhibit SDF-1 induced BTK phosphorylation and downstream MAPK and AKT signalling in primary AML blast. Finally to eliminate the problems associated with off target ibrutinib activity we evaluated migration of AML cells lines using genetic inhibition of BTK. The introduction of BTK-specific miRNA dramatically inhibited the expression of BTK in THP-1 and HL60 and reduced SDF1 mediated migration confirming that BTK is involved in regulating AML migration in response to SDF1. Conclusions These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Erna Yang ◽  
Wei Guan ◽  
Desheng Gong ◽  
Jieying Li ◽  
Caixia Han ◽  
...  

AbstractThe formation of the RUNX1-RUNX1T1 fusion protein, resulting from the t(8;21) translocation, is considered to be one of the initiating events of t(8;21) acute myeloid leukemia (AML). However, the mechanisms of the oncogenic mechanism of RUNX1-RUNX1T1 remain unclear. In this study, we found that RUNX1-RUNX1T1 triggers the heterochromatic silencing of UBXN8 by recognizing the RUNX1-binding sites and recruiting chromatin-remodeling enzymes to the UBXN8 promoter region. Decitabine, a specific inhibitor of DNA methylation, upregulated the expression of UBXN8 in RUNX1-RUNX1T1+ AML cell lines. Overexpression of UBXN8 inhibited the proliferation and colony-forming ability of and promoted cell cycle arrest in t(8;21) AML cell lines. Enhancing UBXN8 levels can significantly inhibit tumor proliferation and promote the differentiation of RUNX1-RUNX1T1+ cells in vivo. In conclusion, our results indicated that epigenetic silencing of UBXN8 via methylation of its promoter region mediated by the RUNX1-RUNX1T1 fusion protein contributes to the leukemogenesis of t(8;21) AML and that UBXN8 targeting may be a potential therapeutic strategy for t(8;21) AML.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1300-1300
Author(s):  
Alessia Roma ◽  
Matthew Tcheng ◽  
Nawaz Ahmed ◽  
Sarah Walker ◽  
Preethi Jayanth ◽  
...  

Abstract Acute myeloid leukemia (AML) is a hematological malignancy, characterized by an increased reliance on mitochondria-related energetic pathways including oxidative phosphorylation (OXPHOS). Consistent with this, the electron transport chain (ETC), a component of OXPHOS has been demonstrated to be a suitable anti-leukemia target, with ETC complex I inhibitors currently in clinical development. Relative to its counterparts, complex II (CII) is unique in that it directly links the ETC to the tricarboxylic acid (TCA) cycle through succinate dehydrogenase (SDH) activity. Moreover, it is the only ETC complex with elevated activity in AML, relative to normal hematopoietic samples, with indirect inhibition selectively targeting AML cells. However, direct CII inhibition in AML has not been previously investigated, nor have the mechanisms underlying the divergent fates of AML and normal cells upon CII inhibition. A genetic approach was first used to assess the effects of CII impairment on AML growth in vitro and in vivo. Using lentiviral mediated shRNA we generated AML cell lines lacking succinate dehydrogenase assembly factor 1 (Sdhaf1). Sdhaf1 knockdown suppressed CII activity, cell proliferation and clonogenic growth across all three cell lines and delayed leukemia growth in vivo. To recapitulate these effects through a pharmacological approach, we aimed to identify a novel CII inhibitor, since currently available inhibitors are only effective at high doses and are neurotoxic. Through an in silico structural screen and molecular docking study, shikonin was identified as a small molecule that selectively binds to CII. Shikonin inhibited CII activity in the AML cells lines and patient-derived samples, and selectively killed AML cells (EC 50: 1.0μM ± 0.04) while sparing normal progenitors. In murine engraftment models, shikonin (2.0-3.0 mg/kg, 3x/week for 5 weeks) significantly reduced engraftment of patient-derived AML cells but had no effect on normal hematopoiesis. To further characterize the mechanisms governing the divergent cell fates of CII inhibition, we performed stable isotope metabolic tracing using 13C 6- glucose and 13C 5, 15N 2-glutamine in patient-derived AML cells and normal mobilized peripheral blood mononuclear cells (MNCs). Both pharmacological and genetic loss of CII resulted in TCA cycle truncation by impairing oxidative metabolism of both glucose and glutamine. In Sdhaf1 knockdown and primary AML cells, this led to a depletion in steady state levels of TCA metabolites proceeding SDH. Inhibition of CII most notably suppressed levels of aspartate, a nucleotide precursor whose levels dictate the proliferative capacity of a cell under ETC dysfunction. Remarkably, MNCs maintained aspartate levels despite inhibition of CII, which was attributed to reductive carboxylation of glutamine, an alternate metabolic pathway that can regenerate TCA intermediates when OXPHOS is impaired. In contrast, while reductive carboxylation was also active in AML cells after CII inhibition, this activity was insufficient to maintain aspartate levels and resulted in metabolite depletion and cell death. Thus, loss of CII activity results in diverse cell fates whereby normal haematopoietic, but not AML cells sufficiently use reductive carboxylation of glutamine to overcome TCA cycle truncation, sustain aspartate levels and avert cell death. This is further evident through modulation of glutamine entry into the TCA cycle, where supplementation of cell-permeable α-ketoglutarate abrogated shikonin-mediated cell death while concomitant treatment with the glutaminase inhibitor CB-839, sensitized cells. Together, these results expose reductive carboxylation to support aspartate biosynthesis, as a novel metabolic vulnerability in AML that can be pharmacologically targeted through CII inhibition for clinical benefit. Disclosures Minden: Astellas: Consultancy. D'Alessandro: Omix Thecnologies: Other: Co-founder; Rubius Therapeutics: Consultancy; Forma Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3302-3302
Author(s):  
Timothy Pardee ◽  
Evan Gomes ◽  
Jamie Jennings-Gee ◽  
David L. Caudell ◽  
William Gmeiner

Abstract Abstract 3302 Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy that leads to marrow failure and death. This disease affects approximately 12,000 people per year in the United States, causing 9,000 deaths. Despite decades of research, therapy remains essentially unchanged and outcomes are poor. In patients over the age of 60 less then 10% of patients survive 5 years from diagnosis. There is a desperate need for the identification of new active agents with favorable toxicity profiles. The novel polymeric fluoropyrimidine (FP) FdUMP[10] is an oligodeoxynucleotide pro-drug of the thymidylate synthase (TS)-inhibitory FP metabolite 5-fluoro-2'-deoxyuridine-5`-O-monophosphate (FdUMP). The observation that this compound was highly active against several leukemia lines in the NCI 60 cell line screen prompted us to evaluate its activity in several preclinical models of AML. In vitro, FdUMP[10] exhibited remarkable activity against 3 human acute leukemia cell lines, HL60, Jurkat and THP-1, with IC50 values of 3.378 nM (95% CI 2.984 to 3.825), 5.438 nM (4.609 to 6.417) and 4.093 nM (3.413 to 4.907) respectively. We next tested its efficacy against a more genetically defined murine model of AML driven by expression of MLL-ENL. FdUMP[10] exhibited even greater activity against all murine lines tested. The IC50 values of FdUMP[10] against two MLL-ENL driven murine AML cell lines were 214 pM (95%CI 178.9 to 255.9) and 292.3 pM (251.8 to 339.4). The IC50 values observed for FdUMP[10] for all the murine lines tested were lower than both Ara-C (30-40 nM) and doxorubicin (2-4 nM). We then determined the cytotoxic mechanism for FdUMP[10] in vitro. Upon treatment with FdUMP[10] both the human and murine cell lines undergo extensive apoptosis as indicated by Annexin V and propidium iodide staining. Treated cells developed γH2AX foci, rapid and complete TS inhibition and display trapped Topoisomerase I (Topo I) cleavage complexes. FdUMP[10]-mediated induction of apoptosis was p53 independent as murine AML cells that had p53 knocked down by RNAi demonstrated resistance to both Ara-C and doxorubicin, but not to FdUMP[10]. We next tested the efficacy of FdUMP[10] in vivo. The MLL-ENL driven murine AML model results in blasts that can be transplanted into sublethally irradiated, immunocompetent, syngeneic recipients. The recipients develop a fatal and therapy-resistant AML. Lines were generated that expressed a luciferase reporter. Animals were imaged 6–7 days after injection of the leukemias to ensure engraftment and then began treatment with either the combination of Ara-C plus doxorubicin, single-agent FdUMP[10], or observation. Studies were performed using 2 doses of FdUMP[10] at 150 or 300 mg/kg injected on days 1 and 3 and compared to animals treated with 100 mg/kg Ara-C and 3mg/kg doxorubicin injected on days 1 through 5. Both treatments resulted in a statistically significant survival advantage over observation. A preliminary toxicology study compared FdUMP[10], 150 mg/kg daily, to 5-fluorouracil (5 FU), 150 mg/kg daily, or the combination of Ara-C at 100 mg/kg plus doxorubicin at 3 mg/kg daily. All groups were treated for 3, 4 or 5 days. On day 6 animals were sacrificed and organs harvested, sectioned, and stained. Slides were then reviewed by a veterinary pathologist. Tissues most affected were the small intestine, colon, and the bone marrow. The 5FU-treated animals had severe villous blunting and fusion with crypt necrosis in both large and small intestine. In contrast, FdUMP[10]-treated animals had only mild crypt epithelial apoptosis with mitoses. The 5 FU and Ara-C plus doxorubicin groups had a severe pan-cytopenia in the marrow compared to FdUMP[10] treated animals that showed only minimal to mild apoptosis. These data support the assertion that FdUMP[10] has lower toxicity then either Ara-C plus doxorubicin or identically dosed 5 FU. In summary FdUMP[10] exhibited remarkable activity against AML cells in vitro and in vivo. Additionally, FdUMP[10] had decreased toxicity compared to treatment with either single agent 5 FU or combination treatment with Ara-C plus doxorubicin. Disclosures: Gmeiner: Salzburg Therapeutics: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document