scholarly journals Platelet Ca2+ responses coupled to glycoprotein VI and Toll-like receptors persist in the presence of endothelial-derived inhibitors: roles for secondary activation of P2X1 receptors and release from intracellular Ca2+ stores

Blood ◽  
2012 ◽  
Vol 119 (15) ◽  
pp. 3613-3621 ◽  
Author(s):  
C. Y. Eleanor Fung ◽  
Sarah Jones ◽  
Adwoa Ntrakwah ◽  
Khalid M. Naseem ◽  
Richard W. Farndale ◽  
...  

Abstract Inhibition of Ca2+ mobilization by cyclic nucleotides is central to the mechanism whereby endothelial-derived prostacyclin and nitric oxide limit platelet activation in the intact circulation. However, we show that ∼ 50% of the Ca2+ response after stimulation of glycoprotein VI (GPVI) by collagen, or of Toll-like 2/1 receptors by Pam3Cys-Ser-(Lys)4 (Pam3CSK4), is resistant to prostacyclin. At low agonist concentrations, the prostacyclin-resistant Ca2+ response was predominantly because of P2X1 receptors activated by ATP release via a phospholipase-C–coupled secretory pathway requiring both protein kinase C and cytosolic Ca2+ elevation. At higher agonist concentrations, an additional pathway was observed because of intracellular Ca2+ release that also depended on activation of phospholipase C and, for TLR 2/1, PI3-kinase. Secondary activation of P2X1-dependent Ca2+ influx also persisted in the presence of nitric oxide, delivered from spermine NONOate, or increased ectonucleotidase levels (apyrase). Surprisingly, apyrase was more effective than prostacyclin and NO at limiting secondary P2X1 activation. Dilution of platelets reduced the average extracellular ATP level without affecting the percentage contribution of P2X1 receptors to collagen-evoked Ca2+ responses, indicating a highly efficient activation mechanism by local ATP. In conclusion, platelets possess inhibitor-resistant Ca2+ mobilization pathways, including P2X1 receptors, that may be particularly important during early thrombotic or immune-dependent platelet activation.

1990 ◽  
Vol 268 (2) ◽  
pp. 325-331 ◽  
Author(s):  
A Karniguian ◽  
F Grelac ◽  
S Levy-Toledano ◽  
Y J Legrand ◽  
F Rendu

This study analyses early biochemical events in collagen-induced platelet activation. An early metabolic event occurring during the lag phase was the activation of PtdIns(4,5)P2-specific phospholipase C. Phosphatidic acid (PtdOH) formation, phosphorylation of P43 and P20, thromboxane B2 (TXB2) synthesis and platelet secretion began after the lag phase, and were similarly time-dependent, except for TXB2 synthesis, which was delayed. Collagen induced extensive P43 phosphorylation, whereas P20 phosphorylation was weak and always lower than with thrombin. The dose-response curves of P43 phosphorylation and granule secretion were similar, and both reached a peak at 7.5 micrograms of collagen/ml, a dose which induced half-maximal PtdOH and TXB2 formation. Sphingosine, assumed to inhibit protein kinase C, inhibited P43 phosphorylation and secretion in parallel. However, sphingosine was not specific for protein kinase C, since a 15 microM concentration, which did not inhibit P43 phosphorylation, blocked TXB2 synthesis by 50%. Sphingosine did not affect PtdOH formation at all, even at 100 microM, suggesting that collagen itself induced this PtdOH formation, independently of TXB2 generation. The absence of external Ca2+ allowed the cleavage of polyphosphoinositides and the accumulation of InsP3 to occur, but impaired P43 phosphorylation, PtdOH and TXB2 formation, and secretion; these were only restored by adding 0.11 microM-Ca2+. In conclusion, stimulation of platelet membrane receptors for collagen initiates a PtdInsP2-specific phospholipase C activation, which is independent of external Ca2+, and might be the immediate receptor-linked response. A Ca2+ influx is indispensable to the triggering of subsequent platelet responses. This stimulation predominantly involves the protein kinase C pathway associated with secretion, and appears not to be mediated by TXB2, at least during its initial stage.


1993 ◽  
Vol 290 (2) ◽  
pp. 471-475 ◽  
Author(s):  
R A Blake ◽  
T R Walker ◽  
S P Watson

Vanadate ions in the presence of H2O2 (peroxovanadate) induce a marked increase in the degree of tyrosine phosphorylation of proteins in human platelets. This increase preceded the onset of platelet shape change and aggregation, and is associated with activation of phospholipase C and increased [32P]phosphorylation of proteins of 47 kDa, a substrate for protein kinase C, and 20 kDa, a substrate for both myosin light-chain kinase and protein kinase C. The non-selective inhibitor of protein kinases, staurosporine, inhibits the increase in tyrosine phosphorylation of nearly all proteins and inhibits completely all other functional responses, suggesting that these events may be linked. In support of this, peroxovanadate stimulates tyrosine phosphorylation of phospholipase C gamma 1, suggesting that this may underlie its mechanism of platelet activation. Staurosporine also inhibited activation of phospholipase C by collagen, suggesting that tyrosine phosphorylation has an important role in the early stages of collagen-induced platelet activation.


1996 ◽  
Vol 313 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Mustapha SI-TAHAR ◽  
Patricia RENESTO ◽  
Hervé FALET ◽  
Francine RENDU ◽  
Michel CHIGNARD

Cathepsin G, an enzyme released by stimulated polymorphonuclear neutrophils, and thrombin are two human proteinases which potently trigger platelet activation. Unlike thrombin, the mechanisms by which cathepsin G initiates platelet activation have yet to be elucidated. The involvement of the phospholipase C (PLC)/protein kinase C (PKC) pathway in cathepsin G-induced activation was investigated and compared with stimulation by thrombin. Exposure of 5-[14C]hydroxytryptamine-labelled platelets to cathepsin G, in the presence of acetylsalicylic acid and phosphocreatine/creatine kinase, induced platelet aggregation and degranulation in a concentration-dependent manner (0.1-3.0 μM). Time-course studies (0-180 s) comparing equivalent concentrations of cathepsin G (3 μM) and thrombin (0.5 unit/ml) resulted in very similar transient hydrolysis of phosphatidylinositol 4,5-bisphosphate and steady accumulation of phosphatidic acid. In addition cathepsin G, like thrombin, initiated the production of inositol phosphates. The neutrophil-derived proteinase also induced phosphorylation of both the myosin light chain and pleckstrin, a substrate for PKC, to levels similar to those observed in platelets challenged with thrombin. Inhibition of PKC by GF 109203X, a specific inhibitor, suppressed platelet aggregation and degranulation to the same extent for both proteinases. Using fura 2-loaded platelets, the rise in the cytosolic free Ca2+ concentration induced by cathepsin G was shown to result, as for thrombin, from both mobilization of internal stores and Ca2+ entry across the plasma membrane. These findings provide evidence that cathepsin G stimulates the PLC/PKC pathway as potently as does thrombin, independently of thromboxane A2 formation and ADP release, and that this pathway is required for platelet functional responses.


1985 ◽  
Vol 226 (3) ◽  
pp. 831-837 ◽  
Author(s):  
S P Watson ◽  
B Reep ◽  
R T McConnell ◽  
E G Lapetina

The present study investigates the pathway of metabolism of inositol phospholipids in human platelets exposed to collagen. Platelet activation by collagen was preceded by a lag phase usually lasting 10-20 s. Formation of [3H]inositol trisphosphate (IP3) was not observed during this period, but occurred in parallel with the onset of aggregation, release of ATP and phosphorylation of a 20 000 Da and a 40 000 Da protein. Indomethacin treatment partially inhibited all of these responses. Aggregation and ATP release, but not IP3 formation, were further inhibited in indomethacin-treated platelets loaded with the fluorescent Ca2+ indicator, quin2. Under these conditions there was no detectable mobilization of Ca2+. These results demonstrate that activation of platelets by collagen is associated with rapid hydrolysis of polyphosphoinositides by phospholipase C, thereby producing IP3. This observation is discussed in relation to IP3 as a possible Ca2+-mobilizing agent.


1987 ◽  
Author(s):  
JW N Akkerman

It is long known that platelet aggregation and secretion are accompanied by acidification of the extracellular medium. Much of the proton extrusion results from hydrolysis of ATP generated in the glycolytic pathway and liberation of secretion granules, which are slightly acidic. Recent eyidence points at a third source for extracellular protons.Following early observations (1) that epinephrine-induced platelet functions depended on extracellular Na+ (Na+ o ), it became evident that platelets possess a Na+ /H+ antiport, which regulates the cytosolic pH (pH.) via stochiometric exchange of intracellular protons with extracellular Na+ (2). Platelet functions triggered by epinephrine, AdP or low doses of thrombin are impaired by (i) the absence of Na+ o, and (ii) the presence of EIPA, an amiloride analogue which blocks the antiport. Ionophores which enhance proton efflux enhance the platelet responses. Thus, the antiport affects platelet functions via changes in pHi, but this has been difficult to establish experimentally. Early studies by Simons based on 6-carboxyfluorescein indeed reported a rise in pHi. during platelet activation, but more precise analysis awaited the development of more sensitive pHi-indicators. Recently (3),1studies employing BCECF, have confirmed that resting platelets maintain a pH. of about 7.1 via an EIPA-sensitive mechanism.Platelet activation induces a rise of 0.1-0.2 pH units, which lasts for several minutes unless the antiport is inhibited. When Na+/H+ exchange is gradually inhibited by lowering Na+ o , EIPA-sensitive proton efflux, mobilization of Ca2+ ions and aggregation are inhibited in parallel following stimulation with a low dose of thrombin. Artificial alkalinization reverses these effects. Alkalinization alone is not a trigger for platelet functions. Furthermore, high doses of thrombin (> 0.2 U/ml) initiate Ca2+ -mobilization and aggregation independent of changes in pHi Possibly, Na+ /H+ exchange enhances Ca mobilization by inositol-P3, generated by weak stimulation of the thrombin receptor, wfiich accords with the pH profile of IP3-induced Ca2+ liberation from isolated dense tubular membranes. However, concurrent measurement of Quin-2 and BCECF-fluoresence indicate that Ca2+ mobilization slightly precedes the rise in pHi which would make Ca+ mobilization a trigger for Na+ /H+ exchange is stead of one of its effects. Recent data favour a role for protein kinase C in activation of the antiport. A rise in pHi. is seen during incubation with OAG, an activator of protein kinase C. Thrombin (low dose)-induced Na /H exchange is inhibited by TFP, an inhibitor of this enzyme. These findings are bes^explained by assuming that low doses of thrombin initiate phospholipase C-mediated formation of inositol-P3, which triggers Ca2+ mobilization. Concurrently, diacylglycerol is formed, which activates protein kinase C. The result is a rise in pHi, which enhances the mobilization of Ca2+ by inositol-P3.This scheme differs from the sequence seen during activation by ADP or epinephrine (1), where Na+ /H2+ exchange is an early step after receptor occupancy and precedes phospholipid A2-mediated PG-endoperoxides/TxA2 formation. These metabolites activate phospholipase C resulting in diacylglycerol and inositol-P3-formation at a rather late stage in signal processing. Recent evidence (4) indicates that in epinephrine-stimulated platelets Na+ /H+ exchange requires fibrinogen binding, which opens the intriguing possibility that occupancy of GPIIb-IIIa starts a process that affects signal processing pathways in platelets.Sweatt, J.D., Limbird, L.E, et al. J.B.C. 1983, 1985, 1986Siffert, W., Akkerman, J.W.N., et al. FEBS Lett 1984, 1987; Nature 1987.Zavoico, G.B., Feinstein, M.B st al. J.B.C. 1986Banga, H.D., Rittenhouse, S.E. PNAS 1986


Sign in / Sign up

Export Citation Format

Share Document