Peripheral blood monocyte-derived chemokine blockade prevents murine transfusion-related acute lung injury (TRALI)

Blood ◽  
2014 ◽  
Vol 123 (22) ◽  
pp. 3496-3503 ◽  
Author(s):  
Christopher G. J. McKenzie ◽  
Michael Kim ◽  
Tarandeep K. Singh ◽  
Youli Milev ◽  
John Freedman ◽  
...  

Key Points Anti-MHC antibodies that induce TRALI in a murine model first bind their cognate antigen and stimulate blood monocytes to secrete chemokines. Full TRALI induction (lung damage) requires a subsequent monocyte Fc-dependent process.

Blood ◽  
2015 ◽  
Vol 126 (25) ◽  
pp. 2747-2751 ◽  
Author(s):  
Rick Kapur ◽  
Michael Kim ◽  
Shanjeevan Shanmugabhavananthan ◽  
Jonathan Liu ◽  
Yuan Li ◽  
...  

Key Points CRP enhances antibody-mediated lung damage when infused into TRALI-resistant mice. CRP and TRALI-inducing antibodies generate a synergistic increase in MIP-2 production and pulmonary neutrophil accumulation in vivo.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Liang Cui ◽  
Dahai Zheng ◽  
Yie Hou Lee ◽  
Tze Khee Chan ◽  
Yadunanda Kumar ◽  
...  

2021 ◽  
Author(s):  
Irina N. Baranova ◽  
Alexander V. Bocharov ◽  
Tatyana G. Vishnyakova ◽  
Zhigang Chen ◽  
Anna A. Birukova ◽  
...  

Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake, and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates understanding SR-BI’s role in endotoxemia/sepsis, calling for use of alternative models. In this study, using hSR-BI and hSR-BII transgenic mice, we found that SR-BI and to a lesser extent its splicing variant SR-BII, protects against LPS-induced lung damage. At 20 hours after intratracheal LPS instillation the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice compared to wild type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content as well as lung tissue neutrophil infiltration found in wild type mice was associated with markedly (2-3 times) increased pro-inflammatory cytokine production as compared to transgenic mice following LPS administration. Markedly lower endotoxin levels detected in BALF of transgenic vs. wild type mice along with the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 hours after the IT LPS injection suggest that hSR-BI and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.


2018 ◽  
Vol 51 (6) ◽  
pp. 2776-2793 ◽  
Author(s):  
Yung-Fong Tsai ◽  
Shun-Chin Yang ◽  
Wen-Yi Chang ◽  
Jih-Jung Chen ◽  
Chun-Yu Chen ◽  
...  

Background/Aims: Formyl peptide receptors (FPRs) recognize different endogenous and exogenous molecular stimuli and mediate neutrophil activation. Dysregulation of excessive neutrophil activation and the resulting immune responses can induce acute lung injury (ALI) in the host. Accordingly, one promising approach to the treatment of neutrophil-dominated inflammatory diseases involves therapeutic FPR1 inhibition. Methods: We extracted a potent FPR1 antagonist from Garcinia multiflora Champ. (GMC). The inhibitory effects of GMC on superoxide anion release and elastase degranulation from activated human neutrophils were determined with spectrophotometric analysis. Reactive oxygen species (ROS) production and the FPR1 binding ability of neutrophils were assayed by flow cytometry. Signaling transduction mediated by GMC in response to chemoattractants was assessed with a calcium influx assay and western blotting. A lipopolysaccharide (LPS)-induced ALI mouse model was used to determine the therapeutic effects of GMC in vivo. Results: GMC significantly reduced superoxide anion release, the reactive oxidants derived therefrom, and elastase degranulation mediated through selective, competitive FPR1 blocking in N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF)-stimulated human neutrophils. In cell-free systems, GMC was unable to scavenge superoxide anions or suppress elastase activity. GMC produced a right shift in fMLF-activated concentration-response curves and was confirmed to be a competitive FPR1 antagonist. GMC binds to FPR1 not only in neutrophils, but also FPR1 in neutrophil-like THP-1 and hFPR1-transfected HEK293 cells. Furthermore, the mobilization of calcium and phosphorylation of mitogen-activated protein kinases and Akt, which are involved in FPR1-mediated downstream signaling, was competitively blocked by GMC. In an in vivo study, GMC significantly reduced pulmonary edema, neutrophil infiltration, and alveolar damage in LPS-induced ALI mice. Conclusion: Our findings demonstrate that GMC is a natural competitive FPR1 inhibitor, which makes it a possible anti-inflammatory treatment option for patients critically inflicted with FPR1-mediated neutrophilic lung damage.


Diabetes ◽  
2012 ◽  
Vol 61 (5) ◽  
pp. 1281-1290 ◽  
Author(s):  
Katharine M. Irvine ◽  
Patricia Gallego ◽  
Xiaoyu An ◽  
Shannon E. Best ◽  
Gethin Thomas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document