scholarly journals Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations

Blood ◽  
2018 ◽  
Vol 132 (12) ◽  
pp. 1225-1240 ◽  
Author(s):  
Andrea Pellagatti ◽  
Richard N. Armstrong ◽  
Violetta Steeples ◽  
Eshita Sharma ◽  
Emmanouela Repapi ◽  
...  

Key Points RNA-seq analysis of CD34+ cells identifies novel aberrantly spliced genes and dysregulated pathways in splicing factor mutant MDS. Aberrantly spliced isoforms predict MDS survival and implicate dysregulation of focal adhesion and exosomes as drivers of poor survival.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 882-882
Author(s):  
Akihide Yoshimi ◽  
Zhaoqi Liu ◽  
Wang Jiguang ◽  
Hana Cho ◽  
Stanley C Lee ◽  
...  

Abstract Mutations in the RNA splicing factor SF3B1 are recurrent in CLL and myeloid neoplasms but their functional role in promoting tumorigenesis remain poorly understood. While SF3B1 mutations have been identified as promoting use of aberrant 3' splice sites (3'ss), consistent identification of mis-spliced transcripts and pathways that functionally link mutant SF3B1 to transformation remains elusive. Moreover, large-scale analyses of the impact of mutant SF3B1 on gene expression and gene regulatory networks, which may be distinct from aberrant splicing changes, remain to be performed. We therefore sought to elucidate the effects of SF3B1 mutations across hematopoietic malignancies and cancer lineages at the level of both mRNA splicing and expression. To this end, we collected RNA-seq data from 79 tumors and 12 isogenic cell lines harboring SF3B1 hotspot mutations. The most frequent hotspot, K700E, was the most common mutation in CLL and breast cancers while mutations at position R625 were restricted to melanomas (Figure A, B). Regulatory network analysis of differentially expressed genes in SF3B1 mutated CLL identified MYC as the top master regulator (Figure C). MYC activation in SF3B1 mutated CLL was also verified by differential expression analyses (Figure D) and was common to SF3B1K700E mutant cancers while absent in cancers with mutations affecting R625. Taken together, these observations suggested that tumors harboring SF3B1K700E mutations activate the MYC transcriptional program. We next sought to verify the effects of c-Myc activation by mutant Sf3b1 in the B-cell lineage in vivo. We crossed Cd19-cre Sf3b1K700E/+ mice with Eμ-Myc transgenic mice to generate Cd19-cre+ control, Sf3b1K700E/+, Eμ-MycTg/+, and Sf3b1K700E/+Eμ-MycTg/+ double-mutant mice. While control or single mutant primary mice did not develop disease over one year, double-mutant mice developed a lethal B-cell malignancy. This effect was consistent in serial transplantation, where mice transplanted with double-mutant cells had shorter survival compared to single-mutant controls (Figure E). These data provide the first evidence that SF3B1 mutations contribute to tumorigenesis in vivo. To understand the molecular mechanism for MYC activation across SF3B1 mutant human and mouse cells, we analyzed RNA-seq data from CLL patients, isogenic Nalm-6 cells, and splenic B-cells from the mouse models. This revealed a significant overlap in aberrant (3'ss) events across SF3B1 mutant samples. Interestingly, mis-spliced events across mouse and human SF3B1K700E mutant samples identified aberrant 3'ss usage and decay of PPP2R5A (Figure F), a gene whose product has previously been shown to regulate c-MYC protein stability and the only gene whose aberrant splicing was most prominent in K700E compared with R625 mutant SF3B1. PPP2R5A is a subunit of the PP2A phosphatase complex that dephosphorylates Serine 62 (S62) of c-MYC, resulting in an unstable form of c-MYC that is a substrate for proteasomal degradation. Consistent with this, SF3B1K700E mutant cells exhibited dramatic increase in S62-phosphorylated c-MYC and increased stability of c-MYC protein. MYC expression, stability, and S62 phosphorylation could be abrogated in SF3B1 mutant cells by restoring PPP25RA expression. In addition to c-MYC S62 phosphorylation, PPP2R5A-containing PP2A reduced S70 phosphorylation of BCL2 (a modification important for apoptosis induction) in SF3B1 mutant cells. To functionally evaluate the importance of impaired PP2A enzymatic activity in SF3B1 mutant cells further, we assessed the therapeutic potential of the FDA-approved oral PP2A activator, FTY-720. SF3B1 mutant cells were more sensitive to FTY-720 treatment than SF3B1 WT counterparts, experiencing growth arrest at lower concentration (Figure G). Moreover, both S62-phosphorylated c-MYC and S70-phosphorylated BCL2 decreased in a dose-dependent manner upon treatment with FTY-720 (Figure H). Here through combined evaluation of the effects of the SF3B1 mutation on splicing, gene expression, and transcriptional networks across cancer types, we identify a novel mechanism by which mutant SF3B1-mediated alterations in RNA splicing contribute to activation of oncogenic MYC through effects on MYC proteolysis. Moreover, these data highlight a novel therapeutic approach targeting the impact of mutant SF3B1 on post-translational modification of MYC. Figure. Figure. Disclosures Mato: Janssen: Consultancy, Honoraria; Celgene: Consultancy; Prime Oncology: Speakers Bureau; TG Therapeutics: Research Funding; Regeneron: Research Funding; Abbvie: Consultancy; Sunesis: Honoraria, Research Funding; Acerta: Research Funding; AstraZeneca: Consultancy; Pharmacyclics: Consultancy, Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 457-457
Author(s):  
Govardhan Anande ◽  
Ashwin Unnikrishnan ◽  
Nandan Deshpande ◽  
Sylvain Mareschal ◽  
Aarif M. N. Batcha ◽  
...  

RNA splicing is a fundamental biological process that generates protein diversity from a finite set of genes. Recurrent somatic mutations of genes involved in RNA splicing are present at high frequency in Myelodysplasia (up to 70%) but less so in Acute Myeloid Leukemia (AML; less than 20%). To investigate whether there were aberrant and recurrent RNA splicing events in the AML transcriptome that were associated with poor prognosis in the absence of splicing factor mutations, we developed a bioinformatics pipeline to systematically annotate and quantify alternative splicing events from RNA-sequencing data (Fig A). We first analysed publicly available RNA-seq data from The Cancer Genome Atlas (TCGA, n=170). We focussed on non-M3 AML patients with no splicing factor mutations (based on reported genomic sequencing and verified by re-analysis of RNA-seq data from all patients) who had received intensive chemotherapy. We segregated these patients based on their European Leukaemia Net (ELN) risk classification and identified 1290 alternatively spliced events impacting 910 genes that were significantly different (FDR<0.05) between all ELNAdv (n=41) versus all ELNFav patients (n=21, Fig B). The majority were exon skipping events (716 events, 62%, Fig B-C), followed by intron retention (201 events, 15.6%, Fig B). We next used RNA-seq data from a second non-M3 AML patient cohort (ClinSeq- Sweden; ELNAdv, n=75 and ELNFav, n=47), detecting 2507 events mapping to 1566 genes. Comparing across the two cohorts, 222 shared genes were detected to be affected by alternative splicing (Fig D). Ingenuity pathway analysis associated these genes with pathways related to protein translation. In order to prioritise those alternatively spliced events most likely to have a deleterious function, we developed an analytical framework to predict their impact on protein structure (Fig E). 87 alternatively spliced events, 25.81% of the commonly shared splicing events, relating to 78 genes (35.13% of all genes) were predicted to directly alter highly conserved protein domains within the affected genes, leading to either a complete (~25%, Fig E) or a partial loss of a domain (20%, Fig E). These in silico predictions are likely to be an underestimate of the true impact, as splicing alterations mapping to poorly annotated domains or affecting the tertiary structure of proteins would be missed. A number of splicing factors themselves were differentially spliced, with the alternative splicing predicted to have functional consequences. This was exemplified by hnRNPA1, a factor with well-established roles in splicing, is itself alternatively spliced in patients and predicted to be deleterious. Consistent with this, motif scanning analyses indicated that a number of mis-spliced transcripts had hnRNPA1 binding motifs (Fig F). To assess the impact of these alternatively spliced events (that were predicted to also disrupt highly conserved protein domains) on the transcriptome, we simultaneously quantified differential gene expression. IPA analysis of the 602 genes that were differentially expressed between ELNAdv and ELNFav patients and shared between both TCGA and ClinSeq cohorts indicated that they were associated with pathways (Fig G) that were distinct from those associated with aberrantly spliced genes (Fig D). A number of pathways related to inflammation were enriched amongst the genes observed to be upregulated in ELNAdv patients (Fig G). Network analyses integrating the alternatively spliced genes with differentially expressed genes revealed strong interactions (Fig H), indicating functional associations between these biological events. Given these strong network interactions, we investigated the potential prognostic significance of these alternatively spliced events. To this end, we utilised machine-learning methods to derive a "splicing signature" of four mis-spliced genes with a predictive capacity equivalent to the ELN (Fig I). The splicing signature further refined existing risk prediction algorithms to improve the classification of patients (Fig J). Taken together, we report the presence of extensive deregulation of RNA splicing in AML patients even in the absence of splicing factor mutations. Many of these events were shared in patients with adverse outcomes and their impact on the AML transcriptome points towards vulnerabilities that could be targeted. Figure Disclosures Unnikrishnan: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Lehmann:TEVA: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Abbive: Membership on an entity's Board of Directors or advisory committees. Pimanda:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3073-3073
Author(s):  
Courtney Hershberger ◽  
James Hiznay ◽  
Rosemary Dietrich ◽  
Xiaorong Gu ◽  
Cassandra M. Hirsch ◽  
...  

Abstract Myelodysplastic syndromes (MDS) are unique among cancers because of the frequent occurrence of somatic mutations impacting spliceosome machinery. At least 65% of MDS patients harbor a mutation in one of several splicing factors including U2AF1, SF3B1 and SRSF2. Whole exome sequencing of MDS bone marrow uncovered somatic frameshift mutations in LUC7L2, the mammalian ortholog of a yeast splicing factor. LUC7L2 is located in the most commonly deleted region of chromosome 7. Deletions and frameshifts lead to haploinsufficient expression and therefore it can be approximated that a combined 14% of MDS patients have low expression of LUC7L2. Restoring expression of LUC7L2 in del(7q)-iPSCs partially rescues the differentiation of iPSCs into CD45+ myeloid progenitors. Although perhaps partly due to associated losses of other genes on chromosome 7, low expression of LUC7L2 correlates with a poorer patient prognosis, so its haploinsufficiency may play an important role in bone marrow failure. While U2AF1, SF3B1, and SRSF2 are well-characterized splicing factors, the function of LUC7L2 in pre-mRNA splicing is unexamined and its role in the MDS pathogenesis is undefined. We hypothesize that low expression of LUC7L2 results in the aberrant splicing of oncogenes and tumor suppressor gene transcripts thus reducing expression or altering function and contributing to the pathogenesis of MDS. We have characterized LUC7L2 as an alternative splicing regulatory protein that plays a repressive role in the regulation of alternative RNA splicing. We generated HEK-293 cells overexpressing V5-tagged LUC7L2 for immunoprecipitation-mass spectrometry, to ascertain protein interactions with LUC7L2. LUC7L2 co-immunoprecipitated with splicing regulators which are involved in splice site recognition. We performed cross-linking-IP-high-throughput-sequencing (CLIP-seq) to identify LUC7L2 binding sites on RNA. We identified 301 LUC7L2 RNA-binding sites as well as binding sites on U1 and U2 which is common for splicing regulatory proteins. Metagene analysis of these binding sites showed that LUC7L2 bound near splice sites in exonic sequences. We knocked down LUC7L2 expression in HEK293 and K562 cells to phenocopy the frameshifts and deletions observed in MDS patients. We used a PCR-based assay to measure the splicing efficiency of introns near LUC7L2-binding sites. Knockdown of LUC7L2 increased the splicing efficiency of 8/13 selected introns; this suggests that LUC7L2 represses selective splice site usage. We also performed RNA-seq to characterize global mis-splicing events. Analysis of RNA transcripts revealed a multitude of splicing changes, including enhanced exclusion of alternative introns. Knockdown LUC7L2 cells exhibited-altered expression of other splicing factors; this could have further contributed to the vast number of splicing changes observed. To identify specific splicing changes that could contribute to the pathogenesis of MDS, we compared the splicing profiles of LUC7L2-knockdown in K562 cells with RNA-seq data from K562 cells expressing U2AF1S34F, SRSF2P95H or SF3B1K700E. This analysis yielded several exon-skipping splicing patterns in cancer-relevant transcripts, such as oncogene PRC1, splicing factor PTBP1 and MRPL33. Additionally, we noticed commonly mis-spliced transcripts among the four datasets in which the missplicing events occurred in the functional domain, potentially conferring a functional change. Surprisingly, we observed missplicing of U2AF1 in LUC7L2-knockdown, SRSF2P95H, and SF3B1K700E K562 cells, which altered the length of the RNA-recognition UHM domain by inclusion of a mutually exclusive exon or retention of an intron. In this way, low expression of LUC7L2, or point mutants U2AF1S34F, SRSF2P95H, and SF3B1K700E,could alter U2AF1 function as a distal convergence point. In summary, we identified a novel splicing factor implicated in the pathogenesis of MDS. We characterized LUC7L2 as a splicing repressor and discovered many splicing changes caused by low expression of LUC7L2. Several genes were also mis-spliced in U2AF1S34F, SRSF2P95H and SF3B1K700E K562 cells targeting these for further study. Commonly mis-spliced targets such as U2AF1 may indicate that some of the novel therapeutics may have spliceosome mutation agnostic effects. If this applies to the LUC7L2 mutations, then they may also be effective in del7/del7q cases. Disclosures Carraway: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; FibroGen: Consultancy; Jazz: Speakers Bureau; Novartis: Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Balaxa: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Agios: Consultancy, Speakers Bureau. Sekeres:Opsona: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Opsona: Membership on an entity's Board of Directors or advisory committees. Saunthararajah:Novo Nordisk, A/S: Patents & Royalties; EpiDestiny, LLC: Patents & Royalties. Maciejewski:Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Alexion Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy; Apellis Pharmaceuticals: Consultancy; Ra Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 738-738 ◽  
Author(s):  
Katsuhiro Togami ◽  
Vikas Madan ◽  
Jia Li ◽  
Alexandra-Chloe Villani ◽  
Siranush Sarkizova ◽  
...  

Abstract Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive malignancy thought to result from transformation of plasmacytoid dendritic cells (pDCs). Clinical outcomes are poor and pathogenesis is unclear. To better understand BPDCN genomics and disease mechanisms, we performed whole exome- (12 BPDCNs), targeted DNA- (additional 12 BPDCNs), bulk whole transcriptome RNA- (12 BPDCNs and 6 BPDCN patient-derived xenografts [PDXs]), and single cell RNA-sequencing (scRNA-seq) compared to normal DCs. We observed RNA splicing factor mutations in 16/24 cases (7 ZRSR2, 6 SRSF2, 1 each SF3B1, U2AF1, SF3A2, SF3B4). Additional recurrent alterations were in genes known to be mutated in other blood cancers: TET2, ASXL1, TP53, GNB1, NRAS, IDH2, ETV6, DNMT3A, and RUNX1. From exome sequencing we also discovered recurrent mutations in CRIPAK (6/12 cases), NEFH (4/12), HNF1A (2/12), PAX3 (2/12), and SSC5D (2/12) that may be unique to BPDCN. ZRSR2 is notable among the recurrently mutated splicing factors in hematologic malignancies in that all mutations are loss-of-function (e.g., nonsense, frameshift). Of note, BPDCN is very male predominant, ZRSR2 is located on chrX and all mutations are in males. ZRSR2 plays a critical role in "minor" or U12-type intron splicing (only 0.3% of all introns). Thus, we hypothesized that mis-splicing, possibly of U12 genes, contributes to BPDCN pathogenesis. Using RNA-seq, we measured aberrant splicing in BPDCN. Intron retention was the most frequent abnormality in ZRSR2 mutant BPDCNs and PDXs compared to non-mutant cases. ZRSR2 mutant intron retention predominantly affected U12 introns (patients: 29.4% of retained introns, P<0.0001; PDX: 94%, P<0.0001). To test if ZRSR2 loss directly causes U12 intron retention in otherwise isogenic cells, we performed ZRSR2 knockdown using doxycycline-inducible shRNAs in the BPDCN cell line, CAL1, which has no known splicing factor mutation. RNA-seq was performed 0, 2, and 7 days after addition of doxycycline in 3 independent clones each of control or ZRSR2 knockdown. Consistent with what we observed in primary BPDCN, intron retention events were higher in ZRSR2 compared to control shRNA cells after 7 days of doxycycline (mean 885.7 vs 122.7 events, P=0.041). Aberrant intron retention after ZRSR2 knockdown largely involved U12 introns (30/732 U12 vs 37/207,344 U2 introns, P<0.0001). SRSF2 and SF3B1 mutations in BPDCN were at hotspots seen in other cancers: SRSF2 P95H/L/R and SF3B1 K666N, mutants that induce specific types of aberrant splicing (Kim, Ca Cell 2015; Darman, Cell Rep 2015). Mutant BPDCNs demonstrated the same aberrations: SRSF2, exon inclusion/exclusion based on CCNG/GGNG exonic splicing enhancer motifs; SF3B1, aberrant 3' splice site recognition. We hypothesized that aberrant splicing may affect RNAs important for pDC development or function. To further define genes uniquely important in BPDCN, we performed scRNA-seq on 4 BPDCNs and on DCs from healthy donors. By principal component analysis, BPDCNs were more similar to pDCs than to conventional DCs (cDCs) or other HLA-DR+ cells. However, several critical genes for pDC function had markedly lower expression in BPDCN including the transcription factors IRF4 and IRF7. Next we determined which genes were commonly mis-spliced in splicing factor mutant BPDCNs. Strikingly, this list included genes already known to be important in driving DC biology or identified in our scRNA-seq as being differentially expressed between BPDCN and healthy pDCs, including IRF7, IRF8, IKZF1, FLT3, and DERL3. To determine if splicing factor mutations affect DC function, we stimulated ZRSR2 knockdown or control CAL1 cells with Toll-like receptor (TLR) 7, 8, and 9 agonists (R848 or CpG oligo). ZRSR2 knockdown inhibited upregulation of the CD80 costimulatory molecule and aggregation of CAL1 cells, suggesting impairment in activation. Using mouse conditional knock-in bone marrow in ex vivo multipotent progenitor assays, DC differentiation induced by FLT3 ligand was biased toward pDCs and away from cDCs in SRSF2 P95H mutant compared to wild-type cells. However, cDC and monocyte differentiation in the presence of GM-CSF was not affected. In conclusion, splicing factors are frequently mutated in BPDCN and lead to specific splicing defects. Splicing factor mutations may promote BPDCN by affecting pathways important in DC maturation or activation, which could contribute to transformation. Disclosures Seiler: H3 Biomedicine: Employment. Buonamici:H3 Biomedicine: Employment. Lane:Stemline Therapeutics: Research Funding; N-of-1: Consultancy.


Database ◽  
2017 ◽  
Vol 2017 ◽  
Author(s):  
Jin Li ◽  
Ching-San Tseng ◽  
Antonio Federico ◽  
Franjo Ivankovic ◽  
Yi-Shuian Huang ◽  
...  
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 665
Author(s):  
Hui Yu ◽  
Yan Guo ◽  
Jingchun Chen ◽  
Xiangning Chen ◽  
Peilin Jia ◽  
...  

Transcriptomic studies of mental disorders using the human brain tissues have been limited, and gene expression signatures in schizophrenia (SCZ) remain elusive. In this study, we applied three differential co-expression methods to analyze five transcriptomic datasets (three RNA-Seq and two microarray datasets) derived from SCZ and matched normal postmortem brain samples. We aimed to uncover biological pathways where internal correlation structure was rewired or inter-coordination was disrupted in SCZ. In total, we identified 60 rewired pathways, many of which were related to neurotransmitter, synapse, immune, and cell adhesion. We found the hub genes, which were on the center of rewired pathways, were highly mutually consistent among the five datasets. The combinatory list of 92 hub genes was generally multi-functional, suggesting their complex and dynamic roles in SCZ pathophysiology. In our constructed pathway crosstalk network, we found “Clostridium neurotoxicity” and “signaling events mediated by focal adhesion kinase” had the highest interactions. We further identified disconnected gene links underlying the disrupted pathway crosstalk. Among them, four gene pairs (PAK1:SYT1, PAK1:RFC5, DCTN1:STX1A, and GRIA1:MAP2K4) were normally correlated in universal contexts. In summary, we systematically identified rewired pathways, disrupted pathway crosstalk circuits, and critical genes and gene links in schizophrenia transcriptomes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evi Goulielmaki ◽  
Maria Tsekrekou ◽  
Nikos Batsiotos ◽  
Mariana Ascensão-Ferreira ◽  
Eleftheria Ledaki ◽  
...  

AbstractRNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. XAB2 depletion leads to aberrant intron retention, R-loop formation and DNA damage in cells. Studies in illudin S-treated cells and Csbm/m developing livers reveal that transcription-blocking DNA lesions trigger the release of XAB2 from all RNA targets tested. Immunoprecipitation studies reveal that XAB2 interacts with ERCC1-XPF and XPG endonucleases outside nucleotide excision repair and that the trimeric protein complex binds RNA:DNA hybrids under conditions that favor the formation of R-loops. Thus, XAB2 functionally links the spliceosomal response to DNA damage with R-loop processing with important ramifications for transcription-coupled DNA repair disorders.


Blood ◽  
2014 ◽  
Vol 123 (16) ◽  
pp. 2550-2561 ◽  
Author(s):  
Kshama Gupta ◽  
Inna Kuznetsova ◽  
Olga Klimenkova ◽  
Maksim Klimiankou ◽  
Johann Meyer ◽  
...  

Key Points Hyperactivated STAT5a binds LEF-1 protein leading to NLK/NARF/ubiquitin-dependent degradation of LEF-1 followed by defective granulopoiesis. In CN patients, elevated levels of phospho-STAT5a resulted in diminished LEF-1 expression, which could be restored by bortezomib treatment.


2017 ◽  
Vol 1 (27) ◽  
pp. 2656-2666 ◽  
Author(s):  
Muhammad Zahoor ◽  
Marita Westhrin ◽  
Kristin Roseth Aass ◽  
Siv Helen Moen ◽  
Kristine Misund ◽  
...  

Key Points IL-32 is a proinflammatory cytokine expressed by plasma cells in a subset of MM patients, and high expression correlates with poor survival. IL-32 is induced by hypoxia and secreted from MM cells in EVs that promote bone destruction.


Sign in / Sign up

Export Citation Format

Share Document