scholarly journals Increased Ripk1-mediated bone marrow necroptosis leads to myelodysplasia and bone marrow failure in mice

Blood ◽  
2019 ◽  
Vol 133 (2) ◽  
pp. 107-120 ◽  
Author(s):  
Patrice N. Wagner ◽  
Qiong Shi ◽  
Christi T. Salisbury-Ruf ◽  
Jing Zou ◽  
Michael R. Savona ◽  
...  

Abstract Hematopoiesis is a dynamic system that requires balanced cell division, differentiation, and death. The 2 major modes of programmed cell death, apoptosis and necroptosis, share molecular machinery but diverge in outcome with important implications for the microenvironment; apoptotic cells are removed in an immune silent process, whereas necroptotic cells leak cellular contents that incite inflammation. Given the importance of cytokine-directed cues for hematopoietic cell survival and differentiation, the impact on hematopoietic homeostasis of biasing cell death fate to necroptosis is substantial and poorly understood. Here, we present a mouse model with increased bone marrow necroptosis. Deletion of the proapoptotic Bcl-2 family members Bax and Bak inhibits bone marrow apoptosis. Further deletion of the BH3-only member Bid (to generate VavCreBaxBakBid triple-knockout [TKO] mice) leads to unrestrained bone marrow necroptosis driven by increased Rip1 kinase (Ripk1). TKO mice display loss of progenitor cells, leading to increased cytokine production and increased stem cell proliferation and exhaustion and culminating in bone marrow failure. Genetically restoring Ripk1 to wild-type levels restores peripheral red cell counts as well as normal cytokine production. TKO bone marrow is hypercellular with abnormal differentiation, resembling the human disorder myelodysplastic syndrome (MDS), and we demonstrate increased necroptosis in MDS bone marrow. Finally, we show that Bid impacts necroptotic signaling through modulation of caspase-8–mediated Ripk1 degradation. Thus, we demonstrate that dysregulated necroptosis in hematopoiesis promotes bone marrow progenitor cell death that incites inflammation, impairs hematopoietic stem cells, and recapitulates the salient features of the bone marrow failure disorder MDS.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2169-2169
Author(s):  
Aparna Gopal ◽  
Rawa Ibrahim ◽  
Megan Fuller ◽  
Patricia Umlandt ◽  
Jeremy Parker ◽  
...  

Abstract The myelodysplastic syndrome (MDS) are a group of hematological malignancies with the propensity to develop into either acute myeloid leukemia (AML) or bone marrow failure (BMF). Dysregulation of immune and inflammatory responses has been implicated in MDS and other BMF disorders. There is significant evidence for IFNγ playing a key role in MDS and BMF syndromes. However, there are conflicting theories regarding the mechanism by which IFNγ promotes BMF. There is also very little information on the triggers that underlie upregulation of IFNγ in these BMF syndromes. Interstitial deletion of chromosome 5q is the most common cytogenetic abnormality observed in MDS, accounting for approximately 10% of all cases. Our lab has previously shown that miR-145, which is located on the minimally deleted region of chromosome 5q, targets Toll/Interleukin-1 receptor domain containing adaptor protein (TIRAP) - an innate immune adaptor protein. However, the role of TIRAP in marrow failure has not been well elucidated. In this study, we identify a novel role for TIRAP in dysregulating normal hematopoiesis through activation of Ifnγ. Using bone marrow transplants in wild-type mice, we showed that constitutive expression of TIRAP in wild-type hematopoietic stem and progenitor cells (HSPC) caused peripheral blood cytopenia, suppressed the bone marrow endothelial niche and significantly reduced overall survival of the mice (median survival 9 weeks post-transplant) compared to controls (p < 0.0001). RNA-seq analysis of TIRAP expressing HSPC identified several proinflammatory cytokines to be significantly overrepresented. Geneset enrichment analysis (GSEA) identified the Ifnγ response as the single most significantly enriched pathway of the Hallmark genesets. To test the functional role of Ifnγ in TIRAP-mediated BMF, wild-type recipient mice were transplanted with TIRAP- HSPC from Ifnγ-/- donor mice. Mice that received TIRAP-transduced Ifnγ-/- HSPC were rescued from BMF, as evidenced by normalized blood cell counts and improved median survival (median survival 48.6 weeks) (Ifnγ-/- TIRAP vs. wild-type TIRAP: p = 0.0004). Interestingly, in our model of TIRAP induced BMF, myeloid rather than the conventional T and NK cells were the cells most responsible for the increased production of Ifnγ. Further, when we transplanted TIRAP expressing wild-type HSPC into NSG recipient mice, which are deficient in functional B, T and NK cells, the NSG mice developed BMF with pancytopenia in a similar time-frame as wild-type mice. This suggested that T and NK cells are not central for the development of TIRAP induced BMF. Delving deeper into the mechanism by which the TIRAP-Ifnγ axis causes BMF, we saw that while Ifnγ played a direct role in suppressing erythropoiesis and megakaryopoiesis, it played an indirect, Ifnγ receptor independent role on myelopoiesis. TIRAP-induced activation of Ifnγ released the alarmin, Hmgb1, which suppressed the marrow endothelial niche, which in turn promoted myeloid suppression. Overexpression of TIRAP in Ifnγ -/- background blocked Hmgb1 release. Further, blocking Hmgb1 in presence of TIRAP expression was sufficient to reverse the marrow endothelial defect and restore myelopoiesis in vivo. Our findings highlight a novel, non-canonical effect of aberrant TIRAP expression via the Ifnγ-Hmgb1 axis on the endothelial cell component of the marrow microenvironment and hematopoiesis. Further understanding of this pathway would open up avenues for developing new therapies for BMF. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1317 ◽  
Author(s):  
Alba Martínez ◽  
Cristina Bono ◽  
Daniel Gozalbo ◽  
Helen S. Goodridge ◽  
M. Luisa Gil ◽  
...  

Microbial recognition by pattern recognition receptors (PRRs) expressed on hematopoietic stem and progenitor cells (HSPCs) not only activates myelopoiesis but also programs the function of the monocytes and macrophages they produce. For instance, changes in HSPC programming modify the ability of macrophages derived from them to produce inflammatory cytokines. While HSPCs exposed to a TLR2 agonist give rise to tolerized macrophages (lower proinflammatory cytokine production), HSPCs treated with Dectin-1 ligands produce trained macrophages (higher proinflammatory cytokine production). However, nothing is known about the impact of HSPC exposure to microbes on the function of antigen presenting cells (APCs). In this study we evaluated whether treatment of murine bone marrow HSPCs with a TLR2 or Dectin-1 ligand impacts the antigen presenting capacity of APCs derived from them in vitro. Following activation with microbial ligands or Candida albicans yeasts, APCs derived from TLR2/Dectin-1-programed HSPCs exhibit altered expression of MHCII (signal 1), co-stimulatory molecules (CD40, CD80 and CD86; signal 2) and cytokines (TNF-α, IL-6, IL-12 p40 and IL-2; signal 3). Moreover, APCs derived from TLR2/Dectin-1-programed HSPCs prime enhanced Th1 and Th17 responses, which are important for antifungal defense, in CD4 T cell cocultures. Overall, these results demonstrate for the first time that microbial detection by bone marrow HSPCs can modulate the adaptive immune response by inducing the production of APCs with an altered phenotype.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2629-2629
Author(s):  
Ying Zhao ◽  
Flora Ling ◽  
Hong-Cheng Wang ◽  
Xiao-Hong Sun

Abstract Abstract 2629 The overall objectives of this study are to investigate the impact of inflammatory conditions on hematopoietic stem cell (HSC) maintenance and to elucidate the underlying mechanisms. HSCs are exposed to a variety of inflammatory conditions through life. How these conditions influence the integrity of HSCs is a fundamental issue of clinical importance but it is poorly understood. Equally unknown is the molecular regulation of HSC maintenance during inflammatory. In this context, our focus is on the role of basic helix-loop-helix (bHLH) proteins, which include transcription activators such as E2A proteins and their inhibitors including Id proteins. We and others have shown that these regulators are involved in normal hematopoiesis such as stem cell function and lineage specific differentiation. Recently, we have obtained evidence to suggest that signaling through Toll-like receptors (TLRs), which is closely linked to inflammation, causes down-regulation of E2A function by stimulating Id1 expression. Therefore, we hypothesize that inflammatory conditions causes down-regulation of E protein function, which disturbs the quiescence of long-term (LT)-HSC, leading to stem cell exhaustion over time. To test this hypothesis, we induced chronic inflammation in wild type and Id1-/- mice by daily injection of 1 mg of LPS, i.p. for 30 days. Peripheral blood was collected on days 15 and 30 and levels of a panel of inflammatory cytokines were assayed using a Luminex multiplex kit. On day 15, dramatic increases were found in the levels of IL-10, IL-6, KC and TNFα but not IFN-γ, IL12-p70 and IL-1β. Interestingly, levels of IL-6 and TNFα were significantly lower in Id1-/- mice compared to wild type mice. By day 30 of LPS treatment, levels of these cytokines returned to the levels in animals without LPS injection. These results suggest that this chronic LPS treatment indeed elicited an inflammatory response that included transient elevation of inflammatory cytokines. Whether secretion of these cytokines has any direct effects on HSCs remains to be determined. To measure HSC activity in these LPS-treated mice, we performed serial bone marrow transplant assays. Lin−Sca-1+c-kit+ (LSK) stem/progenitor cells were isolated from wild type or Id1-/- mice treated with or without LPS. These cells were transplanted into lethally irradiated CD45.1+ recipients along with equal numbers of YFP-expressing LSK as competitors. Six weeks later, cohorts of mice were sacrificed and bone marrow cells were collected. Pooled whole bone marrow cells within each cohort were injected into lethally irradiated secondary recipients. Secondary recipients were sacrificed 8 and 16 weeks post transplant. For assessment of primary and secondary engraftment, bone marrow cells were examined for expression of donor and lineage specific markers. Robust engraftment was observed in primary or secondary recipients. Donor derived cells were then gated for YFP− and YFP+ cells, which separate cells originated from tester and competitor LSK, respectively. While YFP− and YFP+ cells engrafted equivalently in primary recipients transplanted with cells treated with or without LPS, LPS treatment of wild type mice caused a great disparity in secondary recipients. In contrast, HSC in Id1-/- mice did not appear to be affected by the same treatment even though HSCs in Id1 deficient mice are normally lower in numbers and activities as we previously reported. These results suggest that chronic inflammation diminishes the LT-stem cell activity and this may involve the up-regulation of Id1 expression. To investigate the underlying mechanism, we performed label retaining assays to examine the quiescence of LT-HSCs. We found that BrdU-labeling in HSCs was 2-fold lower in mice treated with LPS compared to the untreated controls, suggesting that treatment with LPS promoted the cycling of HSCs, thus impairing their stem cell function. Taken together, our study illustrates that chronic inflammation has a detrimental effect on LT-stem cell activity. Although HSCs have an enormous capability to repopulate the bone marrow by compensatory proliferation, pro-longed inflammation could eventually lead to stem cell exhaustion and seriously compromise hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 387-387
Author(s):  
Ghada M Kunter ◽  
Jill Woloszynek ◽  
Daniel C. Link

Abstract Abstract 387 A shared feature of many bone marrow failure syndromes is their propensity to develop myelodysplasia (MDS) or acute myeloid leukemia (AML). The molecular mechanisms that underlie this susceptibility are largely unknown. Severe congenital neutropenia (SCN) is an inherited disorder of granulopoiesis that is associated with a marked increased risk of developing MDS/AML. Somatic mutations of CSF3R, encoding the G-CSF receptor (G-CSFR), that truncate the carboxy-terminal tail are associated with the development of MDS/AML in SCN. Transgenic mice carrying a ‘knock-in’ mutation of their Csf3r (termed d715 G-CSFR) reproducing a mutation found in a patient with SCN have normal basal granulopoiesis but an exaggerated neutrophil response to G-CSF treatment. We previously reported that the d715 G-CSFR is able to cooperate with the PML-RARƒÑ oncogene to induce AML in mice. Herein, we summarize data supporting the hypothesis that alterations in the bone marrow microenvironment induced by G-CSF contribute to oxidative DNA damage in hematopoietic stem/progenitors cells (HSPCs) and possibly leukemic transformation. We previously showed that G-CSF treatment is associated with a marked loss of osteoblasts in the bone marrow, thereby potentially disrupting the osteoblast stem cell niche (Semerad, Blood 2005). Of note, patients with SCN chronically treated with G-CSF are prone to develop osteopenia, suggesting that osteoblast suppression by G-CSF also may occur in humans. We first asked whether the d715 G-CSFR was able to mediate this response. Wild-type or d715 G-CSFR were treated with G-CSF for 1–7 days and osteoblast activity in the bone marrow measured by expression of CXCL12 and osteocalcin. Consistent with previous reports, a decrease in osteocalcin and CXCL12 was not apparent until after 3 days of G-CSF treatment and reached a maximum after 7 days. Surprisingly, the magnitude of osteoblast suppression was greater in d715 G-CSFR compared with wild-type mice. The fold-decrease in osteocalcin mRNA from baseline in wild-type mice was 147 ± 70.1 versus 1,513 ± 1091 in d715 G-CSFR mice (p < 0.001). Likewise, a greater fold-decrease in CXCL12 mRNA was observed. We next assessed oxidative stress in c-KIT+ Sca+ lineage− (KSL) progenitors after G-CSF treatment. In both wild-type and d715 G-CSFR KSL cells no increase in reactive oxygen species (ROS) was observed at baseline or 12 hours after a single dose of G-CSF. However, after 7 days of G-CSF, a significant increase (3.4 ± 0.1 fold; p = 0.009) in ROS was observed in d715 G-CSFR but not wild-type KSL cells. To determine whether oxidative stress contributed to DNA damage, histone H2AX phosphorylation (pH2AX) was measured by flow cytometry. No increase in pH2AX was observed after short-term (less than 24 hour) G-CSF treatment. However, a modest but significant (1.9 ± 0.1 fold; p = 0.0007) increase in pH2AX was observed in d715 G-CSFR but not wild-type KSL cells after 7 days of G-CSF. To determine whether increased oxidative stress was casually linked to DNA damage, we co-administered the antioxidant N-acetyl cysteine (NAC) during G-CSF treatment. As expected, induction of ROS in KSL cells was markedly suppressed by NAC administration. Importantly, the increase in pH2AX levels in d715 G-CSFR KSL cells induced by G-CSF was completely blocked by NAC administration. Finally, to determine whether alterations in the bone marrow microenvironment, specifically decreased CXCL12 expression, contributed to DNA damage, we treated mice with AMD3100, a specific antagonist of CXCR4 (the major receptor for CXCL12). Treatment of wild-type or d715 G-CSFR mice with a single dose of G-CSF (3 hour time point) or with AMD3100 alone did not induce H2AXp. However, co-administration of AMD3100 with a single dose of G-CSF induced modest but significant H2AXp in d715 G-CSFR KSL cells (5.74 ± 1.06 fold; P<0.001). Collectively, these data suggest a model in which alterations in the bone marrow microenvironment induced by G-CSF may contribute to genetic instability in HSPCs and ultimately leukemic transformation. The mutant CSF3R may contribute to leukemogenesis through both increased ROS production in HSPCs and increased suppression of osteoblasts. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1224-1224
Author(s):  
Junke Zheng ◽  
Chengcheng Zhang

Abstract Abstract 1224 How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we show that, in a hematopoietic stem cell (HSC) -specific inducible knockout model, the cytoskeleton-modulating protein profilin 1 (pfn1) is essential for the maintenance of multiple cell fates and metabolism of HSCs. The deletion of pfn1 in HSCs led to bone marrow failure, loss of quiescence, increased apoptosis, and mobilization of HSCs in vivo. In reconstitution analyses, pfn1-deficient cells were selectively lost from mixed bone marrow chimeras. By contrast, pfn1 deletion did not significantly affect differentiation or homing of HSCs. When compared to wild-type cells, levels of expression of Hif-1a, EGR1, and MLL were lower and an earlier switch from glycolysis to mitochondrial respiration with increased ROS level was observed in pfn1-deficient HSCs. This switch preceded the detectable alteration of other cell fates. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that pfn1 maintained metabolism is required for the quiescence of HSCs. Furthermore, we demonstrated that expression of wild-type pfn1 but not the actin-binding deficient or poly-proline binding-deficient mutants of pfn1 rescued the defective phenotype of pfn1-deficient HSCs. This result indicates that actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Thus, pfn1 plays an essential role in regulating the retention and metabolism of HSCs in the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1677-1677
Author(s):  
Zejin Sun ◽  
Yanzhu Yang ◽  
Yan Li ◽  
Daisy Zeng ◽  
Jingling Li ◽  
...  

Abstract Fanconi anemia (FA) is a recessive DNA repair disorder characterized by congenital abnormalities, bone marrow failure, genomic instability, and a predisposition to malignancies. As the majority of FA patients ultimately acquires severe bone marrow failure, transplantation of stem cells from a normal donor is the only curative treatment to replace the malfunctioning hematopoietic system. Stem cell gene transfer technology aimed at re-introducing the missing gene is a potentially promising therapy, however, prolonged ex vivo culture of cells, that was utilized in clinical trials with gammaretroviruses, results in a high incidence of apoptosis and at least in mice predisposes the surviving reinfused cells to hematological malignancy. Consequently, gene delivery systems such as lentiviruses that allow a reduction in ex vivo culture time are highly desirable. Here, we constructed a lentiviral vector expressing the human FANCA cDNA and tested the ability of this construct pseudotyped with either VSVG or a modified prototype foamyvirus (FV) envelope to correct Fanca−/− stem and progenitor cells in vitro and in vivo. In order to minimize genotoxic stress due to extended in vitro manipulations, an overnight transduction protocol was utilized where in the absence of prestimulation, murine Fanca−/− bone marrow cKit+ cells were co-cultured for 16h with FANCA lentivirus on the recombinant fibronectin fragment CH296. Transduction efficiency and transfer of lentivirally expressed FANCA was confirmed functionally in vitro by improved survival of consistently approximately 60% of clonogenic progenitors in serial concentrations of mitomycin C (MMC), irregardless of the envelope that was utilized to package the vector. Transduction of fibroblasts was also associated with complete correction of MMC-induced G2/M arrest and biochemically with the restoration of FancD2 mono-ubiquitination. Finally, to functionally determine whether gene delivery by the recombinant lentivirus during such a short transduction period is sufficient to correct Fanca−/− stem cell repopulation to wild-type levels, competitive repopulation experiments were conducted as previously described. Follow-up of up to 8 months demonstrated that the functional correction were also achieved in the hematopoietic stem cell compartment as evidenced by observations that the repopulating ability of Fanca−/− stem cells transduced with the recombinant lentivirus encoding hFANCA was equivalent to that of wild-type stem cells. Importantly, despite the fact that the gene transfer efficiency into cells surviving the transduction protocol were similar for both pseudotypes, VSVG was associated with a 4-fold higher toxicity to the c-kit+ cells than the FV envelope. Thus, when target cell numbers are limited as stem cells are in FA patients, the foamyviral envelope may facilitate overall greater survival of corrected stem cells. Collectively, these data indicate that the lentiviral construct can efficiently correct FA HSCs and progenitor cells in a short transduction protocol overnight without prestimulation and that the modified foamy envelope may have less cytotoxicity than the commonly used VSVG envelope.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 878-878
Author(s):  
Kalindi Parmar ◽  
Patrizia Vinciguerra ◽  
Susana Godinho ◽  
Abigail Hamilton ◽  
David Pellman ◽  
...  

Abstract Abstract 878 Fanconi Anemia (FA) is a human genomic instability disorder characterized by progressive bone marrow failure, congenital abnormalities and high predisposition to cancer. Bone marrow failure in FA children is attributed partly to the excessive apoptosis and subsequent failure of the hematopoietic stem cell compartment. Understanding the mechanisms of bone marrow failure may allow better diagnosis and treatment for FA and other aplastic anemia patients. There are fourteen known Fanconi Anemia genes (A, B, C, D1, D2, E, F, G, I, J, L, M, N, O). The FA pathway, regulated by these FA gene products, mediates DNA repair and promotes normal cellular resistance to DNA crosslinking agents. Recent studies suggest that besides maintaining genomic stability, the FA pathway may also play a role in mitosis since FANCD2 and FANCI, the two key FA proteins, are localized to the extremities of ultra-fine DNA bridges (UFBs) linking sister chromatids during cell division (Chan et al, Nat Cell Biol, 11:753-760, 2009; Naim and Rosselli, Nat Cell Biol, 11:761-768, 2009). Whether FA proteins play a direct role in cell division is still unclear. To dissect the mechanisms of bone marrow failure in FA, we have investigated the requirement of FA pathway during mitosis. Initially, we investigated the number of DNA bridges occurring during mitosis in FA-deficient and proficient cells by immunofluorescence and Hoechst staining. FA-deficient patient cell lines (FANCG-deficient and FANCD1/BRCA2-deficient cells) as well as Hela cells with shRNA-mediated knockdown of the FA pathway, displayed an increase in UFBs compared to the FA proficient cells during mitosis. The UFBs were coated by BLM (the RecQ helicase mutated in Bloom syndrome) in early mitosis. In contrast, the FA protein, FANCM, was recruited to the bridges at a later stage. Since the DNA bridges occluding the cleavage furrow potentially induce cytokinesis failure, we assessed FA-deficient cells for multinucleation. The increased number of DNA bridges correlated with a higher rate of binucleated cells in FA deficient Hela cell lines and FA patient-derived fibroblast cells. Moreover, an increase in binucleated cells was also detectable in FA-deficient primary murine bone marrow hematopoietic stem cells (Fancd2-/- cells and Fancg-/- cells) compared to the wild-type cells undergoing proliferation and in FA patient-derived bone marrow stroma cells compared to the stroma cells from normal human bone marrow. Interestingly, the increase in binucleated cells in FA-deficient murine hematopoietic stem cells correlated with the increase in apoptotic cells. Binuclearity, scored by immunostaining for microtubules and Hoechst staining for DNA, was the result of cytokinesis failure as observed by live cell imaging. Therefore, we investigated whether the FA-deficient cells are sensitive to the cytokinesis inhibitors. FA-deficient murine bone marrow lineage negative cells (Fancd2-/- cells) or FA human fibroblast cells were exposed to VX-680 (an inhibitor of Aurora kinases regulating cytokinesis) in culture for 72 hrs and cell survival was assessed. VX-680 caused increased toxicity (reduced cell viability and increased apoptosis) on FA-deficient cells in comparison to the wild-type cells. Enhanced inhibition of clonogenic growth of murine FA-deficient bone marrow cells (Fancd2-/- cells) compared to the wild-type cells was also observed by exposure to VX-680. These data indicated that FA pathway-deficient hematopoietic cells are hypersensitive to cytokinesis inhibitors. Collectively, our results underscore the importance of the FA pathway in mitosis and suggest that the cytokinesis failure observed in FA deficient hematopoietic cells could contribute to bone marrow failure in Fanconi anemia patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3433-3433
Author(s):  
Nan Xiao ◽  
Kaushal Jani ◽  
Jonathan L Jesneck ◽  
Glen D Raffel

Abstract Abstract 3433 With age, hematopoietic stem cells (HSCs) have numerical expansion, skewing towards myeloid development, loss of lymphoid potential, an underlying pro-inflammatory state and loss of self-renewal potential thus severely limiting responses to hematopoietic stress, ultimately leading to bone marrow failure. The mechanisms and pathways responsible for these changes in aged HSCs are incompletely understood. Using a conditional allele of Ott1, a gene originally isolated as the 5' fusion partner in t(1;22) acute megakaryocytic leukemia, we previously found a global regulatory role for the gene in hematopoiesis. Deletion of Ott1 in adult mice utilizing Mx1-cre recapitulated certain aspects of aging hematopoiesis including increased Lin−Sca1+c-Kit+ (LSK) population, myeloid expansion and decreased lymphopoiesis. The LSK compartment was further characterized using SLAM and CD34/Flk2 markers and demonstrated normal levels of LT-HSCs and increased ST-HSCs. Despite sufficient LT-HSC numbers, Ott1-deleted bone marrow was unable to competitively or non-competitively repopulate irradiated recipients. To exclude a homing or engraftment effect, Ott1flox/null Mx1-cre bone marrow was transplanted with competitor then excised post-engraftment. The rapid loss of the Ott1-deficient graft demonstrated Ott1 is required for maintenance under competitive stress. In contrast, primary mice undergoing Ott1 excision lived a normal lifespan and were able to maintain sufficient hematopoiesis although with a partial reduction in bone marrow clonagenicity showing loss of Ott1 is not limiting under steady state conditions. To test the HSC requirement for Ott1 under replicative stress, Ott1 knockout mice were challenged with 5-fluorouracil (5-FU). Ott1-deleted mice treated with 5-FU displayed delayed peripheral blood neutrophil recovery and showed accelerated bone marrow failure. Cell cycle analysis of steady state Ott1 knockout HSCs showed a similar profile to wild type controls, however, after 5-FU treatment, the G0 fraction was dramatically reduced. The G0 fraction is associated with the quiescent, self-renewing HSC population, therefore, Ott1 is required for maintaining HSC quiescence during replicative stress but not steady state hematopoiesis. To more specifically assess whether the functional hematopoietic changes seen after loss of Ott1 were accompanied by alterations in known aging-associated pathways, Gene Set Enrichment Analysis comparing Ott1-deleted HSCs in steady state to aged HSCs was performed and showed a highly enriched gene expression signature (NES 2.02 p<0.0001). Physiologic sequelae of HSC aging were observed after Ott1 excision including activation of NFκβ, elevation of reactive oxygen species (ROS), increase in DNA damage (γH2A.X levels) and activation of p38Mapk. Although ROS was elevated under steady state conditions, neither apoptosis, senescence or proliferation was significantly different from wild type control HSCs. Furthermore, anti-oxidant treatment with N-acetyl-cysteine was unable to rescue the HSC maintenance defect of the Ott1 knockout, signifying additional requirements in HSCs for Ott1 beyond regulation of ROS. An observed increase of mitochondrial mass in Ott1-deleted HSCs suggests an upstream function for Ott1 in metabolic control, potentially contributing to ROS generation or degradation. In summary, we have demonstrated an essential role for Ott1 in maintaining HSC quiescence during replicative stress and shown loss of Ott1 leads to the acquisition of key gene expression patterns and pathophysiologic changes associated with aging. These data suggest Ott1 functions in part to oppose specific consequences of aging in the hematopoietic compartment. Ott1 and Ott1-dependent pathways therefore represent a potential therapeutic target to prevent the morbidity and mortality arising from age-related defects in hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (23) ◽  
pp. 6057-6067 ◽  
Author(s):  
Yechen Xiao ◽  
Hongling Li ◽  
Jun Zhang ◽  
Andrew Volk ◽  
Shubin Zhang ◽  
...  

AbstractWe studied the effects of TNF-α and Fas-induced death signaling in hematopoietic stem and progenitor cells (HSPCs) by examining their contributions to the development of bone marrow failure syndromes in Tak1-knockout mice (Tak1−/−). We found that complete inactivation of TNF-α signaling by deleting both of its receptors, 1 and 2 (Tnfr1−/−r2−/−), can prevent the death of 30% to 40% of Tak1−/− HSPCs and partially repress the bone marrow failure phenotype of Tak1−/− mice. Fas deletion can prevent the death of 5% to 10% of Tak1−/− HSPCs but fails to further improve the survival of Tak1−/−Tnfr1−/−r2−/− HSPCs, suggesting that Fas might induce death within a subset of TNF-α-sensitive HSPCs. This TNF-α/Fas-induced cell death is a type of receptor-interacting protein-1 (RIP-1)–dependent programmed necrosis called necroptosis, which can be prevented by necrostatin-1, a specific RIP-1 inhibitor. In addition, we found that the remaining Tak1−/− HSPCs died of apoptosis mediated by the caspase-8–dependent extrinsic apoptotic pathway. This apoptosis can be converted into necroptosis by the inhibition of caspase-8 and prevented by inhibiting both caspase-8 and RIP-1 activities. We concluded that HSPCs are heterogeneous populations in response to death signaling stimulation. Tak1 mediates a critical survival signal, which protects against both TNF-α/Fas-RIP-1–dependent necroptosis and TNF-α/Fas-independent apoptosis in HSPCs.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 193-193
Author(s):  
Pekka Jaako ◽  
Johan Flygare ◽  
Karin Olsson ◽  
Ronan Quere ◽  
Jonas Larsson ◽  
...  

Abstract Abstract 193 Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia associated with physical malformations and predisposition to cancer. Of the many different DBA disease genes known, all encode for ribosomal proteins, suggesting that DBA is a disorder relating to ribosomal biogenesis or function. Among these genes, ribosomal protein S19 (RPS19) is the most frequently mutated (25 % of the patients). The generation of animal models for DBA is pivotal in order to understand the disease mechanisms and to evaluate novel therapies. We have generated two mouse models for RPS19-deficient DBA by taking advantage of RNA interference (Jaako et al, 2009 ASH meeting abstract). These models contain RPS19-targeting shRNAs expressed by a doxycycline-responsive promoter downstream of the Collagen A1 locus allowing an inducible and dose-dependent regulation of shRNA. As we have previously reported, the induction of RPS19 deficiency results in a reduction in the number of erythrocytes, platelets and white blood cells, and flow cytometric analysis of bone marrow after a short-term induction reveals increased frequencies of hematopoietic stem and progenitor cells reflecting the onset of stress hematopoiesis. In the current study we have analyzed the long-term effect of RPS19 deficiency in bone marrow. In contrast to a short-term induction, flow cytometric analysis of bone marrow after 51 days revealed decreased frequencies of hematopoietic stem and progenitor cells that correlate with a severe peripheral blood phenotype. In addition, we observed a 3–6 fold increase in apoptosis in RPS19-deficient bone marrow compared to controls based on TUNEL assay. Furthermore, transplantation of whole bone marrow cells from transgenic donors into wild type lethally irradiated recipients confirms that the observed phenotype is autonomous to the blood system. To study whether long-term RPS19 deficiency functionally impairs hematopoietic stem cells, we pre-induced mice for 30 days followed by 15 days without doxycycline to restore the RPS19 expression. Mice were sacrificed and total bone marrow cells were transplanted together with wild-type competitor cells (1:1) into wild type lethally irradiated recipients without doxycycline. This experimental setting allows us to assess the functionality of pre-induced hematopoietic stem cells in absence of ribosomal stress. Flow cytometric analysis of peripheral blood one month after transplantation clearly demonstrates decreased reconstitution from pre-induced donors compared to the wild-type competitor. While this time point reflects mainly the function of transplanted progenitors, long-term analysis of hematopoietic stem cell function in these recipients is ongoing. To study the molecular mechanisms underlying the hematopoietic defect we performed comparative microarray analysis. We chose to analyze preCFU-E/CFU-E erythroid progenitors since we have previously located the erythroid defect at the CFU-E – proerythroblast transition based on flow cytometry and clonogenic proliferation cultures of prospectively isolated erythroid progenitors. Microarray analysis of preCFU-E/CFU-E progenitors reveals deregulation of several genetic pathways, including a robust upregulation of p53 pathway genes, and these targets have been confirmed by real-time PCR. Furthermore, many of p53 target genes are also upregulated in the Lineage− Sca-1+ c-Kit+ (LSK) population that contains immature hematopoietic progenitors and stem cells suggesting that the activation of p53 is not restricted to the erythroid lineage. To ask whether increased activity of p53 can solely explain the hematopoietic phenotype, we have crossed our mouse model into a p53-null background. In summary, our data suggest that RPS19-deficient mice fail to uphold stress hematopoiesis for extended periods of time, with chronic RPS19 deficiency causing bone marrow failure. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document