scholarly journals Biomarker-driven strategy for MCL1 inhibition in T-cell lymphomas

Blood ◽  
2019 ◽  
Vol 133 (6) ◽  
pp. 566-575 ◽  
Author(s):  
Raphael Koch ◽  
Amanda L. Christie ◽  
Jennifer L. Crombie ◽  
Adam C. Palmer ◽  
Deborah Plana ◽  
...  

Abstract There is a pressing need for more effective therapies to treat patients with T-cell lymphomas (TCLs), including first-line approaches that increase the response rate to cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP) chemotherapy. We characterized the mitochondrial apoptosis pathway in cell lines and patient-derived xenograft (PDX) models of TCL and assessed the in vitro efficacy of BH3 mimetics, including the BCL2 inhibitor venetoclax, the BCL2/BCL-xL inhibitor navitoclax, and the novel MCL1 inhibitor AZD5991. The abundance of antiapoptotic BCL2 family members based on immunoblotting or RNA transcript levels correlated poorly with the activity of BH3 mimetics. In contrast, the functional approach BH3 profiling reliably predicted sensitivity to BH3 mimetics in vitro and in vivo. We used BH3 profiling to select TCL PDX that were dependent on MCL1. Mice xenografted with these PDX and treated with AZD5991 had markedly improved survival. The combination of AZD5991 and CHOP achieved synergy based on survival improvement beyond a mathematical “sum of benefits” model. Thus, MCL1 inhibition is a promising strategy as both a single agent and in combination with chemotherapy for patients with TCL and functional dependence on MCL1.

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 631
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Reza Nejati ◽  
Lauren Shaw ◽  
...  

Peripheral T cell lymphomas (PTCLs) are generally chemotherapy resistant and have a poor prognosis. The lack of targeted immunotherapeutic approaches for T cell malignancies results in part from potential risks associated with targeting broadly expressed T cell markers, namely T cell depletion and clinically significant immune compromise. The knowledge that the T cell receptor (TCR) β chain in human α/β TCRs are grouped into Vβ families that can each be targeted by a monoclonal antibody can therefore be exploited for therapeutic purposes. Here, we develop a flexible approach for targeting TCR Vβ families by engineering T cells to express a chimeric CD64 protein that acts as a high affinity immune receptor (IR). We found that CD64 IR-modified T cells can be redirected with precision to T cell targets expressing selected Vβ families by combining CD64 IR-modified T cells with a monoclonal antibody directed toward a specific TCR Vβ family in vitro and in vivo. These findings provide proof of concept that TCR Vβ-family-specific T cell lysis can be achieved using this novel combination cell–antibody platform and illuminates a path toward high precision targeting of T cell malignancies without substantial immune compromise.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e65308 ◽  
Author(s):  
Qingqing Cai ◽  
Huiqiang Huang ◽  
Dong Qian ◽  
Kailin Chen ◽  
Junhua Luo ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3017-3017
Author(s):  
Chiara Tarantelli ◽  
Eugenio Gaudio ◽  
Petra Hillmann ◽  
Filippo Spriano ◽  
Ivo Kwee ◽  
...  

Abstract Background. The PI3K/AKT/mTOR pathway is an important therapeutic target in lymphomas. PQR309 is a dual PI3K/mTOR inhibitor that has shown in vitroanti-lymphoma activity (Tarantelli et al, ASH2015) and is in phase 2 trial (NCT02249429, , NCT02723877, NCT02669511). PQR620 is a novel mTORC1/2 inhibitor that has shown preclinical activity in solid tumor models (Beaufils et al, AACR 2016). Here, we present the in vitro and in vivo anti-lymphoma activity of PQR620 as single agent and also the in vivo results of PQR620 or PQR309 containing combinations with the BCL2 inhibitor venetoclax. Materials and Methods. The drug concentration causing 50% inhibition of cell proliferation (IC50) was obtained in lymphoma cell lines [diffuse large B cell lymphoma (DLBCL), no.=26; mantle cell lymphoma (MCL), no.=8; anaplastic large T-cell lymphoma, no.=5; others, no=5] exposed to increasing doses of PQR620 for 72h using a Tecan D300e Digital Dispenser on 384well plates. For in vivo experiments, NOD-Scid (NOD.CB17-Prkdcscid/J) mice were subcutaneously inoculated with 10 x106 (RIVA) or with 5 x106(SU-DHL-6) cells. Results. PQR620 had a median IC50 of 250 nM (95%CI, 200-269 nM) when tested on 44 lymphoma cell lines. Activity was higher in B cell (no.=36) than in T cell tumors (no.=8) (median IC50s: 250 nM vs 450 nM; P=0.002). At 72h, anti-tumor activityof PQR620 was mostly cytostatic and apoptosis induction was seen only in 6/44 cell lines (13%), Sensitivity to PQR620 or apoptosis induction did not differ between DLBCL and MCL, and they were not affected by the DLBCL cell of origin, by TP53 status or by the presence of MYC or BCL2 translocations. The activity of PQR620 as single agent underwent in vivo evaluation in two DLBCL models, the germinal center B cell type DLBCL (GCB-DLBCL) SU-DHL-6 and the acivated B cell-like DLBCL (ABC-DLBCL) RIVA. Treatments with PQR620 (100mg/kg dose per day, Qdx7/w) started with 100-150 mm3 tumors and were carried for 14 (SU-DHL-6) or 21 days (RIVA). In both models, PQR620 determined a 2-fold decrease of the tumor volumes in comparison with control, with significant differences in both SU-DHL-6 (D7, D9, D11, D14; P < 0.005) and RIVA (D14, D16, D19, D21; P < 0.005). Based on the previously reported synergy between the dual PI3K/mTOR inhibitor PQR309 and venetoclax (Tarantelli et al, ASH 2015), we evaluated the combination of the PQR620 or PQR309 with the BCL2 inhibitor venetoclax (100 mg/kg, Qdx7/w) in the SU-DHL-6 model. Both the venetoclax combination with the dual PI3K/mTOR inhibitor and the venetoclax combination with mTORC1/2 inhibitor were superior to the compounds given as single agents, leading to the eradication of the xenografts. The combination of PQR620 with venetoclax showed highly significant differences either versus control or single agents during all days of the experiment (D4, D7, D9, D11, D14; P < 0.001). Similarly, the combination of PQR309 with venetoclax showed highly significant differences versus venetoclax (D7, D9, D11, D14; P < 0.001) and PQR309 (D7, D9, D11; P < 0.005) alone. Conclusions. The novel mTORC1/2 inhibitor PQR620 had in vitro and in vivo anti-lymphoma activity as single agent. In vivo experiments showed that both PQR620 and the dual PI3K/mTOR inhibitor PQR309 can strongly benefit from the combination with the BCL2 inhibitor venetoclax. Disclosures Hillmann: PIQUR Therapeutics AG: Employment. Fabbro:PIQUR Therapeutics AG: Employment. Cmiljanovic:PIQUR Therapeutics AG: Employment, Membership on an entity's Board of Directors or advisory committees.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 3063-3063 ◽  
Author(s):  
S. Whittaker ◽  
W. McCulloch ◽  
T. Robak ◽  
E. Baran

3063 Background: Depsipeptide, a unique bicyclic peptide histone deacetylase inhibitor (HDACi), has shown activity in a range of in vitro and in vivo tumor models and clinical activity in T-cell lymphomas and prostate cancer. This study seeks to confirm the CTCL activity previously reported by the NCI (Piekarz, et al., ASCO, 2004). Methods: Single-arm, open label study, in 25 centers in the UK, Germany, Poland and the US. Patients aged ≥18 years with biopsy-confirmed CTCL (centrally reviewed) who have failed at least one prior systemic treatment receive up to 6 cycles of depsipeptide as a 4-hour IV infusion on Days 1, 8 and 15 q 28 days. Eligibility criteria include: mycosis fungoides and Sézary syndrome plus variants, Stages IB - IVA, adequate organ function, ECOG PS ≤ 1. Patients with significant cardiovascular abnormalities are excluded in addition to those taking QTc-prolonging or CYP3A4-inhibiting drugs. The primary endpoint is overall reponse rate measured by a combination of imaging, circulating cell counts and a weighted skin average instrument, confirmed by standardized photography. A subset undergoes pharmacokinetic assessments. Correlative studies include acetylation status, apoptotic markers and proteomic analyses where possible. Target accrual is 76 to yield 64 evaluable patients. Results: 30 patients have received treatment with 17 evaluable for efficacy. Responses seen are 1 cCR, 4 PRs (duration 2+ to 6 months) 9 SD and 3 PD. 3 patients withdrew early for PD and 2 for other reasons. The remaining patients on study are too early to assess. Most frequent toxicities are: nausea/vomiting, fatigue, myelosuppression and asymptomatic ECG changes. No patient has withdrawn for toxicity and there have been no treatment-related deaths. Conclusions: The previously reported efficacy of depsipeptide in CTCL has also been seen in the present study. Duration of response is encouraging. Toxicity is manageable and the study continues to accrue. [Table: see text]


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13569-e13569
Author(s):  
Enrica Marchi ◽  
Matko Kalac ◽  
Danielle Bongero ◽  
Christine McIntosh ◽  
Laura K Fogli ◽  
...  

e13569 Background: CHOP and CHOP-like chemotherapy are the most used regimens for the treatment of peripheral T-cell lymphomas (PTCLs) despite sub-optimal results. Histone deacetylase inhibitors (HDACIs) have shown class activity in PTCLs. The interaction between the HDACIs (depsipeptide (R), belinostat (B), vorinostat (V) and panobinostat (P)) and a DNMT inhibitor (decitabine (D) was investigated in vitro, in vivo and at the molecular level in T-cell lymphoma and leukemia cell lines (H9, HH, P12, PF-382). Methods: For cytotoxicity assays, luminescence cell viability assay was used (CellTiter-Glo). Drug:drug interactions were analyzed with relative risk ratios (RRR) based on the GraphPad software (RRR<1 defining synergism). Apoptosis was assessed by Yo-Pro-1 and propidium iodine followed by FACSCalibur acquisition. Gene expression profiling was analyzed using Illumina Human HT-12 v4 Expression BeadChip microarrays and Gene Spring Software for the analysis. Results: The IC50s for B, R, V, P, D and 5-Azacytidine alone were assessed at 24, 48 and 72 hours. In cytotoxicity assays the combination of D plus B, R, V or P at 72 hours showed synergism in all the cell lines (RRRs 0.0007-0.9). All the cell lines were treated with D, B or R for 72 hours and all the combinations showed significantly more apoptosis than the single drug exposures and controls (RRR < 1). In vivo, HH SCID beige mice were treated i.p. for 3 cycles with the vehicle solution, D or B or their combination at increasing dose. The combination cohort showed statistically significant tumor growth inhibition compared to all the other cohorts. Gene expression analysis revealed differentially expressed genes and modulated pathways for each of the single agent treatment and the combination. The effects of the two drugs were largely different (only 39 genes modified in common). Most of the effects induced by the single agent were maintained in the combination group. Interestingly, 944 genes were modulated uniquely by the combination treatment. Conclusions: The combination of a DNMTI and HDACIs is strongly synergistic in vitro, in vivo and at the molecular level in model of T-cell lymphoma and these data will constitute the basis for a phase I-II clinical trials.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2650-2658 ◽  
Author(s):  
Christina Spaulding ◽  
Erica J. Reschly ◽  
Derek E. Zagort ◽  
Yumi Yashiro-Ohtani ◽  
Levi J. Beverly ◽  
...  

Oncogenic Notch1 mutations are found in most T-lineage acute lymphoblastic leukemias in humans and T-cell lymphomas in mice. However, the mechanism by which Notch1 promotes transformation or maintains malignant cell survival has not been determined fully. Here, we report that expression of the transcription factor lymphoid enhancer factor 1 (Lef1) is Notch dependent in murine T-cell lymphomas in vitro and in vivo, and that the intracellular domain of Notch1 (ICN1) is present at the Lef1 promoter. Lef1 expression is not Notch dependent in primary T-cell progenitors, but Lef1 mRNA is increased by ectopic expression of ICN1 in these cells. We show that Lef1 is required for survival of T-cell lymphoma lines, and that ectopic expression of Lef1 delays lymphoma cell death in the absence of Notch signaling, indicating that Lef1 is an important Notch target in these cells. Therefore, Notch1 co-opts Lef1 during the process of transformation to maintain survival of T-cell lymphomas.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Jing Sun ◽  
Guibo Sun ◽  
Xiaolan Cui ◽  
Xiangbao Meng ◽  
Meng Qin ◽  
...  

Doxorubicin (Dox) is one of the most effective and widely used anthracycline antineoplastic antibiotics. Unfortunately, the use of Dox is limited by its cumulative and dose-dependent cardiac toxicity. Myricitrin, a natural flavonoid which is isolated from the ground bark ofMyrica rubra, has recently been found to have a strong antioxidative effect. This study aimed to evaluate the possible protective effect of myricitrin against Dox-induced cardiotoxicity and the underlying mechanisms. An in vivo investigation in SD rats demonstrated that myricitrin significantly reduced the Dox-induced myocardial damage, as indicated by the decreases in the cardiac index, amelioration of heart pathological injuries, and decreases in the serum cardiac enzyme levels. In addition, in vitro studies showed that myricitrin effectively reduced the Dox-induced cell toxicity. Further study showed that myricitrin exerted its function by counteracting oxidative stress and increasing the activities of antioxidant enzymes. Moreover, myricitrin suppressed the myocardial apoptosis induced by Dox, as indicated by decreases in the activation of caspase-3 and the numbers of TUNEL-positive cells, maintenance of the mitochondrial membrane potential, and increase in the Bcl-2/Bax ratio. Further mechanism study revealed that myricitrin-induced suppression of myocardial apoptosis relied on the ERK/p53-mediated mitochondrial apoptosis pathway.


2002 ◽  
Vol 22 (23) ◽  
pp. 8375-8387 ◽  
Author(s):  
Roberto Piva ◽  
Jian Liu ◽  
Roberto Chiarle ◽  
Antonello Podda ◽  
Michele Pagano ◽  
...  

ABSTRACT Skp1 is involved in a variety of crucial cellular functions, among which the best understood is the formation together with Cul1 of Skp1-cullin-F-box protein ubiquitin ligases. To investigate the role of Skp1, we generated transgenic (Tg) mice expressing a Cul1 deletion mutant (Cul1-N252) able to sequestrate and inactivate Skp1. In vivo interference with Skp1 function through expression of the Cul1-N252 mutant into the T-cell lineage results in lymphoid organ hypoplasia and reduced proliferation. Nonetheless, after a period of latency, Cul1-N252 Tg mice succumb to T-cell lymphomas with high penetrance (>80%). Both T-cell depletion and the neoplastic phenotype of Cul1-N252 Tg mice are largely rescued in Cul1-N252, Skp1 double-Tg mice, indicating that the effects of Cul1-N252 are due to a sequestration of the endogenous Skp1. Analysis of Cul1-N252 lymphomas demonstrates striking karyotype heterogeneity associated with c-myc amplification and c-Myc overexpression. We show that the in vitro expression of the Cul1-N252 mutant causes a pleiotrophic phenotype, which includes the formation of multinucleated cells, centrosome and mitotic spindle abnormalities, and impaired chromosome segregation. Our findings support a crucial role for Skp1 in proper chromosomal segregation, which is required for the maintenance of euploidy and suppression of transformation.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A897-A897
Author(s):  
Emily Rowell ◽  
Heather Kinkead ◽  
Elisabeth Torretti ◽  
Bryan Becklund ◽  
Florian Sulzmaier ◽  
...  

BackgroundOX40 is a co-stimulatory receptor enriched on immune cells in the tumor microenvironment. OX40 agonism promotes anti-tumor responses, both singly and in combination with checkpoint inhibitors. The cognate OX40 ligand, OX40L, is a trimeric protein that activates robust signaling through clustering. INBRX-106 is a novel hexavalent OX40 agonist that has been rationally designed to optimize target clustering and provide superior agonism to previously explored bivalent entities, leading to more potent anti-tumor activity.MethodsINBRX-106 is a homodimer, each half comprising three identical humanized, camelid single-domain antibody binding domains targeting OX40 linked end-to-end, and fused to an effector-enabled human IgG1 constant domain (Fc). Due to lack of rodent cross-reactivity, a valency, affinity and activity-matched murine surrogate, Hex-C04, was generated for the purpose of preclinical modeling. Hex-C04 contains an mIgG2a effector enabled Fc, the mouse isotype most analogous to the activity of human IgG1. The activity and potency of INBRX-106 and Hex-C04 were evaluated in functional in vitro T-cell assays, and the anti-tumor efficacy of Hex-C04 was evaluated alone or in combination with PD-1 blockade across a number of syngeneic tumor models.ResultsINBRX-106 binds specifically to OX40 with a sub nanomolar apparent affinity, without blocking the binding of its ligand OX40L. In vitro, cross-linking by INBRX-106 rapidly induces loss of OX40 surface expression in addition to driving receptor signaling. In primary T-cell assays, INBRX-106 is more potent than a bivalent comparator antibody, inducing greater upregulation of activation markers, cytokine production and proliferation. This costimulatory activity exhibits a bell-shaped dose-response curve, with maximal activity occurring at receptor occupancies of 30–100%. In vivo, tumor growth control by Hex-C04 also follows a bell-shaped dose response curve. Rapid loss of OX40 is observed in vivo as well, with both the degree and duration of OX40 loss dependent on Cmax and exposure. Hex-C04 demonstrated strong single-agent activity across a variety of preclinical tumor models including models that do not respond to a PD-1/PD-L1 checkpoint inhibitor, and this activity was improved in combination with a PD-1 blocking antibody.ConclusionsPreclinically, INBRX-106 significantly outperforms bivalent antibodies in co-stimulatory capacity and anti-tumor activity. On the weight of this data, Inhibrx Inc. has initiated a first-in-human Phase 1 trial of INBRX-106 as a single agent or in combination with Keytruda® (pembrolizumab). The complex relationship between dose, OX40 target modulation and activity indicate the importance of integrating preclinical data sets with emerging clinical data to make informed decisions regarding INBRX-106 dose and schedule.Trial RegistrationNCT04198766Ethics ApprovalThe care and use of all animals were reviewed and approved by the IACUC committees of Explora BioLabs and Molecular Diagnostic Services and conducted in accordance with AAALAC regulations.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-7
Author(s):  
Bing Z Carter ◽  
Po Yee Mak ◽  
Wenjing Tao ◽  
Vivian Ruvolo ◽  
Xuan Zhang ◽  
...  

Venetoclax (VEN), a highly selective BCL-2 inhibitor with limited single-agent activity in AML, has shown encouraging efficacy in combination with hypomethylating agents (HMA). Nevertheless, patients relapse and have limited treatment options. Like BCL-2, MCL-1 plays critical roles in the survival of AML cells and AML stem/progenitor cells. MCL-1 is also a known resistance factor to VEN. Preclinical studies have demonstrated that combined inhibition of BCL-2 and MCL-1 is highly effective in VEN-resistant AML cells. Diverse mechanisms contribute to the resistance to VEN, and likely also to BH3 mimetics targeting MCL-1 that are currently under clinical development in AML. The effectiveness of co-targeting BCL-2 and MCL-1 in the setting of various resistance mechanisms has not been fully explored. We investigated combined inhibition of BCL-2 and MCL-1 in AML cells resistant to apoptotic stimuli through various mechanisms and demonstrate that co-inhibition of BCL-2 with VEN and MCL-1 with AMG176 synergistically targets AML cells that exhibit intrinsic or acquired resistance to BH3 mimetics in vitro and in vivo. We generated AML cells with acquired resistance to VEN (VEN-R) or AMG176 (AMG-R) by exposing the cells to increased doses of the drug and we also generated the cells genetically overexpressing BCL-2, MCL-1, or BCL-2A1. We found that both VEN-R and AMG-R MV4-11 cells expressed increased levels of MCL-1, BCL-2, and BCL2A1, but decreased BAX. Although BCL-XL levels decreased in AMG-R MV4-11 cells, BAK, PUMA, and BID levels were also markedly lower in these resistant cells compared to the parental controls. VEN or AMG176 as single agents had diminished activity against AML cells with acquired resistance not only to VEN, but also to AMG176 and AML cells genetically overexpressing MCL-1, BCL-2, or BCL2-A1. In addition, we found that TP53 mutated primary AML cells expressed low levels of BAX and that Molm13 cells acquired a TP53 mutation (R248W) expressed lower levels of BAX and were more resistant to VEN, consistent with clinical observations, and they were also more resistant to AMG176. However, when VEN and AMG176 were combined, synergy was observed (combination index &lt; 1). We next treated AML patient samples and found that combined inhibition of BCL-2 and MCL-1 was synergistic in primary AML cells and stem/progenitor cells obtained from patients with various cytogenetics/mutations, including TP53 mutations, and from patients resistant to/relapsed from VEN- or VEN/HMA-based therapy, even when AML cells were co-cultured with bone marrow-derived mesenchymal stromal cells that mimic the bone marrow microenvironment. To demonstrate potential clinical relevance, we developed a PDX model from a clinically-acquired VEN/HMA resistant AML patient and treated the PDX-bearing mice with VEN, AMG176, and the combination. Remarkably, the combination of VEN and AMG176 demonstrated strong antileukemia activities, markedly diminished not only AML blasts but also AML stem/progenitor cells, as determined by CyTOF analysis, and significantly extended survival (median 336 vs 126 d for controls, P &lt; 0001), while VEN (129 d) alone and even AMG176 (131 d) alone had minimal efficacy. Several mice in the combination group survived over 400 d and died probably from old age with only minimal residual leukemia. In conclusion, we demonstrate the alteration of multiple BCL-2 family proteins contributes to BH3 mimetic resistance that can be overcome by combined inhibition of MCL-1 and BCL-2. The striking effectiveness of co-targeting BCL-2 and MCL-1 in AML resistance to a BH3 mimetic via various mechanisms or to VEN/HMA suggests broad clinical applications of this strategy, and warrants clinical evaluations. Disclosures Carter: Amgen: Research Funding; Ascentage: Research Funding; Syndax: Research Funding; AstraZeneca: Research Funding. Hughes:Amgen: Current Employment. Chen:Amgen: Current Employment. Morrow:Amgen: Current Employment. Andreeff:Daiichi-Sankyo; Jazz Pharmaceuticals; Celgene; Amgen; AstraZeneca; 6 Dimensions Capital: Consultancy; Centre for Drug Research & Development; Cancer UK; NCI-CTEP; German Research Council; Leukemia Lymphoma Foundation (LLS); NCI-RDCRN (Rare Disease Clin Network); CLL Founcdation; BioLineRx; SentiBio; Aptose Biosciences, Inc: Membership on an entity's Board of Directors or advisory committees; Amgen: Research Funding; Daiichi-Sankyo; Breast Cancer Research Foundation; CPRIT; NIH/NCI; Amgen; AstraZeneca: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document