scholarly journals Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of Mitochondrial Vulnerability in Acute Myeloid Leukemia

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 910-910
Author(s):  
Irene Baccelli ◽  
Yves Gareau ◽  
Bernhard Lehnertz ◽  
Gingras Stephane ◽  
Jean-Francois Spinella ◽  
...  

Abstract BACKGROUND: 60% to 70% of Acute Myeloid Leukemia (AML) patients enter complete remission after induction regimen, but the majority relapse within 3 years due to the outgrowth of therapy resistant Leukemia Stem Cells (LSCs). Identification of novel treatment strategies effective against these cells thus represents an outstanding medical need. We developed a cell culture method, which transiently maintains LSC activity ex vivo (Pabst et al., Nature Methods, 2014) and enables chemical interrogation of cell types relevant for the progression of the disease. Overall, HSCs and LSCs share numerous biological traits, making specific LSC eradication challenging. However, striking differences in energy metabolism between normal and leukemic stem cells have recently been suggested. While HSCs appear to rely primarily on anaerobic glycolysis for energy production, LSCs seem to depend on mitochondrial oxidative phosphorylation for their survival. Targeting mitochondrial respiration could therefore represent an effective approach for the specific eradication of LSCs. AIM: We aimed to identify novel therapeutic targets for AMLs with poor treatment outcome. The study relied on the Leucegene approach that integrates results generated by RNA sequencing analysis of primary human AML specimens, detailed clinical and cytogenetic annotations provided by the Quebec leukemia cell bank and ex vivo responses of primary AML samples to various chemical compounds. Our study specifically focused on specimens originating from patients with poor (overall survival < 3 years) and good (overall survival ≥ 3 years) response to standard chemotherapy, and did not include cases of Acute Promyelocytic Leukemia (APL). RESULTS: We identified Mubritinib, previously described as an ERBB2 inhibitor, as a novel anti-leukemic agent, which selectively inhibits the viability of leukemic cells from therapy-resistant AML patients, but does not affect normal CD34+ cord blood cells. Exposure to Mubritinib triggered apoptotic cell death in a subset of AML samples with high mitochondrial function-related gene expression, high relapse rates, and short overall survival. Sensitivity to Mubritinib also strongly associated with the intermediate cytogenetic risk category, normal karyotype (NK), and NPM1, FLT3 (ITD) and DNMT3A mutations. Conversely, resistance to Mubritinib associated with favorable cytogenetic risk AMLs, Core Binging Factor (CBF) leukemias and KIT mutations. Mubritinib has been developed as an ERBB2 kinase inhibitor. Intriguingly, we found that ERBB2 is not expressed in Mubritinib-sensitive AML specimens, suggesting that the anti-leukemic activity of this compound is likely not mediated by ERBB2 inhibition. Using a combination of functional genomics and biochemical analyses, we demonstrated that Mubritinib directly inhibits the mitochondrial Electron Transport Chain (ETC) complex I, which leads to a decrease in oxidative phosphorylation activity and to induction of oxidative stress. The impact of Mubritinib on AML progression was explored using a syngeneic mouse model (MLL-AF9 tdTomato-positive leukemia). Recipients of MLL-AF9 cells treated with Mubritinib exhibited a 19-fold decrease in the number of tdTomato-positive cells in the bone marrow and a 42-fold decrease in the spleens compared to control mice. Short-term treatment also led to a 37% increase in the median overall survival of Mubritinib exposed recipients compared to vehicle treated mice. Importantly, and in agreement with our observation that Mubritinib treatment does not impede proliferation of normal hematopoietic CD34+ cells in vitro, Mubritinib treatment had no impact on the number of non-transduced (tdTomato negative) nucleated bone marrow cells of recipients. CONCLUSIONS: We uncovered the clinical, mutational, and transcriptional landscape of mitochondrial vulnerability in AML and identified Mubritinib as a novel ETC complex I inhibitor with therapeutic potential for approximately 30% of AML cases currently lacking effective treatment options. As Mubritinib completed a phase I clinical trial in the context of ERBB2-positive solid tumors, our work suggests an opportunity to re-purpose Mubritinib's usage for this genetically distinct subgroup of poor outcome AML patients. Disclosures No relevant conflicts of interest to declare.

Cancer Cell ◽  
2019 ◽  
Vol 36 (1) ◽  
pp. 84-99.e8 ◽  
Author(s):  
Irène Baccelli ◽  
Yves Gareau ◽  
Bernhard Lehnertz ◽  
Stéphane Gingras ◽  
Jean-François Spinella ◽  
...  

2019 ◽  
Author(s):  
Irene Baccelli ◽  
Yves Gareau ◽  
Bernhard Lehnertz ◽  
St&eacute;phane Gingras ◽  
Jean-Fran&ccedil;ois Spinella ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3439-3439
Author(s):  
Maria Rodriguez Zabala ◽  
Ramprasad Ramakrishnan ◽  
Katrin Reinbach ◽  
Leal Oburoglu ◽  
Somadri Ghosh ◽  
...  

Abstract Disease relapse in patients with acute myeloid leukemia (AML) is associated with a failure of current treatments to eradicate leukemia stem cells (LSCs), a self-renewing population of cells responsible for disease progression and maintenance. Thus, novel therapeutic strategies designed to specifically target LSCs while sparing normal hematopoietic stem cells are needed. To identify dependencies in LSCs that may reveal new treatment opportunities, we performed an in vivo CRISPR/Cas9 dropout screen in the widely used MLL-AF9-driven AML murine model. The pooled lentiviral CRISPR library was designed to target 960 genes encoding cell surface proteins expressed on MLL-AF9 AML cells as these are accessible for therapeutic targeting. The facilitated glucose transporter member 1(GLUT1), a major mediator of cellular glucose uptake, emerged as the highest ranked dependency in the screen, with all 6 sgRNAs depleted more than 10-fold in vivo. Consistent with the results from the screen, validation experiments confirmed that sgRNA-mediated GLUT1 disruption in c-Kit +Cas9 +dsRed +MLL-AF9 cells led to a 5-fold reduction in the establishment of leukemia in both the bone marrow and spleen of recipient mice. In line with these in vivo observations, leukemia cells expressing GLUT1 sgRNAs were rapidly depleted over time in an ex vivo competition assay (p&lt;0.0001). GLUT1 disruption also led to a marked increase in mean survival from 28 to 73 days in mice transplanted with sorted GLUT1 sgRNA-expressing leukemia cells relative to controls. Notably, while GLUT1 loss did not affect apoptosis or cell-cycle state, it led to a more than two-fold increase in the surface expression of the myeloid differentiation marker Gr-1 (p=0.0002). Interestingly, knockdown of GLUT1 lead to reduced mRNA expression levels of key downstream genes of MLL-driven leukemia Meis1 (p&lt;0.0001) and Hoxa9 (p=0.0013) , both of which are commonly downregulated upon differentiation. These findings suggest that GLUT1 ablation arrests AML cell growth at least in part via accelerated differentiation and attenuated cell proliferation. Given GLUT1-mediated glucose transfer constitutes the first rate-limiting step for glucose metabolism, we assessed the metabolic profile of MLL-AF9 AML cells following loss of GLUT1. Bioenergetic profiling revealed that the rate of glycolysis was significantly decreased upon GLUT1 knockdown, as measured by a decrease in extracellular acidification rate (ECAR), glucose uptake, hexokinase activity and extracellular lactate production. To further assess the feasibility of GLUT1 inhibition as a therapy for AML patients, we treated murine cKit +MLL-AF9 leukemia cells with BAY-876, a potent and highly selective GLUT1 inhibitor. BAY-876 impaired tumor growth following 24hr (IC 50 60.3 nM) and 48hr (IC 50 68.8 nM) treatment ex vivo in a dose-dependent manner. Interestingly, the inhibitory effect on the counterpart healthy bone marrow c-Kit + cells was significantly weaker (24hr IC 50 347.7 nM; 48hr IC 50 258.4nM), indicating selective targeting of LSCs. To test the efficacy of BAY-876 as an anti-leukemic agent in vivo, sublethally irradiated mice were transplanted with c-Kit +MLL-AF9 AML cells and 3 days post-injection, were randomised into two groups (Veh n=4; BAY-876 n=6) and orally treated with either vehicle or 4mg/kg of BAY-876 daily. Following 10 days of treatment, mice were sacrificed and leukemia burden was assessed. Notably, substantially lower levels of leukemia cells in the bone marrow (p=0.0095), spleen (p=0.0095), and peripheral blood (p=0.036) were observed in the BAY-876 treatment group with no significant loss of body weight. Consistent with these findings, the average spleen weight was reduced by 66% upon BAY-876 treatment (p=0.0136). Collectively, we demonstrate that MLL-AF9-driven AML cells are dependent on GLUT1 for continued growth and survival. Targeting of GLUT1 downregulates glycolysis and induces cellular differentiation. We report that genetic or pharmacological inhibition of GLUT1 is sufficient to impair leukemic growth in vitro and in vivo, highlighting a potential therapeutic opportunity for disarming intrinsic metabolic dependencies of LSCs. Ongoing studies are aimed at translating these findings to the human disease and exploring combinatorial therapies that may act synergistically to overcome mechanisms of therapy resistance and metabolic plasticity. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Irène Baccelli ◽  
Yves Gareau ◽  
Bernhard Lehnertz ◽  
Stéphane Gingras ◽  
Jean-François Spinella ◽  
...  

AbstractInhibition of oxidative phosphorylation (OXPHOS) is a promising therapeutic strategy in Acute Myeloid Leukemia (AML), but patients respond heterogeneously. Through chemically interrogation of 200 sequenced specimens, we identified Mubritinib as a strong in vitro and in vivo anti-leukemic compound, acting through ubiquinone-dependent inhibition of Electron Transport Chain complex I (ETC1). ETC1 targeting showed selective toxicity against a subgroup of chemotherapy-resistant leukemias exhibiting OXPHOS hyperactivity, high expression of mitochondrial activity-related genes, and mutations affecting NPM1, FLT3 and DNMT3A. Altogether, our work thus identifies a novel ETC1 inhibitor with high clinical potential and reveals the landscape of OXPHOS dependency in AML.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1275-1275
Author(s):  
Maria L Amaya ◽  
Anagha Inguva ◽  
Courtney L Jones ◽  
Anna Krug ◽  
Shanshan Pei ◽  
...  

Introduction: Acute myeloid leukemia (AML) is an aggressive disease with a dismal prognosis. This is largely due to high relapse rates, which stem from our inability to eliminate leukemia stem cells (LSCs) with conventional chemotherapy. As we have gained a deeper understanding of the biology of LSCs, new targets against these chemo-resistant cells have surfaced. One such example is treatment using venetoclax/azacititine, a therapy that has significantly improved the outcome for these patients. Notwithstanding, some patients show resistance to all treatments, and developing a larger repertoire of agents that target LSCs remains an unmet need in this disease. One key vulnerability of LSCs is their dependence on oxidative phosphorylation (OXPHOS). Although signal transducer and activator of transcription 3 (STAT3) has been classically studied as a transcription factor that regulates self-renewal and proliferation, it has also been shown to play an essential role in OXPHOS via regulation of the electron transport chain (ETC). Given that STAT3 is commonly overexpressed in AML, and LSCs are dependent on OXPHOS, we hypothesized that STAT3 may be an effective target for eradication of LSCs. Methods: We have developed a novel small molecule inhibitor of STAT3, SF25. This compound, as well as genetic knockdown of STAT3, was employed to test the functional role of STAT3 in primary AML specimens. Flow cytometry, colony-forming potential, and engraftment of primary samples in PDX mouse models were performed to assess therapeutic efficacy. RNA-seq, seahorse assays, and metabolomics experiments were also performed to determine molecular mechanisms linked to targeting STAT3. Results: Our data shows that inhibition of STAT3 in primary AML samples leads to decreased cell viability, colony-formation and engraftment potential in xenograft models, while not affecting normal hematopoietic stem cells. This effect appears to be a result of mitochondrial dysfunction in LSCs, as seen by a significant decrease in oxygen consumption rate of STAT3 depleted cells. The mitochondrial dysfunction and reduction in OXPHOS is mediated by the downregulation of several mitochondrial and nuclear encoded genes that are important for oxidative phosphorylation, including several electron transport chain complex genes. Inhibition of STAT3 also affects glutaminolysis, as noted by metabolomics analysis of leukemia stem cells treated with STAT3 inhibitor. We suspect this effect is mediated by down-regulation of Myc upon STAT3 inhibition, which blocks glutamine conversion to glutamate, and leads to further decrease in TCA cycle intermediates. Conclusions: Acute myeloid leukemia is an aggressive disease, largely due to the presence of a chemo-resistant population of leukemia stem cells. LSCs highly depend on proper mitochondrial function and OXPHOS, a process that is partly regulated by STAT3 via multiple mechanisms. We propose that inhibition of STAT3 is therefore an effective way of eliminating this population, making this a promising new target in the treatment of AML. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 18 (14) ◽  
pp. 1936-1951 ◽  
Author(s):  
Raghav Dogra ◽  
Rohit Bhatia ◽  
Ravi Shankar ◽  
Parveen Bansal ◽  
Ravindra K. Rawal

Background: Acute myeloid leukemia is the collective name for different types of leukemias of myeloid origin affecting blood and bone marrow. The overproduction of immature myeloblasts (white blood cells) is the characteristic feature of AML, thus flooding the bone marrow and reducing its capacity to produce normal blood cells. USFDA on August 1, 2017, approved a drug named Enasidenib formerly known as AG-221 which is being marketed under the name Idhifa to treat R/R AML with IDH2 mutation. The present review depicts the broad profile of enasidenib including various aspects of chemistry, preclinical, clinical studies, pharmacokinetics, mode of action and toxicity studies. Methods: Various reports and research articles have been referred to summarize different aspects related to chemistry and pharmacokinetics of enasidenib. Clinical data was collected from various recently published clinical reports including clinical trial outcomes. Result: The various findings of enasidenib revealed that it has been designed to allosterically inhibit mutated IDH2 to treat R/R AML patients. It has also presented good safety and efficacy profile along with 9.3 months overall survival rates of patients in which disease has relapsed. The drug is still under study either in combination or solely to treat hematological malignancies. Molecular modeling studies revealed that enasidenib binds to its target through hydrophobic interaction and hydrogen bonding inside the binding pocket. Enasidenib is found to be associated with certain adverse effects like elevated bilirubin level, diarrhea, differentiation syndrome, decreased potassium and calcium levels, etc. Conclusion: Enasidenib or AG-221was introduced by FDA as an anticancer agent which was developed as a first in class, a selective allosteric inhibitor of the tumor target i.e. IDH2 for Relapsed or Refractory AML. Phase 1/2 clinical trial of Enasidenib resulted in the overall survival rate of 40.3% with CR of 19.3%. Phase III trial on the Enasidenib is still under process along with another trial to test its potency against other cell lines. Edasidenib is associated with certain adverse effects, which can be reduced by investigators by designing its newer derivatives on the basis of SAR studies. Hence, it may come in the light as a potent lead entity for anticancer treatment in the coming years.


2016 ◽  
Vol 13 (2) ◽  
pp. 248-259 ◽  
Author(s):  
Hong-Sheng Zhou ◽  
Hong-Sheng Zhou ◽  
Bing Z. Carter ◽  
Michael Andreeff ◽  
Bing Z. Carter ◽  
...  

Diseases ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 74
Author(s):  
Elise Aasebø ◽  
Annette K. Brenner ◽  
Maria Hernandez-Valladares ◽  
Even Birkeland ◽  
Olav Mjaavatten ◽  
...  

Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy, and non-leukemic stromal cells (including mesenchymal stem cells, MSCs) are involved in leukemogenesis and show AML-supporting effects. We investigated how constitutive extracellular mediator release by primary human AML cells alters proteomic profiles of normal bone marrow MSCs. An average of 6814 proteins (range 6493−6918 proteins) were quantified for 41 MSC cultures supplemented with AML-cell conditioned medium, whereas an average of 6715 proteins (range 6703−6722) were quantified for untreated control MSCs. The AML effect on global MSC proteomic profiles varied between patients. Hierarchical clustering analysis identified 10 patients (5/10 secondary AML) showing more extensive AML-effects on the MSC proteome, whereas the other 31 patients clustered together with the untreated control MSCs and showed less extensive AML-induced effects. These two patient subsets differed especially with regard to MSC levels of extracellular matrix and mitochondrial/metabolic regulatory proteins. Less than 10% of MSC proteins were significantly altered by the exposure to AML-conditioned media; 301 proteins could only be quantified after exposure to conditioned medium and 201 additional proteins were significantly altered compared with the levels in control samples (153 increased, 48 decreased). The AML-modulated MSC proteins formed several interacting networks mainly reflecting intracellular organellar structure/trafficking but also extracellular matrix/cytokine signaling, and a single small network reflecting altered DNA replication. Our results suggest that targeting of intracellular trafficking and/or intercellular communication is a possible therapeutic strategy in AML.


Sign in / Sign up

Export Citation Format

Share Document