scholarly journals Synergistic Platelet Inhibitory Effects of Riociguat and Nitric Oxide Are Decreased By Protein Binding

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4971-4971
Author(s):  
Yifeng WU ◽  
Alan D Michelson ◽  
Andrew L Frelinger

Abstract Introduction Nitric oxide (NO) released by endothelial cells interacts with platelets in which it stimulates soluble guanylate cyclase (sGC), thereby increasing platelet cyclic guanosine monophosphate (cGMP) and inhibiting platelet activation. Stimulation of sGC in other cells has been suggested as an attractive target for intervention in a range of diseases including pulmonary arterial hypertension, heart failure, and diabetes mellitus. Riociguat, the first FDA-approved sGC stimulator, potently increases platelet cGMP and inhibits platelet aggregation in washed platelets. Because riociguat binds to plasma proteins, higher concentrations of riociguat are required to inhibit platelet function in whole blood. However the potential synergistic inhibition of platelet function by riociguat and NO has not been well studied. Goal To investigate the possible synergistic effects of riociguat and NO on platelet inhibition and to determine the effects of protein binding. Methods Platelet-rich plasma (PRP) was prepared from citrate (3.2%) anticoagulated whole blood collected from healthy donors following informed consent. Riociguat (10 mM) in DMSO and DETA-NONOate 10 mM (an NO donor) in 10 mM NaOH were stored at -80°C until use. PRP was diluted 10-fold in either HEPES-Tyrode's buffer or platelet poor plasma (PPP), then incubated with vehicle or riociguat 1, 10, or 100 µM, alone or in combination with DETA-NONOate 16, 31, or 250 µM for 30 minutes, then analyzed by flow cytometry. Platelet surface activated GPIIb-IIIa (detected by monoclonal antibody PAC1) and platelet surface P-selectin were measured with and without activation by ADP 5 µM or thrombin receptor activating peptide (TRAP) 5 µM. For light transmission platelet aggregation (LTA) and 96-well platelet aggregation, PRP was used without dilution. Results For PRP diluted in buffer, riociguat and DETA-NONOate each produced concentration-dependent inhibition of ADP- and TRAP-stimulated platelet activation, as reported by platelet surface activated GPIIb-IIIa (Figure A) and P-selectin, and a synergistic inhibitory effect was observed when riociguat and DETA-NONOate were combined (for platelet surface activated GPIIb-IIIa, 40% inhibition with 1 µM riociguat alone; 30% inhibition with 31 µM DETA-NONOate alone; 90% inhibition with 1 µM riociguat and 31 µM DETA-NONOate combined). In contrast, when PRP was diluted in PPP, the concentrations of riociguat alone and DETA-NONOate alone needed to inhibit activation were dramatically increased and the combination of 1 µM riociguat and 31 µM DETA-NONOate produced less than 10% inhibition of platelet surface activated GPIIb-IIIa (Figure B). Synergistic inhibition in plasma was observed when DETA-NONOate was increased to 250 µM. Based on these results, a sub-threshold concentration of DETA-NONOate was chosen for investigation of the effects of riociguat on platelet aggregation. Using ADP 5 µM, TRAP, 2 µM, or collagen 2 µg/mL, riociguat alone at 10 µM (Figure C) and DETA-NONOate alone at 31 µM showed no inhibition of platelet aggregation. However, in the presence of 31 µM DETA-NONOate, riociguat showed a concentration-dependent inhibition of aggregation by each agonist (Figure C). Conclusions Platelets exposed to riociguat in combination with sub-threshold concentrations of NO, such as may occur in microvessels adjacent to the endothelial layer, are inhibited from undergoing platelet activation and aggregation. The presence of plasma proteins blunts the effects of riociguat and has even larger effects on the NO donor, DETA-NONOate. Taken together, these data suggest that NO potently synergizes with riociguat to inhibit platelet activation and aggregation, but in vivo this effect likely only occurs immediately adjacent to endothelial cells where NO concentrations are highest. Figure. Figure. Disclosures Michelson: Alnylam, Instrumentation Laboratory, Surface Oncology: Consultancy; AstraZeneca, Chiesi, Dova, Janssen, LightIntegra, Megakaryon, Remora: Other: Scientific Advisory Board; Baxalta, Cellular Preservation Technologies, Ionis, Ironwood, Medtronic, Megakaryon, Pfizer, Sysmex: Research Funding. Frelinger:Surface Oncology: Consultancy; Cellular Preservation Technologies, Ironwood, Ionis, Medtronic, Megakaryon, Pfizer and Sysmex: Research Funding.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2141-2141
Author(s):  
Andrew L. Frelinger ◽  
Joseph A. Jakubowski ◽  
Julie K. Brooks ◽  
Anu Nigam ◽  
Michelle A. Berny-Lang ◽  
...  

Abstract Abstract 2141 Introduction: In patients with sickle cell disease (SCD), erythrocytes contribute to microvessel occlusion resulting in tissue damage and platelet activation. Platelet activation, aggregation, local thrombus formation and platelet activation-dependent leukocyte recruitment potentially amplify tissue ischemia. Antiplatelet therapy may therefore be useful in SCD. Here we evaluate levels of platelet activation markers in adolescents with SCD vs. normal controls and the effect of in vitro blockade of the platelet ADP receptor P2Y12 by prasugrel's active metabolite, R-138727. Methods: Blood was obtained from adolescents (10 – 18 yr) with SCD and healthy adult subjects. Platelet function was evaluated by: light transmission aggregation (LTA) in platelet-rich plasma with 20 μM ADP and in whole blood by VerifyNow P2Y12; Multiple Electrode Aggregometry (MEA) with 6.5 μM ADP; vasodilator stimulated phosphoprotein (VASP) P2Y12 assay; and whole blood flow cytometric analysis of basal and in vitro ADP-stimulated levels of platelet surface activated GPIIb-IIIa (reported by monoclonal antibody PAC1) and P-selectin, platelet-monocyte aggregates (PMA) and platelet-neutrophil aggregates (PNA). These endpoints were also evaluated after in vitro incubation of whole blood with R-138727 (0.1 – 10 μM). Results: In SCD patients compared with normal subjects, circulating PMA and PNA levels were significantly higher (76.5 ± 20.3% and 55.1 ± 21.8% vs. 20.1 ± 7% and 13.9 ± 4.2% [mean ± SD], respectively, p<0.0001 for both), and in vitro ADP-stimulated platelet surface activated GPIIb-IIIa and P-selectin levels (mean fluorescence, MFI) were significantly lower (128.7 ± 66.2 and 78.1 ± 11.5 vs. 257.3 ± 50.8 and 91.6 ± 5.8, p<0.05 for both). ADP-stimulated platelet aggregation by LTA, VerifyNow and MEA, did not significantly differ between SCD and normal subjects, although whole blood platelet aggregation by MEA and VerifyNow tended to be greater in blood from SCD patients (92.5 vs. 70.4 AU, p=0.064 and 362.9 vs. 314.8 PRU, p=0.488, respectively). Treatment of whole blood in vitro with R-138727 resulted in a concentration-dependent inhibition of platelet function in both SCD patients and normal subjects. However, compared with normal subjects, the IC50 in SCD subjects was significantly lower for LTA but significantly higher for VerifyNow and VASP (Table). R-138727 inhibition of platelet function in SCD patients was similar to normal subjects as judged by MEA, whole blood flow cytometry for ADP-stimulated platelet surface P-selectin and activated GPIIb-IIIa expression, and % PMAs (Table). Sensitivity to R-138727 inhibition in SCD patient blood was greatest as measured by ADP-stimulated platelet surface P-selectin MFI, LTA, and MEA, less with ADP-stimulated platelet surface activated GPIIb-IIIa, and least with VASP, VerifyNow P2Y12 and % P-selectin-positive platelets (Table). Conclusions: 1) The markedly higher circulating PMA and PNA levels in SCD patients relative to normal donors demonstrates increased in vivo platelet activation in SCD patients and suggests that PMA and PNA may be useful markers of the in vivo pharmacodynamic effects of antiplatelet therapy in SCD patients. 2) Blockade of platelet P2Y12 with R-138727 produces dose-dependent inhibition of platelet function in SCD platelets. 3) Assay-dependent differences in IC50 values between SCD patients and normal donors suggest the presence of additional variables that affect these measures of platelet function. Further studies are needed to determine the relationship between platelet inhibition measured by these assays and clinical events in SCD patients. Disclosures: Frelinger: GLSynthesis: Research Funding; Lilly/Daiichi Sankyo: Consultancy, Research Funding; Takeda: Research Funding. Jakubowski:Eli Lilly and Company: Employment, Equity Ownership. Heeney:Lilly: Consultancy. Michelson:GLSynthesis: Research Funding; Lilly/Daiichi Sankyo: Data Monitoring Committee for clinical trial, Research Funding; Takeda: Research Funding.


Amino Acids ◽  
2021 ◽  
Author(s):  
Dimitrios Tsikas

AbstractNitrosylation of sulfhydryl (SH) groups of cysteine (Cys) moieties is an important post-translational modification (PTM), often on a par with phosphorylation. S-Nitrosoalbumin (ALB-Cys34SNO; SNALB) in plasma and S-nitrosohemoglobin (Hb-Cysβ93SNO; HbSNO) in red blood cells are considered the most abundant high-molecular-mass pools of nitric oxide (NO) bioactivity in the human circulation. SNALB per se is not an NO donor. Yet, it acts as a vasodilator and an inhibitor of platelet aggregation. SNALB can be formed by nitrosation of the sole reduced Cys group of albumin (Cys34) by nitrosating species such as nitrous acid (HONO) and nitrous anhydride (N2O3), two unstable intermediates of NO autoxidation. SNALB can also be formed by the transfer (S-transnitrosylation) of the nitrosyl group (NO+) of a low-molecular-mass (LMM) S-nitrosothiol (RSNO) to ALB-Cys34SH. In the present study, the effects of LMM thiols on the inhibitory potential of ALB-Cys34SNO on human washed platelets were investigated. ALB-Cys34SNO was prepared by reacting n-butylnitrite with albumin after selective extraction from plasma of a healthy donor on HiTrapBlue Sepharose cartridges. ALB-Cys34SNO was used in platelet aggregation measurements after extended purification on HiTrapBlue Sepharose and enrichment by ultrafiltration (cutoff, 20 kDa). All tested LMM cysteinyl thiols (R-CysSH) including l-cysteine and L-homocysteine (at 10 µM) were found to mediate the collagen-induced (1 µg/mL) aggregation of human washed platelets by SNALB (range, 0–10 µM) by cGMP-dependent and cGMP-independent mechanisms. The LMM thiols themselves did not affect platelet aggregation. It is assumed that the underlying mechanism involves S-transnitrosylation of SH groups of the platelet surface by LMM RSNO formed through the reaction of SNALB with the thiols: ALB-Cys34SNO + R-CysSH ↔ ALB-Cys34SH + R-CysSNO. Such S-transnitrosylation reactions may be accompanied by release of NO finally resulting in cGMP-dependent and cGMP-independent mechanisms.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2704-2713 ◽  
Author(s):  
R Vezza ◽  
R Roberti ◽  
GG Nenci ◽  
P Gresele

Abstract Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.


Blood ◽  
1991 ◽  
Vol 78 (4) ◽  
pp. 1019-1026 ◽  
Author(s):  
P Horsewood ◽  
CP Hayward ◽  
TE Warkentin ◽  
JG Kelton

Abstract Antiplatelet antibodies can activate platelets causing platelet aggregation and the release reaction. However, the pathway of activation by these antibodies is unknown and several potential mechanisms are possible. In this report, we describe studies investigating potential pathways of platelet activation by IgG antibodies. We tested 16 different IgG monoclonal antibodies (MoAbs) against a variety of platelet surface components and found that six antibodies were capable of causing platelet aggregation and release. These included MoAbs against glycoprotein (GP) IIb/IIIa, CD9, GPIV, and two other not well-characterized platelet components. There was no relationship between the number of platelet binding sites and the ability of an MoAb to activate the platelets. By adding intact and F(ab')2 preparations of the MoAb to control or Fc receptor-blocked platelets, we found that in all instances the MoAbs initiated platelet activation via interacting with the platelet Fc receptors. Clustering of the platelet protein components using a secondary antibody did not cause activation. Studies into the pathway of Fc-dependent activation demonstrated that the MoAbs were capable of activating platelets by occupying Fc receptors on adjacent platelets (interplatelet activation), as well as on the same platelet (intraplatelet activation).


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 111-111 ◽  
Author(s):  
Meghna Ulhas Naik ◽  
Timothy J. Stalker ◽  
Lawrence F. Brass ◽  
Ulhas Pandurang Naik

Abstract Under physiological conditions, fibrinogen receptor integrin αIIbβ3 on the circulating platelets is in a low-affinity, or resting state, unable to bind soluble ligands. During platelet activation by agonists, a cascade of signaling events induces a conformational change in the extracellular domain of αIIbβ3, thereby converting it into a high-affinity state capable of binding ligands through a process known as “inside-out signaling”. What maintains this integrin in a low-affinity state is not well understood. We have previously identified JAM-A, junctional adhesion molecule A, on the platelet surface. We have shown that an antibody blockade of JAM-A dose-dependently activates platelets. To understand the molecular mechanism through which JAM-A regulates platelet aggregation, we used Jam-A null mice. Interestingly, the mouse bleeding times were significantly shortened in Jam-A null mice compared to wildtype littermates. Furthermore, the majority of these mice showed a rebleeding phenotype. This phenotype was further confirmed by FeCl3-induced carotid artery occlusion, a well-accepted in vivo model for thrombosis. Platelets derived from Jam-A-null mice were used to evaluate the role of JAM-A in agonist-induced platelet aggregation. We found that Jam-A null platelets showed enhanced aggregation in response to physiological agonists such as PAR4 peptide, collagen, and ADP as compared to platelets from wildtype littermates. JAM-A was found to associate with αIIbβ3 in unactivated human platelets, but this association was disrupted by both agonist-induced platelet aggregation and during outside-in signaling initiated upon platelet spreading on immobilized Fg. We also found that in resting platelets, JAM-A is phosphorylated on a conserved tyrosine 280 in its cytoplasmic domain, which was dephosphorylated upon platelet activation. Furthermore, JAM-A is rapidly and transiently phosphorylated on serine 284 residue during platelet activation by agonists. Interestingly, JAM-A also formed a complex with Csk, a tyrosine kinase known to be inhibitory to Src activation, in resting platelets. This complex was dissociated upon activation of platelets by agonists. These results suggest that tyrosine-phosphorylated JAM-A recruits Csk to αIIbβ3 in resting platelets, thus maintaining a low-affinity state of integrin αIIbβ3. Agonist–induced activation of platelets results in rapid dephosphorylation of JAM-A on Y280 and phosphorylation on S284 residues. This causes dissociation of JAM-A from integrin αIIbβ3 facilitating platelet aggregation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4016-4016
Author(s):  
José-Tomás Navarro ◽  
Shwan Tawfiq ◽  
Roland Wohlgemuth ◽  
Karin M. Hoffmeister ◽  
Robert Sackstein

Abstract Abstract 4016 Poster Board III-952 A number of glycosyltransferases are present in human plasma with the α(1→3) fucosyltransferase, Fucosyltransferase VI (FTVI), having the highest plasma concentration. Notably, elevated plasma levels of FTVI are associated with a variety of cancers and correlate with tumor load/progression. The well-known association of neoplasia with thromboembolic complications prompted us to examine whether FTVI has direct effect(s) on platelet function. We obtained human platelets from blood of healthy donors and separated from platelet-rich plasma by differential centrifugation. Freshly isolated platelets (x108/ml) were stirred and exposed at 37°C to varying concentrations (20, 40, 60 and 80 mU/mL) of glycosyltransferases FTVI, β-1-4-galactosyltransferase-I (βGalT-I), or α,2-3-N-sialyltransferase (α2,3-N-ST), or to 1 U/mL thrombin. Platelet aggregation and activation was assessed by aggregometry (light transmission) or by flow cytometry of FSC/SSC characteristics and of surface expression of P-Selectin, respectively. FT-VI reproducibly induced platelet aggregation and activation, whereas other glycosyltransferases (β4GalT-I and α2,3-N-ST) had no effect on platelets. FTVI activation of platelets was concentration-dependent, and the aggregation curve for FTVI was one wave, similar to that for thrombin. FTVI-induced platelet activation was independent of catalytic conversion of surface glycans, but was inhibited by FTVI denaturation, indicating that FTVI-induced platelet activation is a lectin-mediated process. To determine the membrane target(s) mediating FTVI-induced platelet activation, biochemical studies were performed after catalytic exofucosylation of the platelet surface. Flow cytometry after platelet exofucosylation showed formation of the carbohydrate structure sLex, detected by the mAb Heca452, but no formation of Lex (CD15). Western blot showed that enforced fucosylation induced sLex on a single platelet surface protein, and further biochemical studies revealed that this protein is GPIbα. These findings unveil a previously unrecognized property of FTVI as an activator of platelets, mediated via a specific lectin/carbohydrate interaction on GP1ba, and offer novel perspectives on the pathobiology of tumor-associated thrombogenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3534-3534
Author(s):  
Andrew L. Frelinger ◽  
Anja J Gerrits ◽  
Michelle A. Berny-Lang ◽  
Travis Brown ◽  
Sabrina L. Carmichael ◽  
...  

Abstract Background Immune thrombocytopenia (ITP) patients with similarly low platelet counts differ in their tendency to bleed. Aim To determine if differences in platelet function in ITP patients with similarly low platelet counts partly account for the variation in bleeding tendency. Methods The relationship between bleeding scores and platelet function markers was investigated in a single center cross-sectional study of pediatric patients with ITP. Following informed consent, blood was collected from ITP patients and bleeding was graded using the Buchanan and Adix Score (J Pediatr 2002) at routine clinic visits or while admitted to the hospital. Bleeding scores were obtained by one of three hematologists blinded to platelet function results, and investigators performing platelet function tests were blinded to clinical results. Platelet function was assessed by whole blood flow cytometric measurement of unstimulated, ADP- or TRAP-stimulated platelet surface activated GPIIb-IIIa (as measured by PAC1 binding), P-selectin, and GPIb and by unstimulated, convulxin-, or ADP plus TRAP-stimulated platelet surface phosphatidylserine expression (as determined by annexin V binding). Platelet count, immature platelet fraction (IPF) and mean platelet volume (MPV) were determined by a Sysmex XE-2100, and platelet forward angle light scatter (FSC) was measured by flow cytometry. Results Platelet function and bleeding scores were evaluated in 34 consecutive consenting pediatric ITP patients (16 female, 18 male, age 9.7 ± 5.7 years [mean ± SD]). ITP was newly diagnosed (< 3 months) in 10 patients, persistent (3 -- 12 months) in 7 patients, and chronic (>12 months) in 17 patients. Platelet count at the time of the blood draw was 47 ± 55 x 109/L. The median bleeding score on day of blood draw was 1 (range 0 to 4). By univariate analysis, higher IPF, and lower platelet count were significantly associated with a higher bleeding score (odds ratio [OR] >1, p<0.05) but MPV was not. Multiple measures of platelet function were associated with bleeding scores by univariate analysis: higher levels of platelet FSC (a measure affected by multiple variables including size) surface GPIb on unstimulated, ADP- or TRAP-stimulated platelets, surface P-selectin on unstimulated platelets, and platelet FSC were associated with increased odds for higher bleeding scores (ORs each >1, p<0.05), while higher ADP- and TRAP-stimulated platelet surface activated GPIIb-IIIa and P-selectin were associated with reduced odds of higher bleeding scores (ORs each <1, p<0.05). After adjustment for platelet count, higher levels of platelet surface P-selectin on unstimulated platelets, GPIb on TRAP-stimulated platelets, and FSC remained significantly associated with increased odds for higher bleeding scores (Figure), but IPF did not. Similarly, after adjustment for platelet count, higher TRAP-stimulated percentage of P-selectin and activated GPIIb-IIIa positive platelets remained significantly associated with reduced odds of higher bleeding scores (Figure). These findings were independent of recent ITP-related treatment. Conclusions In this study of pediatric ITP patients, we identified selected platelet function markers which, independent of platelet count, are associated with increased (platelet FSC, platelet surface P-selectin on unstimulated platelets, and GPIb on TRAP-stimulated platelets) or decreased (TRAP-stimulated percent P-selectin and GPIIb-IIIa positive platelets) odds of high bleeding scores. Possible hypotheses to explain these associations are as follows: 1) Increased P-selectin on unstimulated platelets demonstrates in vivo platelet activation, possibly as a consequence of the recent bleeding. 2) Because platelet activation results in a reduction in platelet surface GPIb and increases in platelet surface activated GPIIb-IIIa and P-selectin, the ORs associated with all of these markers could be explained by reduced ability of platelets in patients with higher bleeding scores to respond to agonists. 3) While platelet FSC is partly related to size, the finding that MPV and IPF, adjusted for platelet count, were not associated with bleeding score suggests that factors other than size account for the association of platelet FSC with higher bleeding scores. Further study is required to validate these findings and determine if differences in platelet function are associated with future risk for bleeding. Disclosures: Off Label Use: Eltrombopag was given to WAS/XLT patients for treatment of thrombocytopenia. Neufeld:Shire: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Apopharma: Consultancy. Michelson:Sysmex: Honoraria.


Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4635-4641 ◽  
Author(s):  
Brian P. O'Sullivan ◽  
Matthew D. Linden ◽  
Andrew L. Frelinger ◽  
Marc R. Barnard ◽  
Michele Spencer-Manzon ◽  
...  

Abstract Cystic fibrosis (CF) is caused by a mutation of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). We examined platelet function in CF patients because lung inflammation is part of this disease and platelets contribute to inflammation. CF patients had increased circulating leukocyte-platelet aggregates and increased platelet responsiveness to agonists compared with healthy controls. CF plasma caused activation of normal and CF platelets; however, activation was greater in CF platelets. Furthermore, washed CF platelets also showed increased reactivity to agonists. CF platelet hyperreactivity was incompletely inhibited by prostaglandin E1 (PGE1). As demonstrated by Western blotting and reverse-transcriptase-polymerase chain reaction (RT-PCR), there was neither CFTR nor CFTR-specific mRNA in normal platelets. There were abnormalities in the fatty acid composition of membrane fractions of CF platelets. In summary, CF patients have an increase in circulating activated platelets and platelet reactivity, as determined by monocyte-platelet aggregation, neutrophil-platelet aggregation, and platelet surface P-selectin. This increased platelet activation in CF is the result of both a plasma factor(s) and an intrinsic platelet mechanism via cyclic adenosine monophosphate (cAMP)/adenylate cyclase, but not via platelet CFTR. Our findings may account, at least in part, for the beneficial effects of ibuprofen in CF. (Blood. 2005;105:4635-4641)


2018 ◽  
Vol 86 (10) ◽  
Author(s):  
Vesla Kullaya ◽  
Marien I. de Jonge ◽  
Jeroen D. Langereis ◽  
Christa E. van der Gaast-de Jongh ◽  
Christian Büll ◽  
...  

ABSTRACTPlatelets are increasingly recognized to play a role in the complications ofStreptococcus pneumoniaeinfections.S. pneumoniaeexpresses neuraminidases, which may alter glycans on the platelet surface. In the present study, we investigated the capability of pneumococcal neuraminidase A (NanA) to remove sialic acid (desialylation) from the platelet surface, the consequences for the platelet activation status and reactivity, and the ability of neuraminidase inhibitors to prevent these effects. Our results show that soluble NanA induces platelet desialylation. Whereas desialylation itself did not induce platelet activation (P-selectin expression and platelet fibrinogen binding), platelets became hyperreactive toex vivostimulation by ADP and cross-linked collagen-related peptide (CRP-XL). Platelet aggregation with leukocytes also increased. These processes were dependent on the ADP pathway, as inhibitors of the pathway (apyrase and ticagrelor) abrogated platelet hyperreactivity. Inhibition of NanA-induced platelet desialylation by neuraminidase inhibitors (e.g., oseltamivir acid) also prevented the platelet effects of NanA. Collectively, our findings show that soluble NanA can desialylate platelets, leading to platelet hyperreactivity, which can be prevented by neuraminidase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document