scholarly journals CD19 Redirected CAR NK Cells Are Equally Effective but Less Toxic Than CAR T Cells

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3491-3491 ◽  
Author(s):  
Concetta Quintarelli ◽  
Simona Sivori ◽  
Simona Caruso ◽  
Simona Carlomagno ◽  
Iolanda Boffa ◽  
...  

Abstract Based on the clinical success observed in acute lymphoblastic leukemia (ALL) with chimeric antigen receptor engineered T (CAR T), we hypothesized that combining the specificity of a CAR with the innate allo-reactivity of KIR-mismatched NK cells might provide a powerful tool for adoptive cell therapy. The use of a third-party bank of CAR-NK cells offers the advantage of an immediate availability to be exploited in the allogenic setting and could be associated with a lower toxicity profile than CAR-T cells. In order to overcome regulatory and manufacturing hurdles associated with generation of CAR-NK cells, we developed a feeder-free culture resulting in a 3.2-log expansion after 20 days of culture. Specifically, natural cytotoxicity receptors (NCR) expressed on NK cells are stimulated in the presence of pleiotropic cytokines and expanded in GMP grade bioreactors. Expanded NK cells from healthy donors preserve a high percentage of CD56+ CD57- cells (85±13%), associated with high proliferative capability, and maintain the surface expression and the responsiveness of NCR and CD16. We proved that NK cells generated from 10 different healthy donors have high ability to recognize and eliminate different tumor types, including acute myeloid leukemia (AML) and ALL. After genetic modification with a retroviral vector encoding a CAR specific for CD19 antigen, transduction of activated NK cells averaged 38%±15% and the CAR.CD19 expression was stable over extended in vitro culture (60 days). Detailed phenotypic characterization of CAR-NK cells showed that CAR expression was not limited to the more mature NKG2A-/KIR+ cells, but rather was distributed across different NK subsets. We also demonstrated that NK and CAR-NK cells display significant anti-leukemia activity towards CD19+ leukemia and lymphoma cell lines (LCL 721.221, DAUDI and BV173) and primary blasts obtained from patients with B-cell precursor ALL (Bcp-ALL). Co-culture experiments using a 1:5 E/T ratio, showed that, while the anti-tumor activity was already remarkable with non-modified effector NK cells (60±30%, 71±33% and 54±23% of residual LCL 721.221, DAUDI and BV173 cells, respectively; p<0.05 vs T cells), it reached the highest level when CAR-NK cells were used as effectors (7±9%, 16±30% and 22±16% of residual LCL 721.221, DAUDI and BV173 cells, respectively; p<0.05 vs non-transduced NK cells). Importantly, INF-g production was significantly lower upon CAR-NK activation compared to CAR-T cells (DAUDI 384±194 ng/ml vs 1860±678 ng/ml, p=0.002). Functional analysis on primary Bcp-ALL blasts, demonstrate that CAR-NK cells exert high degree of leukemia control (on average 2.1±2% vs 5.4±1.6% with non-modified NK cells as effectors; p=0.04). An in vivo model of leukemia xenograft immunodeficient mice was used to evaluate whether CAR-NK cells are associated with a lower toxicity profile compared to CAR-T cells. While the in vivo antileukemia activity was superimposable between CAR-T and CAR-NK cells (mouse bioluminenscence at 20 days, 4.9x105 vs 6.6x105 photons/second, respectively; p=n.s. Figure A), mice treated with two i.v. infusions (day 0 and day 15) of 10x106 CAR.CD19 NK cells had a 100% overall survival (OS of 5 out of 5 mice) at 50 days compared to 20% of mice (1 out of 5) receiving 10x106 CAR.CD19 T cells (Figure B; p=0.01). Cytokine plasma level monitoring, performed on day +7 and +30 after effector cell infusion in the absence of leukemia persistence (as evidenced by a lack of bioluminescence signal), showed that mice engrafted with CD19+ leukemia and treated with CAR.CD19-NK cells have lower levels of circulating hIFN-g cytokine compared to mice treated with CAR.CD19-T cells at both day 7 (42±82 vs 330±346 ng/ml; p=0.05) and day 30 (0.9±0.7 vs 4148±667 ng/ml; p=0.05). These in vitro and in vivo data demonstrate the feasibility of clinical scale feeder-free expansion of non-modified NK cells and stably transduced CAR-NK cells. Both non-modified and gene-modified cells were capable of significant tumor killing, suggesting a multi-modal adoptive cell approach to treatment of leukemia. Since NK cells have been shown to be safely used in third-party setting (St. Jude Children's Research Hospital, USA; NCT00640796), we suggest that ex-vivo expanded, feeder-free NK cells can be universally applied for 'off-the-shelf' immuno-gene-therapy, and that their innate allo-reactivity can be safely harnessed to potentiate allogeneic cell therapy. Figure. Figure. Disclosures Locatelli: Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 407-407
Author(s):  
Frank Cichocki ◽  
Jode P Goodridge ◽  
Ryan Bjordahl ◽  
Svetlana Gaidarova ◽  
Sajid Mahmood ◽  
...  

Abstract Treatments for B-cell malignancies have improved over the past several decades with clinical application of the CD20-specific antibody rituximab and chimeric antigen receptor (CAR) T cells targeting CD19. Despite the success of these therapies, loss of CD20 after rituximab treatment has been reported in leukemia and lymphoma patients. Additionally, up to 50% of all patients receiving anti-CD19 CAR T-cell therapy relapse within the first year with many of those patients exhibiting CD19 loss. Thus, new therapeutic approaches are needed to address tumor antigen escape. Accordingly, we generated triple gene-modified iPSC-derived NK (iNK) cells, termed "iDuo" NK cells, tailored to facilitate multi-antigen targeting. The iPSC line was clonally engineered to express high-affinity, non-cleavable CD16a (hnCD16), an anti-CD19 CAR optimized for NK cell signaling, and a membrane-bound IL-15/IL-15R fusion (IL-15RF) molecule to enhance NK cell persistence (Fig. 1A). To model antigen escape, we generated CD19 knockout AHR77 lymphoma cells alongside wild type AHR77 cells (both CD20 +) as targets in cytotoxicity assays. Activated peripheral blood NK (PBNK) cells, non-transduced iNK cells, and iDuo NK cells were tested as effectors. Unlike PBNK cells or non-transduced iNK cells, iDuo NK cells efficiently eliminated wild type AHR77 cells with or without the addition of rituximab at all tested E:T ratios. Similarly, iDuo NK cells in combination with rituximab were uniquely able to efficiently eliminate CD19 KO AHR77 cells due to enhanced antibody-dependent cellular cytotoxicity (ADCC) driven by hnCD16 (Fig. 1B-E). Cytotoxicity mediated by iDuo NK cells was also evaluated using primary chronic lymphocytic leukemia (CLL) cells. Compared to expanded PBNK cells and non-transduced iNK cells, only iDuo NK cells (in the absence of rituximab) were able to kill primary CLL cells (Fig. 1F). Expression of IL-15RF by iDuo NK cells uniquely supports in vitro expansion without the need for cytokine supplementation. To determine whether IL-15RF supports in vivo persistence of iDuo NK cells, CD19 CAR iNK cells (lacking IL-15RF) and iDuo NK cells were injected into NSG mice without the addition of cytokines or CD19 antigen availability. iDuo NK cell numbers peaked within a week after injection and persisted at measurable levels for ~5 weeks, in marked contrast to CD19 CAR iNK cell numbers that were undetectable throughout (Fig. 1G). To evaluate the in vivo function of iDuo NK cells, NALM6 leukemia cells were engrafted into NSG mice. Groups of mice received tumor alone or were treated with 3 doses of thawed iDuo NK cells. iDuo NK cells alone were highly effective in this model as evidenced by complete survival of mice in the treatment group (Fig. 1H). To assess iDuo NK cells in a more aggressive model, Raji lymphoma cells were engrafted, and groups of mice received rituximab alone, iDuo NK cells alone, or iDuo NK cells plus rituximab. Mice given the combination of iDuo NK cells and rituximab provided extended survival compared to all other arms in the aggressive disseminated Raji lymphoma xenograft model (Fig. 1I). One disadvantage of anti-CD19 CAR T cells is their inability to discriminate between healthy and malignant B cells. Because NK cells express inhibitory receptors that enable "self" versus "non-self" discrimination, we reasoned that iDuo NK cells could have higher cytotoxicity against tumor cells relative to healthy B cells. To address this, we labeled Raji cells, CD19 + B cells from healthy donor peripheral blood mononuclear cells (PBMCs) and CD19 - PBMCs. Labeled populations of cells were co-cultured with iDuo NK cells, and specific killing was analyzed. As expected, iDuo NK cells did not target CD19 - PBMCs. Intriguingly, iDuo NK cells had much higher cytotoxic activity against Raji cells compared to primary CD19 + B cells, suggesting a preferential targeting of malignant B cells compared to healthy B cells. Together, these results demonstrate the potent multi-antigen targeting capability and in vivo antitumor function of iDuo NK cells. Further, these data suggest that iDuo NK cells may have an additional advantage over anti-CD19 CAR T cells by discriminating between healthy and malignant B cells. The first iDuo NK cell, FT596, is currently being tested in a Phase I clinical trial (NCT04245722) for the treatment of B-cell lymphoma. Figure 1 Figure 1. Disclosures Cichocki: Gamida Cell: Research Funding; Fate Therapeutics, Inc: Patents & Royalties, Research Funding. Bjordahl: Fate Therapeutics: Current Employment. Gaidarova: Fate Therapeutics, Inc: Current Employment. Abujarour: Fate Therapeutics, Inc.: Current Employment. Rogers: Fate Therapeutics, Inc: Current Employment. Huffman: Fate Therapeutics, Inc: Current Employment. Lee: Fate Therapeutics, Inc: Current Employment. Szabo: Fate Therapeutics, Inc: Current Employment. Wong: BMS: Current equity holder in publicly-traded company; Fate Therapeutics, Inc: Current Employment. Cooley: Fate Therapeutics, Inc: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment. Miller: Magenta: Membership on an entity's Board of Directors or advisory committees; ONK Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Wugen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-34
Author(s):  
ANA Carolina Carolina CABALLERO González ◽  
Laura Escribà-García ◽  
Paula Pujol-Fernández ◽  
Eva Escudero-López ◽  
Rosanna Montserrat ◽  
...  

Background While immunotherapy with anti-CD19 chimeric antigen receptor (CAR) T cells has shown significant efficacy in B-cell malignancies, CAR T cells directed against CD30 (CAR30) for the treatment of Hodgkin lymphoma (HL) showed modest antitumor effect, with more than 50% of patients being unresponsive. Several factors related to the infused product and persistence may be relevant to increase clinical efficacy, but further investigation is needed. In this way, CAR expression intensity may play an important role on CAR T cell function, but this has not been systematically explored. Aim We have evaluated the impact of CAR expression intensity on T cell function, cell exhaustion and antitumor efficacy against HL and B cell lymphoma. Methods T cells were generated as previously described (Alvarez-Fernández C et al. 2016) and transduced with third generation lentivirus encoding a 4-1BBz CAR (either CAR30 or CAR19). Two populations of CAR+ T cells were sorted according to mean fluorescence intensity (MFI) of CAR: CARHI (MFI&gt; 5x103) and CARLO (MFI &lt;3x103). Cytotoxicity assays were performed using Raji (CD19+) or L540 (CD30+) tumor cell lines. Multiparametric flow cytometry was used to analyze T-cell inhibition and activation markers. CARHI and CARLOin vivo antitumor effect was tested under stringent therapeutic conditions using 5x106 T cells/mice (iv) in a HL NSG model. Results CAR30+ T cells were sorted into CARLO (MFI: 1064±124.7) and CARHI (MFI: 7068±1377) (p=0.01). TSCM were highly represented in CARLO compared to CARHI (CD4+: 70.14±1.78% vs. 55.61±5.5%, CD8+: 83.78±3.8% vs 72.2±5.47%, respectively) (p&lt;0.01). However, these differences disappear after 24h co-culture with tumor cells due to an increase of TSCM in CARHI (CD4+: 72.52±7.54%, CD8+: 80.26±5.3%). CARHI showed a significantly higher in vitro antitumor effect compared to CARLO (tumor death at 5:1 E:T ratio: 96.6±1.86% vs. 89.1±3.83%; 1.25:1 E:T ratio: 84.61±4.7% vs. 31.15±19.79%; CARHI vs. CARLO, respectively) (p&lt;0.0001). No differences were observed in expression of activation markers (i.e.: CD25, CD69, and HLA-DR) among both populations. Generalizability of this finding was studied using a CAR19. Similarly, CAR19+ T cells were arranged into CARLO (MFI: 1610±187) and CARHI (MFI: 10810±1486) subgroups (p&lt;0.01). TSCM represented the most frequent subtype in both populations (CD4+: CARHI 70,22±9,87%, CARLO 69,22±9,33%; CD8+: CARHI 65,1±10,5%, CARLO 60,9±9,5%) and no differences in T cell subset composition between CARHI and CARLO were found. Again, CARHI exhibited superior antitumor effect compared to CARLO (tumor death at 5:1 E:T ratio:59.9±8.72% vs. 28.8±8.7%; 1.25:1 E:T ratio: 21.6±11.4% vs. 2.9±2.9%, CARHI vs. CARLO, respectively) (p&lt;0.0001). At 24h and 72h of antigen encounter, expression of inhibitory markers was determined in both CAR30+ populations. While CD4+ T cells showed significantly higher PD1 and TIM3 co-expression in CARHI compared to CARLO (p&lt;0.05), CD8+ T cells showed similar co-expression (p=0.4 and p=0.8, at 24h and 72h, respectively). A similar kinetics was observed in CAR19+ T cells, suggesting that it could be related to an inhibitory control of activation, but not cellular exhaustion. To confirm this, functional performance of CAR30HI and CAR30LO T cells was evaluated by continuous tumor exposure. CAR30HI function persisted after sequential re-exposition (n=5) to tumor cells; in contrast, the CAR30LO subpopulation showed progressive loss of cytotoxic activity (i.e., tumor death at ratio E:T 5:1 after 4 expositions: 0% vs. 91.96%, CAR30LO and CAR30HI respectively; representative of 2 independent studies with different donors). To assess if these results were consistent in vivo, the antitumor effect of CAR30HI and CAR30LO were evaluated in a xenograft model of HL. Mice treated with CAR30HI T cells showed reduced tumor growth compared to those treated with CAR30LO T cells, which translated into an improved survival. Conclusion We have shown that high expression of a CAR (either CAR30 or CAR19) confers an enhanced in vitro antitumor effect against HL and B cell lymphoma. This effect is maintained after repetitive exposures to tumor cells and is not associated with T cell exhaustion or differentiation. Notably, this enhanced antitumor effect was also found in vivo. Our data shows that CAR expression intensity should be considered as an additional important factor to improve the efficacy of CAR T cells. Disclosures Sierra: Jazz Pharmaceuticals: Research Funding; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Daiichi Sankyo: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Astellas: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead-Kite: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2069-2069
Author(s):  
Biagio De Angelis ◽  
Marika Guercio ◽  
Domenico Orlando ◽  
Stefano Di Cecca ◽  
Matilde Sinibaldi ◽  
...  

Prognosis of a significant proportion of patients with chemotherapy-refractory or multiply-relapsed CD30+ Non-Hodgkin's Lymphoma (NHL) or Hodgkin lymphoma (HL) still remain poor. Targeting CD30 with monoclonal antibodies in HL and anaplastic large cell lymphoma was shown to induce remarkable clinical activity; however, occurrence of adverse events (mainly neuropathy) may result into treatment discontinuation in many patients. Immunotherapeutic approaches targeting CD30 by chimeric antigen receptor (CAR) has been demonstrated to be of value in two independent clinical trials, although clinical benefit was sub-optimal. We designed a new CAR construct characterized by an anti-CD30 single-chain variable-fragment cassette (AC10), linked to CD3ζ by the signaling domains of two costimulatory molecules, namely either CD28.4-1BB or CD28.OX40. The inducible Caspase-9 (iCasp9) safety switch was included in both constructs with the goal of promptly controlling undue toxicity. As a selectable marker, we added in frame the CD34 antigen. The in vitro anti-tumor efficacy was evaluated by using either the NHL cell line: Karpas299, or the HL cell lines: L428, in both short-term cytotoxic assay (51Cr release assays) and long-term co-cultures for 6 days. Supernatant from co-culture experiments was analyzed by Elisa. We assessed the antitumor effect of CAR.CD30 T cells in a in vivo NSG mouse model engrafted i.v. with lymphoma FF-luciferase cell lines Karpas299 or L428, and monitored tumor growth by IVIS Imaging system. For tumor re-challenging, mice of the NHL model surviving until day +140, were i.v. infused with 0.2x106 Karpas299 cells, and subsequently followed for additional 110 days. Persistence of CAR.CD30 T cells was evaluated, together with a deep characterization of memory profile of T cells. Independently from the costimulatory domains CD28.OX40 or CD28.4-1BB, the generated retroviral vectors showed similar transduction efficiency of T cells (86.5±5.1% and 79.3±5.3%, respectively). Nevertheless, CD28.OX40 costimulatory domains was associated with more stable expression of the CAR over time, during extensive in vitro culture (84.72±5.30% vs 63.98±11.51% CD28.4-1BB CAR T cells at 30 days after transduction; p=0.002). For both CAR constructs, we did not observe any significant difference in the suicide gene iCasp9 activity, both in vitro and in vivo. In short-term cytotoxic assay, both CAR.CD30 T cells significantly and specifically lysed CD30+ NHL and HL tumor cell lines. In long-term co-culture, CD28.OX40 showed a superior anti-lymphoma in vitro activity as compared to CD28.41BB T cells, when challenged at very high tumor/effector ratio (8:1) (for Karpas 299; p=0.03). Moreover, the antigen stimulation was associated to higher levels of Th1 cytokine production, with CD28.OX40 T cells secreting a significantly higher amount of IFNγ, IL2 and TNFα as compared to CD28.41BB T cells (p= 0.040; p=0.008; p=0.02; respectively). Bioluminescence in HL (L428) tumor-bearing mice, treated with NT T cells, rapidly increased up to 5 log in less than 50 days and mice either died or were sacrificed due to morbidity. The best outcome was observed in mice treated with CD28.OX40, as three out of five mice were still alive at the experimental end-point of day+165, as compared with mice treated with CD28.4-1BB (60% vs 0%, p=0.0021). In NHL (Karpas 299) mouse models, CD28.OX40 had an extensive anti-tumor control superior to that of CD28.41BB T cells, leading to a significant reduction of tumor bioluminescence at day 45 (3.32x10 vs 2.29x10, p=0.04). The median survival of mice treated with NT and CD28.4-1BB CAR T cells was 45.5 and 58 days respectively, but undetermined for mice treated with CD28.OX40 CAR T cells (p=0.0002). After 140 days, cured mice were re-challenged with Karpas 299; mice were followed for other 100 days. Bioluminescence analysis showed rapid progression of the tumor in the control mice cohort, as well as in CD28.4-1BB treated mice. In contrast, in CD28.OX40 treated mice, at day+240 days, 4 out of 6 mice were tumor-free, resulting into a statistically significant survival benefit (p=0.0014). Only in mice treated with 28.OX40 T cells, we observed a long-lasting persistence of circulating CAR-T cells up to day +221. In summary, we have developed a novel CAR.CD30 construct displaying features that make it a particularly suitable candidate for a clinical trial in patients suffering from CD30+ tumors. Disclosures Merli: Novartis: Honoraria; Sobi: Consultancy; Amgen: Honoraria; Bellicum: Consultancy. Locatelli:Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BluebirdBio: Consultancy; Miltenyi: Honoraria; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 919-919 ◽  
Author(s):  
Masahiro Hirakawa ◽  
Tiago R Matos ◽  
John Koreth ◽  
Edouard Forcade ◽  
Jennifer Whangbo ◽  
...  

Abstract Introduction: CD4+ FoxP3+ CD25+ regulatory T cells (Treg) play a central role in the maintenance of immune tolerance and prevention of chronic graft-versus-host disease (cGVHD) after allogeneic stem cell transplantation (SCT). Treg constitutively express high-affinity interleukin-2 (IL-2) receptors and murine models have established that IL-2 is a critical homeostatic regulator of Treg in vivo. We previously reported that daily administration of low-dose IL-2 in patients with cGVHD induces selective expansion of Treg and NK cells and results in clinical improvement in approximately 50% of patients. However, the mechanisms responsible for these selective effects and the influence of IL-2 therapy on other lymphocytes have not been established due to the limited resolution of traditional cell analytic methods such as flow cytometry. Methods: Single cell mass cytometry (CyTOF) with a panel of 33 markers was used to simultaneously examine the phenotypic and functional effects of low-dose IL-2 on lymphocyte populations in vitro and in vivo. The analytic panel included 22 cell surface markers to identify distinct T, B and NK cell subsets and 11 intracellular markers to measure functional status and activation of specific signaling pathways. viSNE, a cytometry analysis tool, was used to visualize high-dimensional cytometry data on a two-dimensional map. Results: In unstimulated lymphocytes from healthy donors, constitutive expression of CD25 (IL-2Ra) at high levels was restricted to Treg and CD56bright NK cells. Central memory (CM) and effector memory (EM) subsets of conventional CD4 T cells (Tcon) and CM CD8 T cells expressed low levels of CD25. Within the Treg population, the highest expression of CD25 was closely associated with expression of Helios transcription factor. Helios+ Treg also express higher levels of FoxP3, HLA-DR and CD95 and lower levels of BCL2 compared to Helios- Treg. To examine responses to IL-2, we stimulated peripheral blood mononuclear cells (PBMC) from healthy donors with IL-2 for 15 min in vitro (Figure 1). At low IL-2 concentrations (1 to 10 IU/ml), pSTAT5 was preferentially activated in Treg. Notably, pSTAT5 activation was more robust in memory Treg than naïve Treg and in Helios+ Treg than Helios- Treg. In addition, we observed activation of pSTAT5 in CD56bright NK cells at low concentrations of IL-2 (10 IU/ml). Higher IL-2 concentrations (100-1000 IU/ml) were required to activate pSTAT5 in Tcon, CD8 T cells and CD56dim NK cells. At high IL-2 concentrations, pSTAT5 was activated in all Treg, NK, Tcon and CD8 subsets. To examine the response to IL-2 in vivo, we examined PBMC from 14 patients with chronic GVHD receiving daily low-dose IL-2 using the same CyTOF panel of markers. Without additional in vitro stimulation, pSTAT5 expression was increased preferentially in Helios+ Treg. Peak pSTAT5 expression occurred 1 week after starting IL-2 and decreased with continued IL-2 therapy. Similarly, increased expression of FoxP3, CD25, HLA-DR and Ki67 occurred primarily in Helios+ Treg with peak expression at 1 week. At later time points during IL-2 therapy, changes in Treg included increased expression of CD95, CTLA4, PD-1, BIM and BCL2. Although there was no activation of pSTAT5 in CD4 Tcon and CD8 T cells, expression of PD-1 increased in effector memory subsets of Tcon and CD8 T cells 1 week after starting IL-2 therapy. Selective expansion of CD56bright NK cells was also noted, with peak activation at 1 week. No other changes were noted in Tcon, CD8 T cells and B cells. All changes observed during IL-2 therapy returned to baseline levels 4 weeks after treatment was stopped. However, examination of PBMC from 8 patients who received continuous daily low-dose IL-2 therapy for approximately 1 year showed that all of the changes noted above persisted during extended therapy. Conclusion: Comprehensive analysis of T, B and NK cells from healthy donors revealed that low concentrations of IL-2 result in selective activation of Helios+ Treg and CD56bright NK cells. Higher concentrations of IL-2 are required for activation of CD4 Tcon, CD8 T cells and CD56dim NK cells. Identical populations are activated in patients with cGVHD receiving daily low-dose IL-2 and these functional effects persist during extended IL-2 therapy. Although the function of Helios transcription factor is not well defined, Helios expression identifies those Treg most primed to respond to low concentrations of IL-2 in vitro and in vivo. Disclosures Armand: Infinity Pharmaceuticals: Consultancy; Merck: Consultancy, Research Funding; Bristol-Myers Squibb: Research Funding. Antin:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Gentium S.p.A.: Membership on an entity's Board of Directors or advisory committees. Soiffer:Gentium SpA/Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3912-3912 ◽  
Author(s):  
Pinar Ataca Atilla ◽  
Haruko Tashiro ◽  
Mary Kathryn McKenna ◽  
Madhuwanti Srinivasan ◽  
Brian Wesley Simons ◽  
...  

Introduction: C-type lectin 1 (CLL-1, CD371) is highly expressed on the malignant cells from many patients with AML, and CAR T cells directed to this antigen can selectively target both leukemic progenitor cells (LSC) as well as AML blasts whilst sparing normal tissues. We previously showed (1) that such CAR-Ts can recognize and eliminate both AML blasts and primitive AML colony-forming cells in a low tumor-burden model. We have now modified the structure of the CLL-1 CAR and added transgenic expression of IL15 to enhance performance sufficiently for activity even against more extensive disease. Material and Methods: We assessed the phenotype and cytolytic ability of T cells transduced with 5 CLL-1 CAR constructs, varying in their spacer, transmembrane and costimulatory sequences (CD28z-CD8, CD28z-sh, CD28z-CH3, 4-1BBz-sh, 4-1BBz-CH3), and compared these with the effects of our published construct (4-1BBz-CD8)(1). We used flow cytometry to determine the effects of each construct on T cell phenotype and differentiation, and sequential (recursive) co-culture assays with tumor-cell targets to determine the durability of the anti-tumor activity. The most active constructs (CD28z-CD8 and 4-1BBz-CD8) were then evaluated in NOD.SCID IL-2Rg-/- (NSGS) mice engrafted with 1.5x10ˆ6 FFLuc-modified HL 60 AML cells, which received 2x10ˆ6 CLL-1 CAR T cells on day 3. To determine if we could further potentiate the in vivo expansion, persistence and anti-tumor activity of the CLL-1 CAR-T cells, we used a second retroviral vector to co-express transgenic IL15, measuring the effects in vitro and in vivo. Mice engrafted with 1.5x10ˆ6 tumor cells and received 2.5x10ˆ6 CLL-1 CAR T cells on week 3 in patient derived xenograft (PDX) model. We determined antitumor activity by bioluminescence imaging and weekly bleeding and measured serum cytokines by multiplex analysis (Luminex, TX). After euthanasia, we examined formalin-fixed/paraffin embedded sections. Results: Modified CLL-1 CAR constructs were expressed by 70-80% of cells irrespective of CAR sequence, but CD28z-CD8 CAR T cell expansion was significantly higher than CAR T cells with 4-1BBz endodomains (p<0.001), in part because of a higher death rate/lower viability in 4-1BBz cells (p<0.001). Consistent with these differences, both CD4 and CD8 T cell populations had more terminally differentiated cells (CCR7-CD45RA+) in CD28z versus 41BBz CAR T cells. In sequential co-culture assays against HL 60 (E:T=1:4) and THP-1 (E:T=1:4), CD28z-CD8 CAR T cells continued to expand well producing the greatest antitumor effect. In vivo models showed reduction in tumor signal in mice receiving either CD28z-CD8 CAR T or 4-1BBz-CD8 CAR T cells, but that only CD28z-CD8 CAR T cells prolonged survival (p<0.01). Nonetheless, all mice ultimately relapsed, usually with extramedullary disease, in association with limited CAR T persistence. We therefore incorporated transgenic IL15 as a "signal 3" for CD28z-CD8 CAR T cells, and determined the effects of forced IL15 expression on T cell phenotype, expansion, and antitumor activity in vitro and in vivo. In vitro, CD28z-CD8 CAR T cells with IL15 were less terminally differentiated and had superior expansion compared to CD28z-CD8 CAR T cells without IL15 (p<0.001). In both AML PDX and AML cell line animal models, CD28z-CD8 CAR T co-expressing transgenic IL15 initially (week 1) expanded better than CD28z-CD8 CAR T without IL15 (p<0.001) (Fig 1a), but produced severe acute toxicity associated with high level production of human IL15, TNF alpha and IFN gamma (Fig 1b). Histopathology showed marked inflammatory changes with tissue damage in lung and liver. This acute toxicity could be managed by 2 strategies, individually or in combination. The excessive TNF alpha secretion could be blocked with anti-TNF alpha antibody (1mg/kg/mouse) (BioLegend, CA USA) weekly, while excessive T cell expansion could be arrested by activation of an inducible caspase 9 safety switch by administration of dimerizing drug (2). Both strategies successfully prolonged tumor free survival (Fig 2,b). Conclusion: Addition of transgenic IL15 to CLL-1-CD28z-CD8 CAR augmented activity against AML in a range of cell line and PDX models, and toxicity associated with exuberant CART expansion could be prevented by cytokine blockade and/or an inducible safety switch. References: 1. Tashiro H, et al. Mol Ther. 2017 2.Straathof KC et al. Blood. 2005 Disclosures Brenner: T Scan: Membership on an entity's Board of Directors or advisory committees; Marker Therapeutics: Equity Ownership; Allovir: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Equity Ownership; Memgen: Membership on an entity's Board of Directors or advisory committees; Allogene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 52-52
Author(s):  
Christine Rivat ◽  
Natalia Izotova ◽  
Rachel Richardson ◽  
Danilo Pellin ◽  
Rachael Hough ◽  
...  

CD19 CAR-T cells show unprecedented responses in relapsed/refractory Acute Lymphoblastic Leukaemia, but long-term persistence appears critical for their use as a stand-alone therapy. The origin of long-term persisting CAR-T cells has yet to be defined and will be critical in designing manufacturing protocols to optimise long-term persistence. Previous data are conflicting with groups showing prolonged persistence of CAR-T cells from cell products with a predominantly effector memory (TEM) phenotype, whereas others suggesting that the dominant clones originate instead from infused stem cell memory (TSCM) and central memory (TCM) T cells. To date, it has not been possible to isolate long-term (&gt; 1 year) persisting CAR-T cells in patients. In the CARPALL Phase I study, the use of an improved low-affinity CD19 CAR resulted in enhanced expansion and persistence of CAR-T cells in vivo (Ghorashian et al, Nature Medicine, in press). Combining this unique experimental setting with our well-established clonal tracking platform based on high-resolution integration sites (IS) analysis has enabled us to track the fate of the infused CAR-T cells. We analysed 2 patients with long-term persistent CAR-T cells detectable by flow cytometry in peripheral blood. CAR-T cells comprised 13 and 53% circulating CD3+ cells respectively at day 14 post-infusion, 7.1 and 7.7% circulating at 1 month, 0.7 and 1.3% at 6 months and 0.1% for both at the latest follow-ups (24-28 months). Blood samples taken at early (14d, 30d) and later (6m to 28m) time points were flow-sorted for CAR+ TCM/TEM mixed population and TSCM T cells, while the corresponding infused gene-modified products were separated into three subpopulations: TSCM, TCM and TEM. The integration profile of each sorted cell populations was established using linear amplification mediated-PCR (LAM-PCR) combined with high throughput sequencing. We identified a total of 7,105 and 4,692 IS from 2 patients overtime before infusion and up to 28 months after infusion. The infused CAR-T cell population was highly polyclonal before infusion. Although the total number of CAR-T cell clones decreased substantially upon in vivo selection, we did not observe any sign of aberrant clonal drifts and diversity was preserved long-term. Early after infusion during the response peak, TSCM underwent two waves of transient oligoclonal expansion. In both patients two distinct sets of individual TSCM clones contributed to the 73% and 97% of the whole analysed TSCM population at day 14 and 74% and 99% at day 30. Conversely, the largest memory/effector clones detected at the same timepoints spanned from 4% to 21% of the total TCM/TEM population. These TSCM clones subsequently contracted and were not observed at 6-28 months after infusion suggesting that different clones are responsible for the early response and prolonged immune surveillance. After 6 months post-infusion, when the IS profile of circulating CAR-T cells was compared with selected populations from the infused product, only 1.8%-6.1% of long term clones were derived from the infused TCM population, despite this accounting for the majority of IS in the products (72.7/75.8% of clones). Conversely, in both patients the majority of IS associated with long term persistence (90.7%/55.5%) were derived from the TSCM compartment. Our preliminary results raise two hypotheses on the clonal dynamics of infused CAR T cells: 1) There is an early expansion of a defined group of clones during the first 30 days, which is more pronounced in the precursor TSCM compartment. These early waves do not seem to be originated from clones that have substantially expanded in vitro such that their clonal mark could not be retained in the batch of the infused cell product analysed. Further, these clones rapidly disappear after the early anti-tumour response. 2) The long-term population of CAR-T cells seem to have a higher relation with TSCM clones that have expanded in vitro before infusion, supporting the notion that such cells in the infused batch would be the one primarily responsible for the preservation of circulating CAR-T cells in the treated patients. This study suggests for the first time that anti-leukemic response occurs along rapid waves of clonal succession and that TSCM are primarily responsible for the long-term survival of CAR-T cells. Disclosures Ghorashian: novartis: Honoraria; UCLB: Patents & Royalties: UCLB; Celgene: Honoraria. Pule:Autolus: Membership on an entity's Board of Directors or advisory committees. Thrasher:4BIOCapital: Membership on an entity's Board of Directors or advisory committees; Orchard Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Generation Bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Rocket Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees. Amrolia:UCLB: Patents & Royalties.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Pinar Ataca Atilla ◽  
Mary K McKenna ◽  
Norihiro Watanabe ◽  
Maksim Mamonkin ◽  
Malcolm K. Brenner ◽  
...  

Introduction: Efforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia associated antigen with chimeric antigen receptor T (CAR T) cells have had limited success. We determined whether combinatorial expression of chimeric antigen receptors directed to two different AML associated antigens would augment tumor eradication and prevent relapse in targets with heterogeneous expression of myeloid antigens. Methods: We generated CD123 and CD33 targeting CARs; each containing a 4-1BBz or CD28z endodomain. We analyzed the anti-tumor activity of T cells expressing each CAR alone or in co-transduction with a CLL-1 CAR with CD28z endodomain and CD8 hinge previously optimized for use in our open CAR-T cell trial for AML (NCT04219163). We analyzed CAR-T cell phenotype, expansion and transduction efficacy by flow cytometry and assessed function by in vitro and in vivo activity against AML cell lines expressing high, intermediate or low levels of the target antigens (Molm 13= CD123 high, CD33 high, CLL-1 intermediate, KG1a= CD123 low, CD33 low, CLL-1 low and HL60= CD123 low, CD33 intermediate, CLL-1 intermediate/high) For in vivo studies we used NOD.SCID IL-2Rg-/-3/GM/SF (NSGS) mice with established leukemia, determining antitumor activity by bioluminescence imaging. Results: We obtained high levels of gene transfer and expression with both single (CD33.4-1BBʓ, CD123.4-1BBʓ, CD33.CD28ʓ, CD123.CD28ʓ, CLL-1 CAR) and double transduction CD33/CD123.4-1BBʓ or CD33/CD123.CD28ʓ) although single-transductants had marginally higher total CAR expression of 70%-80% versus 60-70% after co-transduction. Constructs containing CD28 co-stimulatory domain exhibited rapid expansion with elevated peak levels compared to 41BB co-stim domain irrespective of the CAR specificity. (p&lt;0.001) (Fig 1a). In 72h co-culture assays, we found consistently improved anti-tumor activity by CAR Ts expressing CLL-1 in combination either with CD33 or with CD123 compared to T cells expressing CLL-1 CAR alone. The benefit of dual expression was most evident when the target cell line expressed low levels of one or both target antigens (e.g. KG1a) (Fig 1b) (P&lt;0.001). No antigen escape was detected in residual tumor. Mechanistically, dual expression was associated with higher pCD3ʓ levels compared to single CAR T cells on exposure to any given tumor (Fig 1c). Increased pCD3ʓ levels were in turn associated with augmented CAR-T degranulation (assessed by CD107a expression) in both CD4 and CD8 T cell populations and with increased TNFα and IFNɣ production (p&lt;0.001 Fig 1d). In vivo, combinatorial targeting with CD123/CD33.CD28ʓ and CLL-1 CAR T cells improved tumor control and animal survival in lines (KG1a, MOLM13 and HL60) expressing diverse levels of the target antigens (Fig 2). Conclusion: Combinatorial targeting of T cells with CD33 or CD123.CD28z CARs and CLL-1-CAR improves CAR T cell activation associated with superior recruitment/phosphorylation of CD3ʓ, producing enhanced effector function and tumor control. The events that lead to increased pCD3ʓ after antigen engagement in the dual transduced cells may in part be due to an overall increase in CAR expression but may also reflect superior CAR recruitment after antigen engagement. We are now comparing the formation, structure, and stability of immune synapses in single and dual targeting CARs for AML. Disclosures Brenner: Walking Fish: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Bluebird Bio: Membership on an entity's Board of Directors or advisory committees; Tumstone: Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Founder; Maker Therapeutics: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Memmgen: Membership on an entity's Board of Directors or advisory committees; Allogene: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Atilla:Bluebird Bio: Membership on an entity's Board of Directors or advisory committees; Tumstone: Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: founder; Marker Therapeuticsa: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Other: Founder, Patents & Royalties; Allogene: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Walking Fish: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Memgen: Membership on an entity's Board of Directors or advisory committees; KUUR: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12 ◽  
Author(s):  
Nikhil Hebbar ◽  
Rebecca Epperly ◽  
Abishek Vaidya ◽  
Sujuan Huang ◽  
Cheng Cheng ◽  
...  

Finding the ideal immunotherapy target for AML has proven challenging and is limited by overlapping expression of antigens on hematopoietic progenitor cells (HPCs) and AML blasts. Intracellular Glucose-regulated-protein 78 (GRP78) is a key UPR regulator, which normally resides in the endoplasmic reticulum (ER). GRP78 is overexpressed and translocated to the cell surface in a broad range of solid tumors and hematological malignancies in response to elevated ER stress, making it an attractive target for immune-based therapies with T cells expressing chimeric antigen receptors (CARs). The goal of this project was to determine the expression of GRP78 on pediatric AML samples, generate GRP78-CAR T cells, and evaluate their effector function against AML blasts in vitro and in vivo. To demonstrate overexpression of GRP78 in AML, we performed gene expression analysis by RNAseq on a cohort of cord blood CD34+ cell samples (N=5) and 74 primary AML samples. Primary AML samples included RUNX1-RUNX1T1 (N=7), CBFB-MYH11(N=17), KMT2A rearrangement (N=28) and NUP98 (N=22). Analysis showed increased GRP78 expression in AML samples, especially in KMT2A- and NUP98-rearranged AML. To demonstrate surface expression of GRP78, we performed flow cytometry of AML (Kg1a, MOLLM13, THP-1, MV4-11) cell lines as well as 11 primary AML samples and 5 PDX samples; non transduced (NT) T cells served as control. All AML samples, including cell lines, primary AML blasts, and PDX samples, showed increased expression of GRP78 on their cell surface in comparison to NT T cells We then designed a retroviral vector encoding a GRP78-CAR using a GRP78-specific peptide as an antigen recognition domain, and generated GRP78-CAR T cells by retroviral transduction of primary human T cells. Median transduction efficiency was 82% (± 5-8%, N=6), and immunophenotypic analysis showed a predominance of naïve and terminal effector memory subsets on day 7 after transduction (N=5). To determine the antigen specificity of GRP78-CAR T cells, we performed coculture assays in vitro with cell surface GRP78+ (AML cell lines: MOLM13, MV-4-11, and THP-1 and 3 AML PDX samples) or cell surface GRP78- (NT T cells) targets. T cells expressing CARs specific for HER2-, CD19-, or a non-functional GRP78 (DGRP78)-CAR served as negative controls. GRP78-CAR T cells secreted significant amounts of IFNg and IL-2 only in the presence of GRP78+ target cells (N=3, p&lt;0.005); while control CAR T cells did not. GRP78-CAR T cells only killed GRP78+ target cells in standard cytotoxicity assays confirming specificity. To test the effects of GRP78-CAR T cells on normal bone marrow derived HPCs, we performed standard colony forming unit (CFU) assays post exposure to GRP78-CAR or NT T cells (effector to target (E:T) ratio 1:1 and 5:1) and determined the number of BFU-E, CFU-E, CFU-GM, and CFU-GEMM. No significant differences between GRP78-CAR and NT T cells were observed except for CFU-Es at an E:T ratio of 5:1 that was not confirmed for BFU-Es. Finally, we evaluated the antitumor activity of GRP78-CAR T cells in an in vivo xenograft AML model (MOLM13). Tumor growth was monitored by serial bioluminescence imaging. A single intravenous dose of GRP78-CAR T cells induced tumor regression, which resulted in a significant (p&lt;0.001) survival advantage in comparison to mice that had received control CAR T cells. In conclusion, GRP78 is expressed on the cell surface of AML. GRP78-CAR T cells have potent anti-AML activity in vitro and in vivo and do not target normal HPCs. Thus, our cell therapy approach warrants further active exploration and has the potential to improve outcomes for patients with AML. Disclosures Hebbar: St. Jude: Patents & Royalties. Epperly:St. Jude: Patents & Royalties. Vaidya:St. Jude: Patents & Royalties. Gottschalk:TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy; Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2555-2555 ◽  
Author(s):  
Roman Galetto ◽  
Céline Lebuhotel ◽  
Agnès Gouble ◽  
Nuria Mencia-Trinchant ◽  
Cruz M Nicole ◽  
...  

Abstract The remissions achieved using autologous T-cells expressing chimeric antigen receptors (CARs) in patients with advanced B cell leukemia and lymphomas have encouraged the use of CAR technology to treat different types of cancers by targeting distinct tumor-specific antigens. Since the current autologous approach utilizes CAR T-cells manufactured on a "per patient" basis, we propose an alternative approach based on the use of a standardized platform for manufacturing T-cells from third-party healthy donors to generate allogeneic "off-the-shelf" CAR T-cell-based frozen products. In the present work we have adapted this allogeneic platform to the production of T-cells targeting CD123, the transmembrane alpha chain of the interleukin-3 receptor, which is expressed on tumor cells from the majority of patients with Acute Myeloid Leukemia (AML). Multiple antigen recognition domains were screened in the context of different CAR architectures to identify candidates displaying activity against cells expressing variable levels of the CD123 antigen. The three lead candidates were tested in an orthotopic human AML cell line xenograft mouse model. From the three candidates that displayed comparable activity in vitro, we found two candidates capable of eradicating tumor cells in vivo with high efficiency. Subsequently, Transcription Activator-Like Effector Nuclease (TALEN) gene editing technology was used to inactivate the TCRα constant (TRAC) gene, eliminating the potential for engineered T-cells to mediate Graft versus Host Disease (GvHD). Editing of the TRAC gene can be achieved at high frequencies, and allows efficient amplification of TCR-deficient T-cells that no longer mediate alloreactivity in a xeno-GvHD mouse model. In addition, we show that TCR-deficient T-cells display equivalent in vitro and in vivo activity to non-edited T-cells expressing the same CAR. We have performed an initial evaluation of the expression of CD123 in AML patients and found an average cell surface expression of CD123 was of 67% in leukemic blasts (95% CI 48-82), 71% in CD34+CD38+ cells (95% CI 56-86), and 64% in CD34+CD38- (95% CI 41-87). Importantly, we have found that CD123 surface expression persists in CD34+CD38-CD90- cells after therapy in at least 20% of patients in remission (n=25), thus emphasizing the relevance of the target. Currently, the sensitivity of primary AML cells to CAR T-cells is being tested. Finally, we will also present our large scale manufacturing process of allogeneic CD123 specific T-cells from healthy donors, showing the feasibility for this off-the-shelf T-cell product that could be available for administration to a large number of AML patients. Disclosures Galetto: Cellectis SA: Employment. Lebuhotel:Cellectis SA: Employment. Gouble:Cellectis SA: Employment. Smith:Cellectis: Employment, Patents & Royalties.


2021 ◽  
Vol 118 (50) ◽  
pp. e2114774118
Author(s):  
Chih-Wei Lin ◽  
Yu-Jen Wang ◽  
Ting-Yen Lai ◽  
Tsui-Ling Hsu ◽  
Shin-Ying Han ◽  
...  

Pancreatic cancer is usually asymptomatic in the early stages; the 5-y survival rate is around 9%; and there is a lack of effective treatment. Here we show that SSEA-4 is more expressed in all pancreatic cancer cell lines examined but not detectable in normal pancreatic cells; and high expression of SSEA-4 or the key enzymes B3GALT5 + ST3GAL2 associated with SSEA-4 biosynthesis significantly lowers the overall survival rate. To evaluate potential new treatments for pancreatic cancer, homogeneous antibodies with a well-defined Fc glycan for optimal effector functions and CAR-T cells with scFv construct designed to target SSEA-4 were shown highly effective against pancreatic cancer in vitro and in vivo. This was further supported by the finding that a subpopulation of natural killer (NK) cells isolated by the homogeneous antibody exhibited enhancement in cancer-cell killing activity compared to the unseparated NK cells. These results indicate that targeting SSEA-4 by homologous antibodies or CAR-T strategies can effectively inhibit cancer growth, suggesting SSEA-4 as a potential immunotherapy target for treating pancreatic disease.


Sign in / Sign up

Export Citation Format

Share Document