scholarly journals IL-2 Induces Selective Activation of Helios-Positive Regulatory T Cells and CD56bright NK Cells in Vitro and in Patients with Chronic Gvhd Receiving Low-Dose IL-2 Therapy

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 919-919 ◽  
Author(s):  
Masahiro Hirakawa ◽  
Tiago R Matos ◽  
John Koreth ◽  
Edouard Forcade ◽  
Jennifer Whangbo ◽  
...  

Abstract Introduction: CD4+ FoxP3+ CD25+ regulatory T cells (Treg) play a central role in the maintenance of immune tolerance and prevention of chronic graft-versus-host disease (cGVHD) after allogeneic stem cell transplantation (SCT). Treg constitutively express high-affinity interleukin-2 (IL-2) receptors and murine models have established that IL-2 is a critical homeostatic regulator of Treg in vivo. We previously reported that daily administration of low-dose IL-2 in patients with cGVHD induces selective expansion of Treg and NK cells and results in clinical improvement in approximately 50% of patients. However, the mechanisms responsible for these selective effects and the influence of IL-2 therapy on other lymphocytes have not been established due to the limited resolution of traditional cell analytic methods such as flow cytometry. Methods: Single cell mass cytometry (CyTOF) with a panel of 33 markers was used to simultaneously examine the phenotypic and functional effects of low-dose IL-2 on lymphocyte populations in vitro and in vivo. The analytic panel included 22 cell surface markers to identify distinct T, B and NK cell subsets and 11 intracellular markers to measure functional status and activation of specific signaling pathways. viSNE, a cytometry analysis tool, was used to visualize high-dimensional cytometry data on a two-dimensional map. Results: In unstimulated lymphocytes from healthy donors, constitutive expression of CD25 (IL-2Ra) at high levels was restricted to Treg and CD56bright NK cells. Central memory (CM) and effector memory (EM) subsets of conventional CD4 T cells (Tcon) and CM CD8 T cells expressed low levels of CD25. Within the Treg population, the highest expression of CD25 was closely associated with expression of Helios transcription factor. Helios+ Treg also express higher levels of FoxP3, HLA-DR and CD95 and lower levels of BCL2 compared to Helios- Treg. To examine responses to IL-2, we stimulated peripheral blood mononuclear cells (PBMC) from healthy donors with IL-2 for 15 min in vitro (Figure 1). At low IL-2 concentrations (1 to 10 IU/ml), pSTAT5 was preferentially activated in Treg. Notably, pSTAT5 activation was more robust in memory Treg than naïve Treg and in Helios+ Treg than Helios- Treg. In addition, we observed activation of pSTAT5 in CD56bright NK cells at low concentrations of IL-2 (10 IU/ml). Higher IL-2 concentrations (100-1000 IU/ml) were required to activate pSTAT5 in Tcon, CD8 T cells and CD56dim NK cells. At high IL-2 concentrations, pSTAT5 was activated in all Treg, NK, Tcon and CD8 subsets. To examine the response to IL-2 in vivo, we examined PBMC from 14 patients with chronic GVHD receiving daily low-dose IL-2 using the same CyTOF panel of markers. Without additional in vitro stimulation, pSTAT5 expression was increased preferentially in Helios+ Treg. Peak pSTAT5 expression occurred 1 week after starting IL-2 and decreased with continued IL-2 therapy. Similarly, increased expression of FoxP3, CD25, HLA-DR and Ki67 occurred primarily in Helios+ Treg with peak expression at 1 week. At later time points during IL-2 therapy, changes in Treg included increased expression of CD95, CTLA4, PD-1, BIM and BCL2. Although there was no activation of pSTAT5 in CD4 Tcon and CD8 T cells, expression of PD-1 increased in effector memory subsets of Tcon and CD8 T cells 1 week after starting IL-2 therapy. Selective expansion of CD56bright NK cells was also noted, with peak activation at 1 week. No other changes were noted in Tcon, CD8 T cells and B cells. All changes observed during IL-2 therapy returned to baseline levels 4 weeks after treatment was stopped. However, examination of PBMC from 8 patients who received continuous daily low-dose IL-2 therapy for approximately 1 year showed that all of the changes noted above persisted during extended therapy. Conclusion: Comprehensive analysis of T, B and NK cells from healthy donors revealed that low concentrations of IL-2 result in selective activation of Helios+ Treg and CD56bright NK cells. Higher concentrations of IL-2 are required for activation of CD4 Tcon, CD8 T cells and CD56dim NK cells. Identical populations are activated in patients with cGVHD receiving daily low-dose IL-2 and these functional effects persist during extended IL-2 therapy. Although the function of Helios transcription factor is not well defined, Helios expression identifies those Treg most primed to respond to low concentrations of IL-2 in vitro and in vivo. Disclosures Armand: Infinity Pharmaceuticals: Consultancy; Merck: Consultancy, Research Funding; Bristol-Myers Squibb: Research Funding. Antin:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Gentium S.p.A.: Membership on an entity's Board of Directors or advisory committees. Soiffer:Gentium SpA/Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3491-3491 ◽  
Author(s):  
Concetta Quintarelli ◽  
Simona Sivori ◽  
Simona Caruso ◽  
Simona Carlomagno ◽  
Iolanda Boffa ◽  
...  

Abstract Based on the clinical success observed in acute lymphoblastic leukemia (ALL) with chimeric antigen receptor engineered T (CAR T), we hypothesized that combining the specificity of a CAR with the innate allo-reactivity of KIR-mismatched NK cells might provide a powerful tool for adoptive cell therapy. The use of a third-party bank of CAR-NK cells offers the advantage of an immediate availability to be exploited in the allogenic setting and could be associated with a lower toxicity profile than CAR-T cells. In order to overcome regulatory and manufacturing hurdles associated with generation of CAR-NK cells, we developed a feeder-free culture resulting in a 3.2-log expansion after 20 days of culture. Specifically, natural cytotoxicity receptors (NCR) expressed on NK cells are stimulated in the presence of pleiotropic cytokines and expanded in GMP grade bioreactors. Expanded NK cells from healthy donors preserve a high percentage of CD56+ CD57- cells (85±13%), associated with high proliferative capability, and maintain the surface expression and the responsiveness of NCR and CD16. We proved that NK cells generated from 10 different healthy donors have high ability to recognize and eliminate different tumor types, including acute myeloid leukemia (AML) and ALL. After genetic modification with a retroviral vector encoding a CAR specific for CD19 antigen, transduction of activated NK cells averaged 38%±15% and the CAR.CD19 expression was stable over extended in vitro culture (60 days). Detailed phenotypic characterization of CAR-NK cells showed that CAR expression was not limited to the more mature NKG2A-/KIR+ cells, but rather was distributed across different NK subsets. We also demonstrated that NK and CAR-NK cells display significant anti-leukemia activity towards CD19+ leukemia and lymphoma cell lines (LCL 721.221, DAUDI and BV173) and primary blasts obtained from patients with B-cell precursor ALL (Bcp-ALL). Co-culture experiments using a 1:5 E/T ratio, showed that, while the anti-tumor activity was already remarkable with non-modified effector NK cells (60±30%, 71±33% and 54±23% of residual LCL 721.221, DAUDI and BV173 cells, respectively; p<0.05 vs T cells), it reached the highest level when CAR-NK cells were used as effectors (7±9%, 16±30% and 22±16% of residual LCL 721.221, DAUDI and BV173 cells, respectively; p<0.05 vs non-transduced NK cells). Importantly, INF-g production was significantly lower upon CAR-NK activation compared to CAR-T cells (DAUDI 384±194 ng/ml vs 1860±678 ng/ml, p=0.002). Functional analysis on primary Bcp-ALL blasts, demonstrate that CAR-NK cells exert high degree of leukemia control (on average 2.1±2% vs 5.4±1.6% with non-modified NK cells as effectors; p=0.04). An in vivo model of leukemia xenograft immunodeficient mice was used to evaluate whether CAR-NK cells are associated with a lower toxicity profile compared to CAR-T cells. While the in vivo antileukemia activity was superimposable between CAR-T and CAR-NK cells (mouse bioluminenscence at 20 days, 4.9x105 vs 6.6x105 photons/second, respectively; p=n.s. Figure A), mice treated with two i.v. infusions (day 0 and day 15) of 10x106 CAR.CD19 NK cells had a 100% overall survival (OS of 5 out of 5 mice) at 50 days compared to 20% of mice (1 out of 5) receiving 10x106 CAR.CD19 T cells (Figure B; p=0.01). Cytokine plasma level monitoring, performed on day +7 and +30 after effector cell infusion in the absence of leukemia persistence (as evidenced by a lack of bioluminescence signal), showed that mice engrafted with CD19+ leukemia and treated with CAR.CD19-NK cells have lower levels of circulating hIFN-g cytokine compared to mice treated with CAR.CD19-T cells at both day 7 (42±82 vs 330±346 ng/ml; p=0.05) and day 30 (0.9±0.7 vs 4148±667 ng/ml; p=0.05). These in vitro and in vivo data demonstrate the feasibility of clinical scale feeder-free expansion of non-modified NK cells and stably transduced CAR-NK cells. Both non-modified and gene-modified cells were capable of significant tumor killing, suggesting a multi-modal adoptive cell approach to treatment of leukemia. Since NK cells have been shown to be safely used in third-party setting (St. Jude Children's Research Hospital, USA; NCT00640796), we suggest that ex-vivo expanded, feeder-free NK cells can be universally applied for 'off-the-shelf' immuno-gene-therapy, and that their innate allo-reactivity can be safely harnessed to potentiate allogeneic cell therapy. Figure. Figure. Disclosures Locatelli: Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1974-1974 ◽  
Author(s):  
Adam D. Cohen ◽  
J. Joseph Melenhorst ◽  
Alfred L. Garfall ◽  
Simon F Lacey ◽  
Megan Davis ◽  
...  

Abstract Background: Relapsed/refractory (rel/ref) MM is associated with progressive immune dysfunction, including reversal of CD4:CD8 T cell ratio and acquisition of terminally-differentiated T cell phenotypes. BCMA-directed CAR T cells have promising activity in MM, but the factors that predict for robust in vivo expansion and responses are not known. In a phase 1 study of CART-BCMA (autologous T cells expressing a human BCMA-specific CAR with CD3ζ/4-1BB signaling domains) in refractory MM patients (median 7 priors, 96% high-risk cytogenetics), we observed partial response (PR) or better in 12/25 (47%) (Cohen et al, ASH 2017, #505). Recently, we demonstrated in CLL pts receiving CD19-directed CAR T cells that certain T cell phenotypes prior to generation of the CAR T product were associated with improved in vivo expansion and clinical outcomes (Fraietta et al, Nat Med 2018). We thus sought to identify pre-treatment clinical or immunological features associated with CART-BCMA expansion and/or response. Methods: Three cohorts were enrolled: 1) 1-5 x 108 CART cells alone; 2) cyclophosphamide (Cy) 1.5 g/m2 + 1-5 x 107 CART cells; and 3) Cy 1.5 g/m2 + 1-5 x 108 CART cells. Phenotypic analysis of peripheral blood (PB) and bone marrow (BM) mononuclear cells, frozen leukapheresis aliquots, and phenotype and in vitro kinetics of CART-BCMA growth during manufacturing were performed by flow cytometry. CART-BCMA in vivo expansion was assessed by flow cytometry and qPCR. Responses were assessed by IMWG criteria. Results: Responses (≥PR) were seen in 4/9 pts (44%, 1 sCR, 2 VPGR, 1 PR) in cohort 1; 1/5 (20%, 1 PR) in cohort 2; and 7/11 (64%, 1 CR, 3 VGPR, 3 PR) in cohort 3. As of 7/9/18, 3/25 (12%) remain progression-free at 11, 14, and 32 months post-infusions. As previously described, responses were associated with both peak in vivo CART-BCMA expansion (p=0.002) as well as expansion over first month post-infusion (AUC-28, p=0.002). No baseline clinical or MM-related characteristic was significantly associated with expansion or response, including age, isotype, time from diagnosis, # prior therapies, being quad- or penta-refractory, presence of del 17p or TP53 mutation, serum hemoglobin, BM MM cell percentage, MM cell BCMA intensity, or soluble BCMA concentration. Treatment regimen given before leukapheresis or CART-BCMA infusions also had no predictive value. We did find, however, that higher CD4:CD8 T cell ratios within the leukapheresis product were associated with greater in vivo CART-BCMA expansion (Spearman's r=0.56, p=0.005) and clinical response (PR or better; p=0.014, Mann-Whitney). In addition, and similar to our CLL data, we found that a higher frequency of CD8 T cells within the leukapheresis product with an "early-memory" phenotype of CD45RO-CD27+ was also associated with improved expansion (Spearman's r=0.48, p=0.018) and response (p=0.047); Analysis of manufacturing data confirmed that higher CD4:CD8 ratio at culture start was associated with greater expansion (r=0.41, p=0.044) and, to a lesser degree, responses (p=0.074), whereas absolute T cell numbers or CD4:CD8 ratio in final CART-BCMA product was not (p=NS). In vitro expansion during manufacturing did associate with in vivo expansion (r=0.48, p=0.017), but was not directly predictive of response. At the time of CART-BCMA infusion, the frequency of total T cells, CD8+ T cells, NK cells, B cells, and CD3+CD56+ cells within the PB or BM was not associated with subsequent CART-BCMA expansion or clinical response; higher PB and BM CD4:CD8 ratio pre-infusion correlated with expansion (r=0.58, p=0.004 and r=0.64, p=0.003, respectively), but not with response. Conclusions: In this study, we found that CART-BCMA expansion and responses in heavily-pretreated MM patients were not associated with tumor burden or other clinical characteristics, but did correlate with certain immunological features prior to T cell collection and manufacturing, namely preservation of normal CD4:CD8 ratio and increased frequency of CD8 T cells with a CD45RO-CD27+ phenotype. This suggests that patients with less dysregulated immune systems may generate more effective CAR T cell products in MM, and has implications for optimizing patient selection, timing of T cell collection, and manufacturing techniques to try to overcome these limitations in MM patients. Disclosures Cohen: Celgene: Consultancy; Novartis: Research Funding; Oncopeptides: Consultancy; Janssen: Consultancy; Poseida Therapeutics, Inc.: Research Funding; Bristol Meyers Squibb: Consultancy, Research Funding; Kite Pharma: Consultancy; GlaxoSmithKline: Consultancy, Research Funding; Seattle Genetics: Consultancy. Melenhorst:Parker Institute for Cancer Immunotherapy: Research Funding; novartis: Patents & Royalties, Research Funding; Casi Pharmaceuticals: Consultancy; Incyte: Research Funding; Shanghai UNICAR Therapy, Inc: Consultancy. Garfall:Amgen: Research Funding; Kite Pharma: Consultancy; Bioinvent: Research Funding; Novartis: Research Funding. Lacey:Novartis Pharmaceuticals Corporation: Patents & Royalties; Parker Foundation: Research Funding; Tmunity: Research Funding; Novartis Pharmaceuticals Corporation: Research Funding. Davis:Novartis Institutes for Biomedical Research, Inc.: Patents & Royalties. Vogl:Karyopharm Therapeutics: Consultancy. Pruteanu:Novartis: Employment. Plesa:Novartis: Research Funding. Young:Novartis: Patents & Royalties, Research Funding. Levine:Novartis: Consultancy, Patents & Royalties, Research Funding; CRC Oncology: Consultancy; Incysus: Consultancy; Tmunity Therapeutics: Equity Ownership, Research Funding; Brammer Bio: Consultancy; Cure Genetics: Consultancy. June:Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Immune Design: Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Immune Design: Membership on an entity's Board of Directors or advisory committees; Celldex: Consultancy, Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Stadtmauer:Takeda: Consultancy; Celgene: Consultancy; Amgen: Consultancy; AbbVie, Inc: Research Funding; Janssen: Consultancy. Milone:Novartis: Patents & Royalties.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 14-14
Author(s):  
Jianhong Chu ◽  
Youcai Deng ◽  
Don M. Benson ◽  
Shun He ◽  
Tiffany L. Hughes ◽  
...  

Abstract Multiple myeloma (MM) is a B-cell malignancy characterized by the aberrant clonal expansion of plasma cells (PCs) within the bone marrow (BM). Despite the use of proteasome inhibitors and immune-modulating drugs, which have improved overall survival, MM remains an incurable malignancy for which novel therapeutic approaches are urgently needed. Immunotherapy that specifically targets antigens expressed by MM would be a promising approach to treat MM patients refractory to any current treatments. Chimeric antigen receptors (CARs) are engineered fusion proteins containing tumor antigen-recognition moieties and immune cell activation domains. CAR-expressing T cells have been demonstrated successful in the clinic to treat chronic lymphocytic leukemia (CLL) and acute lymphoid leukemia (ALL). However, the potential utility of antigen-specific CAR-engineered natural killer (NK) cells or T cells to target MM-expressed CS1 to treat MM has not been previously explored, and is the focus of our study. CS1 is a surface glycoprotein and represents an ideal target for the treatment of MM. CS1 is highly, and nearly ubiquitously, expressed on MM cells, while expression remains very low on NK cells, some T-cell subsets, and normal B cells, and also it is almost undetectable on myeloid cells. In addition, monoclonal antibody directed against CS1, elotuzumab, has already been proven safe in phase 1 and 2 clinical trials, and phase 3 trials are ongoing. Therefore, it should be safe to target CS1 for the treatment of MM. We successfully generated a specific CS1-CAR construct with a lentiviral vector backbone, sequentially containing a signal peptide (SP), a heavy chain variable region (VH), a linker, a light chain variable region (VL), a hinge, CD28 and CD3ζ. Flow cytometry analysis with an antibody against VH and VL regions indicated that CS1-CAR was successfully expressed on the surface of NK cells and T cells transduced with the CAR construct. In vitro, CS1-CAR NK cells and T cells displayed enhanced MM cytolysis (detected by Cr51 release assay) and augmented production of cytokines (determined by enzyme-linked immunosorbent assay, ELISA), such as IFN-g for NK and T cells and IL-2 for T cells, when co-cultured with CS1-expressing MM cell lines. These effects relied on CS1-dependent recognition of MM cells because CS1-CAR NK or T cells possessed higher activity when they were co-cultured with CS1-expressing cells, but remained much lower activity when they were co-cultured with CS1-negative cells. However, CS1-CAR NK or T cells launched significantly higher killing of MM cells and secrete more abundant cytokines when the CS1-negative MM cells ectopically overexpressed CS1 and were co-cultured with the CAR cells. Ex vivo, compared to NK or T cells transduced with the empty vector, NK or T cells transduced with CS1-CAR also showed significantly enhanced effector functions when responding to purified primary MM tumor cells. More importantly, in an aggressive orthotopic MM xenograft mouse model, when compared to untreated mice or mice treated with empty vector-tranduced NK or T cells, adoptive transfer of 5 × 106 NK or T cells expressing CS1-CAR once every five days efficiently suppressed the growth of human IM9 MM cells and also significantly prolonged survival of mice bearing IM9 MM cells. Our efforts to translate these findings into clinical trials are ongoing. In summary, CS1 is a promising target for using CAR NK or T cells for MM treatment, and we have generated a CAR that recognizes CS1. We demonstrate that NK cells or T cells armed with this CS1-CAR can recognize and eradicate myeloma cells in vitro and in vivo. Autologous or allogeneic transplantation of these CS1-specific CAR NK cells or CAR T cells may be a promising strategy to treat MM. Disclosures: Caligiuri: Innate Pharma: Membership on an entity’s Board of Directors or advisory committees. Hofmeister:Celgene Corporation: Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 250-250
Author(s):  
Jan A Rath ◽  
Gagan Bajwa ◽  
Benoit Carreres ◽  
Isabelle Gruber ◽  
Elisabeth Hoyer ◽  
...  

Introduction:Transgenic co-expression of a major histocompatibility complex class I restricted tumor associated antigen specific TCR and CD8αβ (TCR8) has been previously proposed as a strategy to redirect CD4+ T cells to tumors. However, it is unknown whether forced TCR8 expression induces more fundamental transcriptional consequences in both CD4+ and CD8+ T cells, and whether T cell lineage origin affects this outcome. Here we deeply interrogate the effects of transgenic TCR and TCR8 in human CD4+ and CD8+ T cells upon leukemia challenge by single cell RNA sequencing (scRNAseq) and investigate T cell function in vitro and in vivo. We identify profound changes of gene expression that have significant functional consequences. Methods:A previously characterized HLA-A*02:01 restricted survivin-specific TCR was used (Arber et al, JCI, 2015 Jan;125(1):157-68) and a new polycistronic vector with this TCR and CD8αβ was generated. CD4+ and CD8+ T cells were isolated and scRNAseq (25'474 cells in total) was performed on (1) freshly isolated cells, (2) retrovirally transduced (TCR or TCR8) expanded cells, and (3) TCR+CD8+, TCR8+CD8+ and TCR8+CD4+ T cells co-cultured with BV173 leukemia cells (HLA-A*02:01+survivin+). scRNAseq results were cross-validated in independent experiments with FACS analysis of selected markers, in vitro stress-killing assays, analysis of cytokine production, and assessment of anti-tumor function in vivo in xenograft mice. Results:CD4+ T cells only killed BV173 leukemia cells when redirected with TCR8 but not with TCR alone (p=0.0004, n=7), while killing by TCR+CD8+ and TCR8+CD8+ T was comparable (p=NS). To explore some of the possible underlying mechanisms, we used dimensionality reduction and unsupervised clustering of the scRNASeq data and identified 19 distinct cell clusters. CD4+ and CD8+ lineage origin clearly separated the samples, but separation by transgene type only became apparent upon co-culture. Analyzing differentially expressed genes, we found that co-cultured samples contained clusters with high expression of cytotoxic markers but with significant differences between CD4+ and CD8+ lineages (e.g. transcription of GZMB in CD4+ T cells and GNLY, NKG7, GZMK in CD8+ T cells). Next, we analyzed which genes were upregulated from the expanded to co-cultured states. Co-cultured TCR8+CD4+ T cells had more upregulated genes with a broader diversity compared to TCR+CD8+ or TCR8+CD8+ T cells. Among these upregulated pathways were cytotoxicity, co-stimulation, oxidative phosphorylation, NFkB regulation, cell growth and transcription factors. TCR8+CD4+ T cells also retained a less differentiated phenotype (e.g. high IL7R, SELL, CCR7, CXCR4) with preservation of replicative potential. Furthermore, co-cultured TCR8+CD4+ T cells expressed more co-stimulatory and less activation/ exhaustion markers. In addition, co-cultured TCR8+CD4+ T cells heavily relied on oxidative phosphorylation and had higher mitochondrial activity compared to co-cultured TCR+ or TCR8+ CD8+ T cells. In stress co-cultures with multiple rounds of tumor challenge, TCR8+CD4+ T cells outperformed TCR+CD8+ T cells (number of killings TCR8+CD4+ vs TCR+CD8+: 3.3±0.5 vs 1.3±1.1, p=0.01, n=7), but were comparable to TCR8+CD8+ T cells (TCR8+CD4+ vs TCR8+CD8+: 3.3±0.5 vs 2±1.4,p=NS, n=7). TCR8+CD4+ T cells expanded significantly better than TCR+CD8+ T cells (p=0.002) and TCR8+CD8+ T cells (p=0.015) and produced TH1 type cytokines. In the xenograft mouse model, we observed significant BV173 leukemia control in mice treated with TCR+CD8+ T cells compared to controls (NT), and further enhancement in mice treated with TCR8+CD8+ T cells (NT vs TCR: p=0.0002, NT vs TCR8: p&lt;0.0001, TCR vs TCR8: p=0.01, n=5). TCR8+CD4+ T cells also significantly delayed leukemia progression compared to TCR+CD4+ or NT T cells (p=0.001, n=5). Conclusion:Transgenic TCR8 expression has previously been proposed as a strategy to enhance TCR-pMHC recognition. Here we identify profound transcriptional changes involving multiple pathways that are important for sustained anti-tumor function upon adoptive T cell transfer in vivo, such as cytotoxicity, co-stimulation, cell cycle and metabolism. Our results point towards previously unrecognized mechanisms by which TCR8 transgenes mediate their beneficial effect in both CD4+ and CD8+ T cells. Disclosures Brenner: T Scan: Membership on an entity's Board of Directors or advisory committees; Marker Therapeutics: Equity Ownership; Allovir: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Equity Ownership; Memgen: Membership on an entity's Board of Directors or advisory committees; Allogene: Membership on an entity's Board of Directors or advisory committees. Arber:Cell Medica: Patents & Royalties.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4712-4712 ◽  
Author(s):  
Deepika Sharma Das ◽  
Ze Tian ◽  
Arghya Ray ◽  
Durgadevi Ravillah ◽  
Yan Song ◽  
...  

Abstract Background and Rationale: Multiple Myeloma (MM) remains incurable despite the advent of novel drugs, highlighting the need for further identification of factors mediating disease progression and resistance. The bone marrow (BM) microenvironment confers growth, survival, and drug resistance in MM cells. Studies to date suggest an important role of BM hypoxia (low oxygenation) in MM cell survival, drug resistance, migration, and metastasis. Therapies targeting the MM cell in its BM milieu under hypoxic conditions may therefore achieve responses in patients resistant to various therapies. Recent studies led to the development of a novel aerospace-industry derived Phase 2 molecule RRx-001 with epigenetic and NO-donating properties. RRx-001 generates reactive oxygen and nitrogen species (RONS), which induces oxidative stress in tumor cells. Importantly, RRx-001 is also a potent vascular disrupting agent, which further provides rationale for utilizing RRx-001 as a therapeutic agent since tumor-associated angiogenesis is a characteristic of MM. A Phase I clinical trial has shown RRx-001 to have antitumor activity in heavily pretreated cancer patients and to be safe and well tolerated with no dose-limiting toxicities (Reid et al. J Clin Oncol 32:5s, 2014 suppl; abstr 2578). Here we examined the anti-MM activity of RRx-001 using in vitro and in vivo models of MM. Materials and methods: MM cell lines, patient MM cells, and peripheral blood mononuclear cells (PBMCs) from normal healthy donors were utilized to assess the anti-MM activity of RRx-001 alone or in combination with other agents. Drug sensitivity, cell viability, apoptosis, and migration assays were performed using WST, MTT, Annexin V staining, and transwell Inserts, respectively. Synergistic/additive anti-MM activity was assessed by isobologram analysisusing “CalcuSyn” software program. Signal transduction pathways were evaluated using immunoblotting. ROS release, nitric oxide generation, and mitochondrial membrane potential was measured as previously described (Chauhan et al., Blood, 2004, 104:2458). In vitro angiogenesis was assessed using matrigel capillary-like tube structure formation assays. DNMT1 activity was measured in protein lysates using EpiQuik DNMT1 assay kit. 5-methyl cytosine levels were analyzed in gDNA samples using methylflash methylated DNA quantification kit from Enzo life sciences; USA. For xenograft mouse model, CB-17 SCID-mice were subcutaneously inoculated with MM.1S cells as previously described (Chauhan et al., Blood, 2010, 115:834). Statistical significance of data was determined using a Student’st test. RRx-001 was obtained from RadioRx Inc., CA, USA; bortezomib, SAHA, and pomalidomide were purchased from Selleck chemicals, USA. Results: Treatment of MM cell lines (MM.1S, MM.1R, RPMI-8226, OPM2, H929, Dox-40 ARP-1, KMS-11, ANBL6.WT, ANBL6.BR, and LR5) and primary patient cells for 24h significantly decreased their viability (IC50 range 1.25nM to 2.5nM) (p < 0.001; n=3) without markedly affecting PBMCs from normal healthy donors, suggesting specific anti-MM activity and a favorable therapeutic index for RRx-001. Tumor cells from 3 of 5 patients were obtained from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. Moreover, RRx-001 inhibits proliferation of MM cells even in the presence of BM stromal cells. Mechanistic studies show that RRx-001-triggered apoptosis is associated with 1) induction of DNA damage response signaling via ATM/p53/gH2AX axis; 2) activation of caspases mediating both intrinsic and extrinsic apoptotic pathways; 3) increase in oxidative stress through release of ROS and generation of NO; and 4) decrease in DNA methyltransferase (DNMT1) enzymatic activity and global methylation levels. Furthermore, RRx-001 blocked migration of MM cells and angiogenesis. In vivo studies using subcutaneous human MM xenograft models show that RRx-001 is well tolerated and inhibits tumor growth. Finally, combining RRx-001 with bortezomib, SAHA, or pomalidomide induces synergistic anti-MM activity and overcomes drug resistance. Conclusion: Our preclinical studies showing efficacy of RRx-001 in MM disease models provide the framework for clinical trial of RRx-001, either alone or in combination, to improve outcome in relapsed and refractory MM patients. Disclosures Richardson: Oncopeptides AB: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Oronsky:RadioRx Inc, : Employment. Scicinski:RadioRx Inc,: Employment. Chauhan:Triphase Accelerator: Consultancy. Anderson:Celgene: Consultancy; Millenium: Consultancy; Onyx: Consultancy; Gilead: Consultancy; Sanofi Aventis: Consultancy; BMS: Consultancy; Oncopep/Acetylon: Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 407-407
Author(s):  
Frank Cichocki ◽  
Jode P Goodridge ◽  
Ryan Bjordahl ◽  
Svetlana Gaidarova ◽  
Sajid Mahmood ◽  
...  

Abstract Treatments for B-cell malignancies have improved over the past several decades with clinical application of the CD20-specific antibody rituximab and chimeric antigen receptor (CAR) T cells targeting CD19. Despite the success of these therapies, loss of CD20 after rituximab treatment has been reported in leukemia and lymphoma patients. Additionally, up to 50% of all patients receiving anti-CD19 CAR T-cell therapy relapse within the first year with many of those patients exhibiting CD19 loss. Thus, new therapeutic approaches are needed to address tumor antigen escape. Accordingly, we generated triple gene-modified iPSC-derived NK (iNK) cells, termed "iDuo" NK cells, tailored to facilitate multi-antigen targeting. The iPSC line was clonally engineered to express high-affinity, non-cleavable CD16a (hnCD16), an anti-CD19 CAR optimized for NK cell signaling, and a membrane-bound IL-15/IL-15R fusion (IL-15RF) molecule to enhance NK cell persistence (Fig. 1A). To model antigen escape, we generated CD19 knockout AHR77 lymphoma cells alongside wild type AHR77 cells (both CD20 +) as targets in cytotoxicity assays. Activated peripheral blood NK (PBNK) cells, non-transduced iNK cells, and iDuo NK cells were tested as effectors. Unlike PBNK cells or non-transduced iNK cells, iDuo NK cells efficiently eliminated wild type AHR77 cells with or without the addition of rituximab at all tested E:T ratios. Similarly, iDuo NK cells in combination with rituximab were uniquely able to efficiently eliminate CD19 KO AHR77 cells due to enhanced antibody-dependent cellular cytotoxicity (ADCC) driven by hnCD16 (Fig. 1B-E). Cytotoxicity mediated by iDuo NK cells was also evaluated using primary chronic lymphocytic leukemia (CLL) cells. Compared to expanded PBNK cells and non-transduced iNK cells, only iDuo NK cells (in the absence of rituximab) were able to kill primary CLL cells (Fig. 1F). Expression of IL-15RF by iDuo NK cells uniquely supports in vitro expansion without the need for cytokine supplementation. To determine whether IL-15RF supports in vivo persistence of iDuo NK cells, CD19 CAR iNK cells (lacking IL-15RF) and iDuo NK cells were injected into NSG mice without the addition of cytokines or CD19 antigen availability. iDuo NK cell numbers peaked within a week after injection and persisted at measurable levels for ~5 weeks, in marked contrast to CD19 CAR iNK cell numbers that were undetectable throughout (Fig. 1G). To evaluate the in vivo function of iDuo NK cells, NALM6 leukemia cells were engrafted into NSG mice. Groups of mice received tumor alone or were treated with 3 doses of thawed iDuo NK cells. iDuo NK cells alone were highly effective in this model as evidenced by complete survival of mice in the treatment group (Fig. 1H). To assess iDuo NK cells in a more aggressive model, Raji lymphoma cells were engrafted, and groups of mice received rituximab alone, iDuo NK cells alone, or iDuo NK cells plus rituximab. Mice given the combination of iDuo NK cells and rituximab provided extended survival compared to all other arms in the aggressive disseminated Raji lymphoma xenograft model (Fig. 1I). One disadvantage of anti-CD19 CAR T cells is their inability to discriminate between healthy and malignant B cells. Because NK cells express inhibitory receptors that enable "self" versus "non-self" discrimination, we reasoned that iDuo NK cells could have higher cytotoxicity against tumor cells relative to healthy B cells. To address this, we labeled Raji cells, CD19 + B cells from healthy donor peripheral blood mononuclear cells (PBMCs) and CD19 - PBMCs. Labeled populations of cells were co-cultured with iDuo NK cells, and specific killing was analyzed. As expected, iDuo NK cells did not target CD19 - PBMCs. Intriguingly, iDuo NK cells had much higher cytotoxic activity against Raji cells compared to primary CD19 + B cells, suggesting a preferential targeting of malignant B cells compared to healthy B cells. Together, these results demonstrate the potent multi-antigen targeting capability and in vivo antitumor function of iDuo NK cells. Further, these data suggest that iDuo NK cells may have an additional advantage over anti-CD19 CAR T cells by discriminating between healthy and malignant B cells. The first iDuo NK cell, FT596, is currently being tested in a Phase I clinical trial (NCT04245722) for the treatment of B-cell lymphoma. Figure 1 Figure 1. Disclosures Cichocki: Gamida Cell: Research Funding; Fate Therapeutics, Inc: Patents & Royalties, Research Funding. Bjordahl: Fate Therapeutics: Current Employment. Gaidarova: Fate Therapeutics, Inc: Current Employment. Abujarour: Fate Therapeutics, Inc.: Current Employment. Rogers: Fate Therapeutics, Inc: Current Employment. Huffman: Fate Therapeutics, Inc: Current Employment. Lee: Fate Therapeutics, Inc: Current Employment. Szabo: Fate Therapeutics, Inc: Current Employment. Wong: BMS: Current equity holder in publicly-traded company; Fate Therapeutics, Inc: Current Employment. Cooley: Fate Therapeutics, Inc: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment. Miller: Magenta: Membership on an entity's Board of Directors or advisory committees; ONK Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Wugen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1053-1053 ◽  
Author(s):  
Inge Jedema ◽  
Marian van de Meent ◽  
Pim L.J. van der Heiden ◽  
Erik W.A. Marijt ◽  
Pauline Meij ◽  
...  

Abstract Cytomegalovirus (CMV) disease is a significant cause of morbidity and mortality after allogeneic stem cell transplantation (allo-SCT) in CMV seropositive (CMV+) patients. In a recent cohort of CMV+ patients, we investigated the impact of donor CMV serostatus on the severity of CMV reactivation after T cell depleted allo-SCT. A high incidence of CMV related mortality was seen in patients transplanted with a CMV- donor (5/20) whereas no CMV-related deaths occurred after transplantation with a CMV+ donor (0/20). In most CMV+ patients transplanted with a CMV+ donor reconstitution with CMV specific (memory) T cells was found. We recently performed a phase I/II clinical study using isolated CMV-specific CD8+ memory donor T cells for the treatment of patients with persistent CMV reactivation despite seropositivity of the donor. In this study we demonstrated the feasibility of isolating and selecting CMV-specific CD8+ memory T cells from CMV+ donors using the interferon-gamma (IFNg) capture assay and CliniMACS isolation after peptide stimulation of the CMV-specific donor T cells. We have illustrated the in-vivo potential of these T cells after adoptive transfer in 5 patients, resulting in clearance of the CMV load. However, no suitable method was available for the induction of primary immune responses against CMV for the treatment of persistent CMV reactivation in patients transplanted with a CMV- donor. In the current study we investigated the possibility to induce and isolate CMV-specific T cells from CMV- healthy donors by in-vitro priming and selection. We used as responder cells CD14- CD45RO- PBMC from HLA-A1, A2, A3, B7, or B8 positive CMV- healthy donors (n=10). By CD45RO depletion we removed the majority of regulatory T cells (Tregs) capable of inhibiting the initiation of the response. Mature monocyte-derived dendritic cells (DCs) were loaded with a cocktail containing 1μg of each relevant CMV pp65, pp50, or IE1 derived 9-mer peptide, depending on the HLA type of the donor. Naïve donor T cells were cocultured in a 10/1 ratio with peptide loaded DCs. From day 4 on 5 ng/mL IL-7 and IL-15 was added to the culture. At day 10, the responses were specifically restimulated with peptide loaded autologous PBMC. Cytokines were refreshed twice weekly. At day 20 CMV-specific CD8+ T cells were detected and isolated by specific tetramer staining and flowcytometric cell sorting, by specific pentamer staining and immunomagnetic bead isolation, or further enriched by another restimulation, followed by isolation of CD137 expressing T cells at day 21. In 10/10 CMV seronegative donors CMV specific T cells could be detected at day 20 of the immune response in frequencies ranging from 0.01–0.4%. These tetramer positive cells could be isolated and expanded both in bulk cultures and clonally. Functional CMV-specific T cells against all 3 major immunogenic CMV proteins pp65, pp50, and IE1 were detected and isolated with different dominant responses detected in different donors. In conclusion, we have developed a method for the in-vitro induction and isolation of functional CMV-specific CD8+ T cells from CMV- donors. This may allow the treatment of serious CMV-related complications in CMV+ patients transplanted with a CMV- donor.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3266-3266
Author(s):  
Sabine Tschiedel ◽  
Melanie Adler ◽  
Karoline Schubert ◽  
Annette Jilo ◽  
Enrica Mueller ◽  
...  

Abstract Abstract 3266 Poster Board III-1 Introduction: NmE2 (Nm23-H2, NDP kinase B) is one of a family of proteins that catalyze the transfer of gamma-phosphate between nucleoside-triphosphates and diphosphates. The two major family members, NmE1 and NmE2 are strongly implicated in the control of differentiation, proliferation, migration and apoptosis via interactions which are often independent of their kinase activity, NmE2 being a transcriptional activator of the c-myc gene. We recently identified NmE2 as a tumour associated, HLA-A32+ restricted, antigen in a patient with CML and found the protein (but not the mRNA) to be generally over expressed in CML but not in other haematological malignancies. We also detected a specific T-cell response in peripheral blood cells of a patient 5 years after transplantation. This identifies NmE2 as a potential target for both molecular and immunotherapy of CML. However, the development of immunotherapeutic approaches will depend on the ability of NmE2 to function as a tumour antigen in common HLA backgrounds. The aims of this study were firstly to investigate the antigenicity of NmE2 in the HLA-A2 background (which accounts for more than 50% of the Caucasian population), and secondly to characterise the regulatory relationship between Bcr/Abl and NmE2 using a cell line model of CML. Materials and Methods: 5 nonameric NmE2 peptides with predicted anchor amino acids for HLA-A2 were loaded at concentrations of 10μM separately onto HLA-A2 expressing antigen presenting cells. Elispot Assays were carried out with CD8+ MLLCs (for the identification of antigenic peptides) or CD8+ cells isolated directly from a CML patient at different time points after HCT. Ba/F3 cells stably expressing wild type and mutant forms of Bcr/Abl were treated with imatinib and nilotinib (0 – 10 μM) for 48h. Bcr/Abl activity was assessed by FACS using antibodies specific for the phosphorylated forms of CrkL and Stat5. NmE2 and c-Myc protein were detected by immunocytochemistry and Western blotting with specific antibodies [Santa Cruz, clones L-16 and 9E10 respectively]. Levels of nme2 and c-myc mRNA were determined by quantitative real time PCR. Results: Full length NmE2 protein and 2 of 5 HLA-A2 anchor-containing peptides tested (NmE2132–140 and NmE2112–120) were specifically recognized by the HLA-A2+ CD8+ MLLC, demonstrating the antigenicity of NmE2 in the HLA-A2 background in vitro. Furthermore, while CD8+ T-cells from a transplanted HLA-A2+ CML patient showed little or no specific reactivity in the first 10 months after HCT, a distinct reactivity (up to 0.6 % NmE2 reactive CD8+ T cells) became apparent at later stages, consistent with the development of an immune response against NmE2-expressing cells in vivo. The patient remained negative for bcr/abl transcripts throughout this period. BA/F3 Bcr/Abl cells expressed increased levels of NmE2 protein (but not mRNA) compared to the parent BA/F3 line. Interestingly, treatment with imatinib or nilotinib reduced NmE2 protein expression in BA/F3 Bcr/Abl, but not in cells expressing Bcr/Abl mutants resistant to the respective inhibitors. Treatment of BA/F3 Bcr/Abl cells with the PI3K inhibitor Ly294002 resulted in reduced Bcr/Abl activity and a corresponding reduction in both c-Myc and NmE2 protein levels, without affecting mRNA levels. Conclusion: The over expression of NmE2 is closely linked to Bcr/Abl kinase activity, the predominant level of regulation being post-transcriptional and dependent on PI-3K activity. The NmE2 protein is restricted by HLA-A2 as well as by HLA-A32. The development of an NmE2-specific T-cell response in a CML patient after stem cell transplantation suggests that NmE2 functions as a tumour antigen in HLA-A2+ patients in vivo and may be relevant to the long term immune control of CML. NmE2 is therefore a promising candidate for the development of new immunotherapeutic strategies for the treatment of CML. Disclosures: Lange: BMS: Honoraria; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Niederwieser:BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-34
Author(s):  
ANA Carolina Carolina CABALLERO González ◽  
Laura Escribà-García ◽  
Paula Pujol-Fernández ◽  
Eva Escudero-López ◽  
Rosanna Montserrat ◽  
...  

Background While immunotherapy with anti-CD19 chimeric antigen receptor (CAR) T cells has shown significant efficacy in B-cell malignancies, CAR T cells directed against CD30 (CAR30) for the treatment of Hodgkin lymphoma (HL) showed modest antitumor effect, with more than 50% of patients being unresponsive. Several factors related to the infused product and persistence may be relevant to increase clinical efficacy, but further investigation is needed. In this way, CAR expression intensity may play an important role on CAR T cell function, but this has not been systematically explored. Aim We have evaluated the impact of CAR expression intensity on T cell function, cell exhaustion and antitumor efficacy against HL and B cell lymphoma. Methods T cells were generated as previously described (Alvarez-Fernández C et al. 2016) and transduced with third generation lentivirus encoding a 4-1BBz CAR (either CAR30 or CAR19). Two populations of CAR+ T cells were sorted according to mean fluorescence intensity (MFI) of CAR: CARHI (MFI&gt; 5x103) and CARLO (MFI &lt;3x103). Cytotoxicity assays were performed using Raji (CD19+) or L540 (CD30+) tumor cell lines. Multiparametric flow cytometry was used to analyze T-cell inhibition and activation markers. CARHI and CARLOin vivo antitumor effect was tested under stringent therapeutic conditions using 5x106 T cells/mice (iv) in a HL NSG model. Results CAR30+ T cells were sorted into CARLO (MFI: 1064±124.7) and CARHI (MFI: 7068±1377) (p=0.01). TSCM were highly represented in CARLO compared to CARHI (CD4+: 70.14±1.78% vs. 55.61±5.5%, CD8+: 83.78±3.8% vs 72.2±5.47%, respectively) (p&lt;0.01). However, these differences disappear after 24h co-culture with tumor cells due to an increase of TSCM in CARHI (CD4+: 72.52±7.54%, CD8+: 80.26±5.3%). CARHI showed a significantly higher in vitro antitumor effect compared to CARLO (tumor death at 5:1 E:T ratio: 96.6±1.86% vs. 89.1±3.83%; 1.25:1 E:T ratio: 84.61±4.7% vs. 31.15±19.79%; CARHI vs. CARLO, respectively) (p&lt;0.0001). No differences were observed in expression of activation markers (i.e.: CD25, CD69, and HLA-DR) among both populations. Generalizability of this finding was studied using a CAR19. Similarly, CAR19+ T cells were arranged into CARLO (MFI: 1610±187) and CARHI (MFI: 10810±1486) subgroups (p&lt;0.01). TSCM represented the most frequent subtype in both populations (CD4+: CARHI 70,22±9,87%, CARLO 69,22±9,33%; CD8+: CARHI 65,1±10,5%, CARLO 60,9±9,5%) and no differences in T cell subset composition between CARHI and CARLO were found. Again, CARHI exhibited superior antitumor effect compared to CARLO (tumor death at 5:1 E:T ratio:59.9±8.72% vs. 28.8±8.7%; 1.25:1 E:T ratio: 21.6±11.4% vs. 2.9±2.9%, CARHI vs. CARLO, respectively) (p&lt;0.0001). At 24h and 72h of antigen encounter, expression of inhibitory markers was determined in both CAR30+ populations. While CD4+ T cells showed significantly higher PD1 and TIM3 co-expression in CARHI compared to CARLO (p&lt;0.05), CD8+ T cells showed similar co-expression (p=0.4 and p=0.8, at 24h and 72h, respectively). A similar kinetics was observed in CAR19+ T cells, suggesting that it could be related to an inhibitory control of activation, but not cellular exhaustion. To confirm this, functional performance of CAR30HI and CAR30LO T cells was evaluated by continuous tumor exposure. CAR30HI function persisted after sequential re-exposition (n=5) to tumor cells; in contrast, the CAR30LO subpopulation showed progressive loss of cytotoxic activity (i.e., tumor death at ratio E:T 5:1 after 4 expositions: 0% vs. 91.96%, CAR30LO and CAR30HI respectively; representative of 2 independent studies with different donors). To assess if these results were consistent in vivo, the antitumor effect of CAR30HI and CAR30LO were evaluated in a xenograft model of HL. Mice treated with CAR30HI T cells showed reduced tumor growth compared to those treated with CAR30LO T cells, which translated into an improved survival. Conclusion We have shown that high expression of a CAR (either CAR30 or CAR19) confers an enhanced in vitro antitumor effect against HL and B cell lymphoma. This effect is maintained after repetitive exposures to tumor cells and is not associated with T cell exhaustion or differentiation. Notably, this enhanced antitumor effect was also found in vivo. Our data shows that CAR expression intensity should be considered as an additional important factor to improve the efficacy of CAR T cells. Disclosures Sierra: Jazz Pharmaceuticals: Research Funding; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Daiichi Sankyo: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Astellas: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead-Kite: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document