scholarly journals Incorporation of Clinical Information to Decipher Driver Mutations in Myeloproliferative Neoplasms

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5489-5489
Author(s):  
Murtadha K. Al-Khabori ◽  
Shoaib Al-Zadjali ◽  
Mohamed Al-Rawahi ◽  
Iman Al Noumani ◽  
Khalil Al Farsi ◽  
...  

Abstract Introduction: Mutations in the epigenetic regulators are commonly found in myeloid disorders including Myeloproliferative Neoplasm (MPN). Primary myelofibrosis, dysplastic changes and severity of the disease were associated with the mutation load. Most of the studies had a limited number of targeted genes and included a mixture of JAK2 positive and negative disease. The objective of this study is to assess the impact of mutations in the epigenetic regulators on the presentation of patients with JAK2 V617F positive MPN. Methods: We retrieved the clinical and laboratory information on 61 consecutive eligible patients. Mutation analysis of the entire coding regions of ASXL1, ASXL2, CBL, CEBPA, CSF3R, DNMT3A, EZH2, IDH2, TET1 and TET2 genes was performed using next generation sequencing (NGS; Ion PGM Sequencer; Thermo Fisher ScientificÒ). The library was constructed and the templates were prepared using the PGM tool. The variants were annotated using the ClinVar database and the prediction from the Scale-Invariant Feature Transform (SIFT) and or Polymorphism Phenotyping (Polyphen) algorithms. Alignment, variant filtering and annotation were performed using Ion Torrent Suite. Standard descriptive and analytical statistics were used as appropriate to describe and compare different groups. The MPN subtype, bleeding, thrombosis, hemoglobin, platelet count, White Cell Count (WBC), Lactate Dehydrogenase (LDH) and erythropoietin level were compared for each candidate variant. An alpha threshold of 0.05 was used with no adjustment for multiple comparisons as the analyses were considered exploratory. All statistics were performed using R program. Variants were selected for further experimentation based on their frequency and association with the clinical information at diagnosis. Results: Sixty-one patients were included (Polycythemia Vera: 29, Essential Thrombocythemia: 21, Primary Myelofibrosis: 9, MPN unclassifiable: 2) with a median age of 62 years (Interquartile Range [IQR]: 44 - 70). Male to female ratio was 35:26. The median hemoglobin, WBC, platelet count, LDH and erythropoietin were 14.6 g/dL (IQR: 12.8 - 16.8), 11.5 *109/L (IQR: 11.5 - 14.4), 507 *109/L (IQR: 391 - 779), 265 mU/mL (IQR: 231 - 409) and 1.2 mU/mL (IQR: 1.0 - 4.8) respectively. At presentation, 54% had splenomegaly, 23% had an arterial or venous thrombosis, and 5% had bleeding. Sixty-three variants were found in the samples tested. The median mutation load was 13 variants (Range: 11-14). Patients with higher than the median mutation load had higher mean erythropoietin (7.8 vs. 0.9 g/dL; p = 0.02016). ASXL1 p.Leu815Pro variant was found in all patients. Only three variants were found in the ClinVar database. Seven variants were predicted to be pathogenic (ASXL1: 1, EZH2: 1, IHD1: 1, TET1: 1 and TET2: 3). Patients with TET2: p.Leu1721Trp variant had 6.4 higher odds of bleeding (p = 0.04345). Patients with TET2: p.His1778Arg variant had a lower WBC (9.1 vs. 13.9 *109/L; p = 0.01699) and LDH (213 vs. 348 mU/mL; p = 0.0006528) while those with TET1: p.Lle1123Met variant had a higher WBC (13.5 vs. 8.3 *109/L; p = 0.02756). None of the remaining comparisons were statistically significant. Conclusions: Incorporation of clinical information facilitates the prioritization of variants from DNA sequencing experiments. In MPN, we recommend ASXL1: p.Leu815Pro (expressed in all patients), TET2: p.Leu1721Trp (associated with bleeding), TET2: p.His1778Arg (correlated with the WBC and LDH) and TET1: p.Lle1123Met (correlated with LDH) for further functional experimentation. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4095-4095
Author(s):  
Edwin Chen ◽  
Lawrence J Breyfogle ◽  
Rebekka K. Schneider ◽  
Luke Poveromo ◽  
Ross L. Levine ◽  
...  

Abstract TET2 mutations are early somatic events in the pathogenesis of acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative neoplasms (MPN) and are one of the most common genetic lesions found in these diseases. In MPN, TET2 mutations are enriched within more advanced disease phenotypes such as myelofibrosis and leukemic transformation and often co-occur with the JAK2V617F mutation, which is present in the majority of MPN patients. We have developed and characterized a Jak2V617F conditional knockin mouse (Jak2VF/+), the phenotype of which closely recapitulates the features of human MPN. To determine the impact of Tet2 loss on Jak2V617F-mediated MPN, we crossed Tet2 conditional knockout mice with Jak2VF/+ knockin and Vav-Cre transgenic mice and backcrossed the compound mutant animals. We then characterized the effects of heterozygous and homozygous loss of Tet2 on the phenotype of Jak2VF/+ mice. We assessed peripheral blood counts, histopathology, hematopoietic differentiation using flow cytometry, colony formation and re-plating capacity. We also evaluated the effects of Tet2 loss on the transcriptome of the HSC compartment using gene expression microarrays and on HSC function using competitive bone marrow transplantation assays. Similar to Jak2VF/+/VavCre+ mice, Tet2+/-/Jak2VF/+/VavCre+ and Tet2-/-/Jak2VF/+/VavCre+ mice develop leukocytosis, elevated hematocrits (HCT) and thrombocytosis. Tet2-/-/Jak2VF/+/VavCre+ mice demonstrate enhanced leukocytosis and splenomegaly compared to the other groups. All groups demonstrate myeloid expansion, erythroid hyperplasia and megakaryocytic abnormalities consistent with MPN in the bone marrow and spleen, while more prominent myeloid expansion and megakaryocytic morphological abnormalities are observed in Tet2-/-/Jak2VF/+/VavCre+ mice as compared to the other groups. Notably, we do not see the development of acute myelogenous leukemia (AML) in Tet2-/-/Jak2VF/+/VavCre+ mice at 6 months. We see enhanced expansion of lineagelowSca1+cKithigh (LSK) cells (enriched for HSC) most prominently in the spleens of Tet2+/-/Jak2VF/+/VavCre+ and Tet2-/-/Jak2VF/+/VavCre+ mice as compared to Jak2VF/+/VavCre+ mice. In colony forming assays, we find that Tet2-/-/Jak2VF/+/VavCre+ LSK cells have enhanced re-plating activity compared to Jak2VF/+/VavCre+ LSK cells and that Tet2-/-/Jak2VF/+/VavCre+ LSK cells form more colonies that Tet2-/-/Jak2+/+/VavCre+ cells. Gene expression analysis demonstrates enrichment of a HSC self-renewal signature inTet2-/-/Jak2VF/+/VavCre+ LSK cells. Concordant with this, we find that Tet2-/-/Jak2VF/+/VavCre+ LSK cells have enhanced competitive repopulation at 16 weeks as compared to Jak2VF/+/VavCre+ and Tet2+/-/Jak2VF/+/VavCre+ LSK cells. In aggregate these findings demonstrate that Tet2 loss promotes disease progression in MPN but is insufficient to drive full leukemic transformation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 625-625
Author(s):  
Thomas Ernst ◽  
Joannah Score ◽  
Claire E Hidalgo-Curtis ◽  
Amy V Jones ◽  
Andreas Hochhaus ◽  
...  

Abstract Abstract 625 We recently identified EZH2 as the major target of chromosome 7q acquired uniparental disomy (aUPD) in myeloproliferative neoplasm (MPN) and myelodysplastic syndromes (MDS). To determine the prevalence of EZH2 mutations we screened all coding exons for mutations in total of 624 cases with myeloid disorders (MPN, n=157; MDS, n=154; MDS/MPN, n=219; AML, n=54, CML in transformation, n=40) and found 49 monoallelic or biallelic EZH2 mutations in 42 individuals, most commonly MDS/MPN (27/219; 12%), primary or secondary myelofibrosis (4/30; 13%) and MDS (9/154; 6%). To determine if EZH2 mutations might co-operate with other known abnormalities or whether they might be mutually exclusive, we tested the mutational status of TET2, ASXL1, CBL, RUNX1, CEBPA, FLT3, NPM1, and WT1 in 187 of the 219 MDS/MPN cases that were screened for EZH2. We also tested an additional cohort of 52 primary myelofibrosis cases for both EZH2 and JAK2 V617F mutations. Of the 187 MDS/MPN cases (CMML, n=97; atypical CML, n=68; MDS/MPN-U, n=22), mutations were seen most frequently in TET2 (67/187; 36%), followed by ASXL1 (38/187, 20%; not including cases with the controversial c.1934dupG variant), RUNX1 (27/187; 14%), EZH2 (25/187; 13%), CBL (22/175; 13%), FLT3 (8/187; 4%), CEBPA (7/187; 4%), NPM1 (6/187; 3%) and WT1 (2/187; 1%). Sixty six (35%) cases tested negative for mutations in all 9 genes. Of the 25 cases with EZH2 mutations, 22 (88%) had mutations in at least one other gene, most frequently TET2 (n=11) and ASXL1 (n=10). EZH2 mutations were also seen in combination with mutations in CBL (n=5), CEBPA (n=4), RUNX1 (n=3) and FLT3 (n=2), however there was no significant difference in the frequency of other mutations on comparison of EZH2 mutated and EZH2 unmutated cases. When the analysis was restricted to the 10 cases with homozygous EZH2 mutations, a similar heterogeneity was observed with mutations in CBL, RUNX1, CEPBA and TET2 only (n=1 for each gene), ASXL1 only (n=2), TET2+ASXL1 (n=1), TET2+ASXL1+RUNX1 (n=1) or no other mutation (n=2). Analysis of CFU-GM from one case that tested positive for both EZH2 and TET2 mutations revealed a complex pattern with an EZH2 mutation clearly preceding the sequential acquisition of two TET2 mutations. Of the 82 primary and secondary myelofibrosis cases, 9 (11%) tested positive for an EZH2 mutation. Of these, 5 were positive for JAK2 V617F and 4 were negative. In 2 cases both EZH2 and JAK2 V617F were homozygous indicating that the predominant clone must harbor both mutations. Overall, these data indicate a complex interaction between different abnormalities with little indication of co-operativity or functional redundancy. Whilst these observations will need to be refined by detailed analysis of single clones, they do suggest that the development of both myelofibrosis and MDS/MPN requires functional alterations in multiple pathways. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5250-5250
Author(s):  
Jean-Loup Demory ◽  
Judith Bruge ◽  
Nathalie Cambier ◽  
Christian Rose ◽  
Agnès Charpentier

Abstract Aspirin is recommended and widely prescribed to MPN patients without any evaluation of its efficacy. We report on 46 patients followed in our institution for a Myeloproliferative Neoplasm and treated by low-dose aspirin (75 to 160 mg p. day) alone or aside a cytoreductive therapy, mainly hydroxy-urea ; on the occasion of a routine visit we measured the response of their platelets to arachidonic acid in order to assess their sensibility to aspirin. Most patients (25) had ET, 15 had PV, 4 had CML and 2 Myelofibrosis. Response to arachidonic acid was measured on a citrated whole blood sample using an impedance-based semi-automatic aggregometer (Multiplate®) ; TRAP (Thrombin Receptor Activating Peptide) aggregation was performed systematically as a positive control. In 20 patients out of 46 (43,5%) there was persistence of a significant aggregability to arachidonic acid defining the resistance to aspirin according to our reference values : 10/25 ET (38%), 9/15 PV (62%)and 1/4 LMC. These proportions are much higher than those we note in heart or vascular diseases as well as those reported in published series. The observance of aspirin treatment could be considered doubtful only in a minority of patients (5/46) ; as the resistance appeared more frequent in PV we could assume a biais linked to the utilization of whole blood, but most PV patients were well controlled and did not have an elevated hematocrit. In untreated or refractory ET patients, the persistence of an increased platelet count suggests that aspirin dosage was not adequate although there was no statistical significance between daily dose and resistance. We observed an ischemic complication (transient stroke) in a single patient whose platelet count was not controlled despite hydroxy-urea but remained sensible to aspirin. We conclude that aspirin resistance is frequent in MPN treated with low-dose aspirin and that a monitoring is worth to increase the dose or change for another inhibitor. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 129 (6) ◽  
pp. 667-679 ◽  
Author(s):  
William Vainchenker ◽  
Robert Kralovics

Abstract The genetic landscape of classical myeloproliferative neoplasm (MPN) is in large part elucidated. The MPN-restricted driver mutations, including those in JAK2, calreticulin (CALR), and myeloproliferative leukemia virus (MPL), abnormally activate the cytokine receptor/JAK2 pathway and their downstream effectors, more particularly the STATs. The most frequent mutation, JAK2V617F, activates the 3 main myeloid cytokine receptors (erythropoietin receptor, granulocyte colony-stimulating factor receptor, and MPL) whereas CALR or MPL mutants are restricted to MPL activation. This explains why JAK2V617F is associated with polycythemia vera, essential thrombocythemia (ET), and primary myelofibrosis (PMF) whereas CALR and MPL mutants are found in ET and PMF. Other mutations in genes involved in epigenetic regulation, splicing, and signaling cooperate with the 3 MPN drivers and play a key role in the PMF pathogenesis. Mutations in epigenetic regulators TET2 and DNMT3A are involved in disease initiation and may precede the acquisition of JAK2V617F. Other mutations in epigenetic regulators such as EZH2 and ASXL1 also play a role in disease initiation and disease progression. Mutations in the splicing machinery are predominantly found in PMF and are implicated in the development of anemia or pancytopenia. Both heterogeneity of classical MPNs and prognosis are determined by a specific genomic landscape, that is, type of MPN driver mutations, association with other mutations, and their order of acquisition. However, factors other than somatic mutations play an important role in disease initiation as well as disease progression such as germ line predisposition, inflammation, and aging. Delineation of these environmental factors will be important to better understand the precise pathogenesis of MPN.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 111-111
Author(s):  
Dongqing Yan ◽  
Golam Mohi

Abstract The JAK2V617F mutation has been found in most patients with Ph-negative myeloproliferative neoplasms (MPNs) including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). Expression of JAK2V617F results in constitutive activation of several signaling molecules/pathways, such as Stat5, Stat3, Akt and Erk. Unraveling the contribution of these signaling pathways in MPNs will improve our understanding of the pathogenesis of MPNs and allow us to develop more effective targeted therapies. We have previously reported the generation of a conditional Jak2V617F knock-in mouse, which exhibits all the clinical features of human PV. Using this mouse model, we have demonstrated that Stat5 is absolutely required for the pathogenesis of PV induced by Jak2V617F. However, the contribution of other signaling molecules activated by Jak2V617F in the development and progression of MPNs still remains elusive. Stat3, a member of the family of signal transducer and activator of transcription (Stat), is often found activated in solid tumors and hematologic malignancies including MPNs. Although Stat3 is known to play a tumor-promoting function in various human malignancies, recent studies also have found a tumor suppressive function of Stat3 in certain malignancies. For instance, Stat3 negatively regulates BRAFV600E-induced thyroid tumorigenesis (Couto et al., Pro Natl Acad Sci USA 2012) or suppresses PTEN loss-induced malignant transformation of astrocytes (Iglesia et al., Genes Dev 2008). Thus, Stat3 can positively or negatively regulate cell growth and tumor progression. Here, we sought to determine the role of Stat3 in Jak2V617F-evoked MPN using conditional Stat3 knock-out (Stat3 floxed) and Jak2V617F knock-in mice. Whereas expression of Jak2V617F resulted an increase in red blood cells (RBC), hemoglobin, hematocrit, white blood cells (WBC), neutrophils and platelets in the peripheral blood of the Jak2V617F knock-in mice, deletion of Stat3 did not cause any significant change in RBC, hemoglobin, hematocrit and platelet numbers in Jak2V617F knock-in mice. Strikingly, Stat3 deficiency significantly increased nertrophil counts in mice expressing Jak2V617F. Flow cytometric analysis showed that deletion of Stat3 increased the hematopoietic stem cell (HSC) compartments (LSK, LT-HSC, ST-HSC) and GMP populations in the bone marrow (BM) and spleens of mice expressing Jak2V617F. However, MEP population was unaffected by Stat3 deletion. Cell cycle analysis using Hoechst/Pyronin Y staining revealed that Jak2V617F expression alone resulted in increased cycling of HSC-enriched LSK cells, and Stat3-deficiency further enhanced the cycling of Jak2V617F-expressing LSK cells. Stat3-deficiency also caused a marked expansion of Gr-1+/Mac-1+ population in the BM and spleens of mice expressing Jak2V617F. As a consequence, CD71+/Ter119+ population was proportionally reduced in Stat3-deficient Jak2V617F-expressing mice BM. Histopathologic analysis showed marked increase in granulocytes in the BM and spleens of Stat3-deficient Jak2V617F-expressing mice compared with mice expressing Jak2V617F. Stat3-deficient Jak2V617F-expressing mice also exhibited marked infiltration of neutrophils in their livers. Furthermore, deletion of Stat3 significantly reduced the survival of Jak2V617F knock-in mice. Together, these results suggest a negative role for Stat3 in Jak2V617F-induced MPN. Thus, Stat3 may not be a suitable therapeutic target for treatment of PV and other JAK2V617F-positive MPNs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5618-5618
Author(s):  
Carolina Belli ◽  
Ronald Feitosa Pinheiro ◽  
Silvia M. M. Magalhaes ◽  
Jacqueline Gonzalez ◽  
Marcelo Iastrebner ◽  
...  

Abstract Recently, the IPSS-R has proposed five cytogenetic groups of risk (CGR) based on Schanz et al, 2011, proposal. Nevertheless, nearly 70% of patients belong to lower CGR. Our aim was to characterize the cytogenetic profile of South American (SA) MDS population trying to find differences among Argentine (A) and Brazil (B), both with diverse ethnicity, to evaluate CGR, and to define the impact of more frequent aberrations and of monosomal karyotype (MK) in our population. This is a multicenter retrospective study of 943 SA (634 from A and 309 from B) de novo MDS patients (pts) evaluated from 1981 to 2014. Pts were classified following FAB and WHO criteria. The median age was 69 (15-99) years old with a male/female ratio of (533/410) 1.3. During the follow-up, censored up to receiving a disease modifying therapy (median: 21 months), 159 (17%) evolve to AML and 351 (37%) died. Regarding 130 pts (14%) who received hypomethylating therapy (HMT), 46 (35%) evolved to AML, and 61 (47%) died. Although A population was larger than B series, no differences were observed concerning to: CGR distribution according to the IPSS (p=0.565) and to the IPSS-R (p=0.343), percentage of abnormal karyotypes (42%-A vs 40%-B; p=0.499), and presence of deletions and/or monosomies (77%-A vs 80%-B, p=0.700). B showed a higher proportion of karyotypes involving, at least, one chromosome Y, 5, 7, 8 and/or 20 (83% vs 73%-A, p=0.039), mostly due to a higher proportion of 5q- (39% vs 22%-A, p<0.001). Karyotypes were classified as Very Good/Good (72%), Intermediate-Int (17%), Poor (5%), and Very Poor CGR (6%), with median survival of 68, 32, 18 and 12 months (p<0.001), and time to AML progression (25%) of 72, 26, 10, and 4 months, respectively (p<0.001). In order to find the prognostic value of certain cytogenetic findings, we evaluated the presence of 5q-, chr 7 alterations and +8 as isolated or accompanied by one (noncomplex- non CK) or more alterations (complex-CK). Our results were consistent with previous data. Interestingly +8 non CK showed better outcome than +8 isolated (p<0.001), in agreement with Haase et al, 2007. We also evaluated the presence of MK in the context of CK or non CK. MK non CK, that included 3 Good, 6 Int and 4 Poor karyotypes according to the IPSS-R, showed similar survival than CK, MK CK and other Poor risk findings (p=0.629). Therefore, MK non CK might be considered, at least, as a Poor risk finding, as proposed for primary Myelofibrosis by Teffery et al, 2011. In order to identify karyotypes with diverse outcome within the Int CGR, we applied different grouping criteria. The presence of a trisomy or of a deletion accompanied by other alteration (both excluding patients with +8), were associated with short survival (p=0.019 and p=0.092, respectively). We also evaluated the impact of CGR on the outcome of patients under HMT. Patients with Int CGR (23%) showed similar median survival to the Very Good/Good (57%) group and a better outcome than the Poor/Very Poor (20%) (25 m vs 24 m vs 10 m, p=0.001), and a longer time to evolve to AML (22 m vs 12 m vs 6 m, p=0.005). Cytogenetic findings had a clear impact in our population, and except for a higher incidence of 5q- in B, both series showed a high concordance of cytogenetic findings. Our results are in agreement with previously reported data from European and North American series. Also, our data suggest that MK are indicators of poor prognosis, not different from CK, and that the heterogeneous Int CGR might be further clarified taking into account the nature of different cytogenetic alterations. However, the wide spectrum of low frequency aberrations and the highly variant combinatory of aberrations stress the importance of large study groups to stablish a consensus in the way of grouping Int CGR findings. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4588-4588 ◽  
Author(s):  
Yongbao Wang ◽  
Albert K Ho ◽  
Qiulu Pan ◽  
Frederick Karl Racke ◽  
Dan Jones

Abstract Introduction: Mutations in the chaperone gene calreticulin (CALR) have been recently identified in essential thrombocythemia (ET) and primary myelofibrosis (PMF), and are essentially mutually exclusive with JAK2 or MPL mutations. Normal and mutant CALR proteins may differentially affect the subcellular trafficking of JAK-STAT signaling components. CALR mutations previously reported in ET and PMF have been +1 frameshift (fs) mutations localized to exon (E) 9 that generate a novel C-terminal protein sequence with a shift from acidic to basic residues. CALR E9 in-frame (IF) deletions have been recently rarely reported as polymorphisms such as TMP_ESP_19_13054686_13054688 and TMP_ESP_19_13054650_13054658 (Ensembl database entries). We sought to determine the frequency and associated clinical features of CALR with E9 IF alterations in samples submitted for suspicion of a myeloproliferative neoplasm (sMPN). We also assessed whether CALR IF alterations are differentially associated with +1fs mutations or with JAK2 V617For other somatic mutations in MPN-associated genes. Materials and Methods: CALR mutation analysis of E9 was performed on genomic DNA extracted from blood, bone marrow (BM) aspirate or fixed BM biopsy sections using a Sanger sequencing assay with an analytic sensitivity of at least 15%. E9 IF cases were further assessed and mutations quantified by an Ion torrent sequencing panel assessing CALR, CSF3R, JAK2 and MPL, a second panel containing ASXL1, EZH2, IDH1, IDH2, KRAS, NRAS and TET2 and an Illumina MiSeq extended panel with 20 additional MPN-associated genes. These assays had a sensitivity of approximately 5%. JAK2 V617Fmutations were quantitated using a pyrosequencing assay with an analytic sensitivity of 1%. Results: We assessed CALR E9 mutation status in 733 sMPN samples that were negative for JAK2 V617F mutation. 148 (20.1%) had typical +1fs mutations (95 type 1 and variants, 53 type 2 and variants); 2 (0.3%) had point mutations (E381A and D7373M); 7 (1.0%) had IF deletions including E381_A382>A, D397_D400>D (n =4), D400_K401>D and E405_V409>V. All E9 IF deletions were present at ~50% of reads. Clinical diagnoses were cytopenia/BM fibrosis, ET, thrombocytosis/anemia, and sMPN unspecified. Mutation analysis for 27 additional MPN-associated genes revealed mutations in 5/7 (71.4%) IF deletion cases including in MPL (W515L,40%; D163Y,12%), CSF3R (A470T 46%), ASXL1 (D954fs*26, 45%) and ZRSR2 (S449_R450dup, 27%). No additional mutations were found in the 2 cases with non-synonymous CALR point mutations/SNPs. In a parallel set of 76 MPN samples that had JAK2 V617F at varying levels, we noted 1 E9 IF deletion (D397_D400>D) in a sMPN case with 21.6% JAK2 V617F, and a typical +1fs mutation (K385fs*47) in a case with low (4.2%) JAK2 V617F. All other JAK2 V617F cases had no E9 CALR alterations. Conclusions: CALR E9 in-frame deletions occur in up to 1% of sMPN samples and involve a variety of codons in the acidic domain. Therefore, sizing assays without DNA sequencing are not sufficient to unequivocally distinguish IF deletions from the characteristic +1 frameshift somatic mutations associated with ET and PMF. Given their level, these CALR IF deletions are likely germline sequence variants but are associated with a high frequency of somatic mutations in other MPN-associated genes but not with CALR +1fs mutations. Their co-occurrence with pathogenic somatic mutations in JAK2, MPL and CSF3R affecting the JAK-STAT pathway raises the possibility for a contributory role of altered CALR proteins produced by these E9 deletions in the pathogenesis of MPN. Disclosures Wang: Quest Diagnostics: Employment. Ho:Quest Diagnostics: Employment. Pan:Quest Diagnostics: Employment. Racke:Quest Diagnostics: Employment. Jones:Quest Diagnostics: Employment.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Tetsuro Yokokawa ◽  
Tomofumi Misaka ◽  
Yusuke KIMISHIMA ◽  
Kento Wada ◽  
Keiji Minakawa ◽  
...  

Objective: To investigate the impact of hematopoietic JAK2V617F, which causes myeloproliferative neoplasms (MPNs), on the development of aortic aneurysm (AA). Approach and Results: We applied a bone marrow transplantation (BMT) strategy using the donor cells from Jak2 V617F transgenic (JAK2 V617F ) mice into the lethally irradiated apolipoprotein E-deficient mice. To induce the AA formation and progression, the recipient mice (BMT mice) were subjected to continuous angiotensin II infusion. Abdominal aortic diameter in JAK2 V617F -BMT mice was significantly enlarged compared to the control wild-type (WT)-BMT mice in response to angiotensin II. The incidence of abdominal AA was significantly higher in JAK2 V617F -BMT mice than in WT-BMT mice. Hematopoietic JAK2V617F accelerated aortic elastic lamina degradation as well as activation of matrix metalloproteinase (MMP)-2 and MMP-9 in the abdominal aorta. The numbers of CD68 + macrophages and Ly6B.2 + neutrophils and cytokine expressions such as Ccl6 and Tgfb1 were significantly increased in the abdominal aorta of JAK2 V617F -BMT mice accompanied by STAT3 activation. Bone marrow-derived macrophages carrying JAK2V617F showed elevations of both Mmp2 and Mmp9 mRNA expression. Finally, we found that 23% of MPN patients with JAK2 V617F mutation showed the presence of AA and increases in TGFB3 and IL-8 mRNA expression of the peripheral leukocytes. Conclusions: Hematopoietic JAK2V617F was involved in the development of AA through increases in the infiltration of inflammatory cells and MMP activation. Our findings provide a novel feature of vascular complication of AA in MPNs due to constitutive activation of the hematopoietic JAK-STAT pathway.


Blood ◽  
2010 ◽  
Vol 115 (15) ◽  
pp. 3109-3117 ◽  
Author(s):  
Alfonso Quintás-Cardama ◽  
Kris Vaddi ◽  
Phillip Liu ◽  
Taghi Manshouri ◽  
Jun Li ◽  
...  

AbstractConstitutive JAK2 activation in hematopoietic cells by the JAK2V617F mutation recapitulates myeloproliferative neoplasm (MPN) phenotypes in mice, establishing JAK2 inhibition as a potential therapeutic strategy. Although most polycythemia vera patients carry the JAK2V617F mutation, half of those with essential thrombocythemia or primary myelofibrosis do not, suggesting alternative mechanisms for constitutive JAK-STAT signaling in MPNs. Most patients with primary myelofibrosis have elevated levels of JAK-dependent proinflammatory cytokines (eg, interleukin-6) consistent with our observation of JAK1 hyperactivation. Accordingly, we evaluated the effectiveness of selective JAK1/2 inhibition in experimental models relevant to MPNs and report on the effects of INCB018424, the first potent, selective, oral JAK1/JAK2 inhibitor to enter the clinic. INCB018424 inhibited interleukin-6 signaling (50% inhibitory concentration [IC50] = 281nM), and proliferation of JAK2V617F+ Ba/F3 cells (IC50 = 127nM). In primary cultures, INCB018424 preferentially suppressed erythroid progenitor colony formation from JAK2V617F+ polycythemia vera patients (IC50 = 67nM) versus healthy donors (IC50 > 400nM). In a mouse model of JAK2V617F+ MPN, oral INCB018424 markedly reduced splenomegaly and circulating levels of inflammatory cytokines, and preferentially eliminated neoplastic cells, resulting in significantly prolonged survival without myelosuppressive or immunosuppressive effects. Preliminary clinical results support these preclinical data and establish INCB018424 as a promising oral agent for the treatment of MPNs.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1810
Author(s):  
Mary Frances McMullin ◽  
Lesley Ann Anderson

Myeloproliferative neoplasms (MPNs) have estimated annual incidence rates for polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis of 0.84, 1.03, and 0.47 per 100,000. Prevalence is much higher, particularly for PV and ET, as mortality rates are relatively low. Patients are often concerned about why they developed an MPN and epidemiological studies enable the identification of potential causative factors. Previous work in small heterogeneous studies has identified a variety of risk factors associated with MPNs including family history of MPN, autoimmune conditions, some occupational exposures, and blood donation. At a population level, germline predisposition factors in various populations have been associated with MPNs. The pilot MOSAICC (Myeloproliferative Neoplasm: An In-depth Case-Control) study is one of the largest epidemiological studies in MPN ever carried out to date. It demonstrated the most effective methods for carrying out a significant epidemiological study in this patient group including the best way of recruiting controls, as well as how to evaluate occupational and lifestyle exposures, evaluate symptoms, and collect biological samples. Significant results linked to MPNs in the pilot study of 106 patients included smoking, obesity, and childhood socioeconomic status. The methodology is now in place for a much larger ongoing MOSAICC study which should provide further insight into the potential causes of MPNs.


Sign in / Sign up

Export Citation Format

Share Document