scholarly journals The IRE1-XBP1s Pathway Impairment Underpins NK Cell Dysfunction in Hodgkin Lymphoma, That Is Partly Restored By PD-1 Blockade

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2795-2795
Author(s):  
Karolina Bednarska ◽  
Jay Gunawardana ◽  
Frank Vari ◽  
Qingyan Cui ◽  
Gayathri Thillaiyampalam ◽  
...  

Background The frequent loss of Major Histocompatibility Complex I molecule (MHC-I) on Hodgkin/Reed-Sternberg (HRS)-cells renders them susceptible to Natural Killer (NK) cell-mediated lysis in Hodgkin Lymphoma (HL). Optimal NK cell function involves migration from peripheral blood to sites of disease, formation of an immune synapse (NKIS) between NK cells and HRS cells, and release of effector molecules. We recently showed that PD-1+ NK cells are expanded in the circulation of patients with HL (Vari, F Blood 2018), and that PD-1 blockade enhances their anti-HRS capabilities. However, mechanisms behind the functional impairment of NK cells in HL patients and the impact PD-1 blockade has on NK cell function remain to be established. Although the IRE1-XBP1s pathway, part of the unfolded protein response (UPR) system, has established and fundamental roles in macrophage, B, T and dendritic cells homeostatic function, its involvement in NK cells remains unknown. We hypothesized that IRE1-XBP1s dysfunction contributes to NK cell impairment and tested the impact of PD-1 blockade on individual components of NK cell function, including migration, NKIS formation, and cytokine release. Methods Ex-vivo functional assays were performed on blood from 20 participants. Confocal microscopy, time-lapse imaging, trans-well migration, and functional in-vitro immune assays were utilized on a range of NK and HRS cell lines, with and without IRE1-XBP1s small molecule inhibitors (4µ8c and 6-bromo) and/or PD-1 blockade (pembrolizumab). Results Stimulation of both NK cell lines and primary NK cells, with HRS lines resulted in marked and rapid IRE1-XBP1s pathway activation. This occurred independently of the canonical UPR and was associated with increased NK cell effector function. However, IRE1-XBP1s pathway inhibition resulted in aberrant NK cell morphology, reduced motility and migration, deficient NKIS formation and impaired interferon-gamma (IFNγ) and tumor necrosis factor alpha (TNFα) release. Next, we tested the IRE1-XBP1s pathway in the pre-therapy blood of patients with HL and compared this with healthy age/gender matched controls. Strikingly, following co-culture with an HRS-line the pathway was not activated, but this abnormality was restricted to the CD56brightCD16-ve subset that we have previously shown to be expanded and enriched in PD-1 (as well as downregulation of the lymphoid migratory chemokine CCR7) in patients with HL. In subsequent experiments using in-vitro expanded populations of primary NK cells from HL patients, IRE1-XBP1s pathway inhibition impaired the migration, NKIS formation, CD107a degranulation, and secretion of IFNγ and TNFα. Effects were partially but not completely restored by addition of PD-1 blockade (Fig 1). Conclusion Here, we outline a hitherto unrecognized mechanism involving the IRE1-XBP1s pathway that is pivotal to NK cell function, including the relatively poorly understood processes of migration, NKIS formation, and cytokine secretion. Notably, IRE1-XBP1s pathway activation is dysfunctional within the PD-1 enriched CD56brightCD16- NK cell subset. Although PD-1 blockade appears to have a multi-faceted beneficial role on NK cell migrational/NKIS and cytokine release capabilities, it is still only capable of partial restoration of NK cell effector function. Further understanding of the pathways operative in NK cells may result in improved immunotherapeutic strategies to enhance this arm of the immune response in patients with HL. Disclosures Gandhi: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Honoraria, Research Funding; Roche: Honoraria, Other: Travel Support; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-11
Author(s):  
Kate Dixon ◽  
Robert Hullsiek ◽  
Kristin Snyder ◽  
Zachary Davis ◽  
Melissa Khaw ◽  
...  

Natural killer (NK) cells are innate cytotoxic lymphocytes. They target malignant cells via non-clonotypic receptors to induce natural cytotoxicity and also recognize tumor-bound antibodies to induce antibody-dependent cell-mediated cytotoxicity (ADCC). While ADCC by NK cells is a key mechanism of several clinically successful therapeutic monoclonal antibodies (mAbs), most patients exhibit or acquire resistance to mAb therapies. ADCC by human NK cells is exclusively mediated by the IgG Fc receptor, CD16A (FcγRIIIA). Studies have demonstrated that increasing the binding affinity between CD16A and therapeutic mAbs can augment their clinical efficacy. Given the exquisite specificity and diverse antigen detection of anti-tumor mAbs, we are interested in enhancing the ADCC potency of NK cell-based therapies for various malignancies. CD64 is the only high affinity FcγR family member and binds to the same IgG isotypes as CD16A (IgG1 and IgG3) but with > 30-fold higher affinity. CD64 (FcγRI) is normally expressed by certain myeloid cells but not by NK cells. We generated a recombinant version of this receptor consisting of the extracellular region of CD64 and the transmembrane and intracellular regions of human CD16A, referred to as CD64/16A (figure 1A). An important feature of CD64/16A is that due to its high affinity state, soluble monomeric anti-tumor mAbs can be pre-adsorbed to engineered NK cells expressing the recombinant FcγR, and these pre-absorbed mAbs can be switched or mixed for universal tumor antigen targeting (figure 1B). The engineered NK cells used in our study were derived from genetically edited and clonally derived induced pluripotent stem cells (iPSCs) through a series of stepwise differentiation stages (figure 2). Engineered iPSC-derived NK (iNK) cells can be produced in a uniform and clinically scalable manner (figure 2). In Figure 3, using an in vitro Delfia® ADCC assay, we show that iNK-CD64/16A cells mediated ADCC against SKOV3 cells, an ovarian adenocarcinoma cell line, in the presence of the anti-HER2 therapeutic mAb trastuzumab (Herceptin) or anti-EGFR1 therapeutic mAb cetuximab (Erbitux), when either added to the assay or pre-adsorbed to the iNK cells (figure 3). Considering the high affinity state of CD64, we examined the effects of free IgG in human serum on ADCC by iNK-CD64/16A cells. Using an IncuCyte® Live Cell Analysis System, ADCC was evaluated in the presence or absence of 5% human AB serum, in which free IgG was approximately 50-fold higher than the IgG saturation level of the CD64/16A receptors on iNK cells (data not shown). Despite the high levels of excess free IgG, iNK-CD64/16A cells mediated efficient ADCC when Herceptin was either added to the assay or pre-adsorbed to the cells (figure 4). ADCC assays were also performed with Raji cells, a Burkitt lymphoma cell line, as target cells and the therapeutic mAb rituximab (Rituxan). iNK-CD64/16A cells were added with or without pre-adsorbed Rituxan and the assay was performed in 10% AB serum. Again, iNK-CD64/16A cells mediated effective target cell killing in the presence of serum IgG (figure 5), demonstrating that saturating levels of free IgG did not prevent ADCC. To determine if we can further optimize the function of recombinant CD64, we engineered CD64 with the transmembrane regions of CD16A or NKG2D and signaling/co-signaling domain from CD28, 2B4 (CD244), 4-1BB (CD137), and CD3ζ (figure 6). CD64/16A signals by non-covalent association with the immunoreceptor tyrosine-based activation motif (ITAM)-containing signaling adapters CD3ζ and FcRγ found in the cell membrane, whereas the other recombinant CD64 constructs use ITAM and non-ITAM regions to mediate their signaling. The various recombinant CD64 constructs were initially expressed in NK92 cells (lacks expression of endogenous FcγRs) (figure 7). Using the Delfia® ADCC assay system, we examined the function of each recombinant CD64 construct and found all combinations are able to effectively induce ADCC (figure 8). We are in the process of generating iNK cells with these constructs and testing their ability to kill hematologic and solid tumors in vitro and in vivo. Our goal is to utilize this docking approach to pre-absorb mAbs to iNK cells for adoptive cell therapy. The mAbs would thus provide tumor-targeting elements that could be exchanged as a means of preventing tumor cell escape by selectively and easily altering NK cell specificity for tumor antigens. Figure Disclosures Lee: Fate Therapeutics, Inc.: Current Employment. Chu:Fate Therapeutics: Current Employment. Abujarour:Fate Therapeutics, Inc: Current Employment. Dinella:Fate Therapeutics: Current Employment. Rogers:Fate Therapeutics, Inc: Current Employment. Bjordahl:Fate Therapeutics: Current Employment. Miller:Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Onkimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company. Walcheck:Fate Therapeutics: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5219-5219
Author(s):  
Norina Tanaka ◽  
Aya Watanabe ◽  
Suguru Honda ◽  
Mitsuko Kobayashi ◽  
Yan-Hua Wang ◽  
...  

Background: Methotrexate-associated lymphoproliferative disorders (MTX-LPD) develops in patients with rheumatoid arthritis (RA) or other autoimmune disorders during low-dose MTX treatment. MTX-LPD includes wide variety disease spectrum, ranging from polymorphic proliferation to aggressive lymphoma. Although etiology of MTX-LPD has not been fully understood, approximately half of the MTX-LPD cases showed association with EB virus (EBV), suggesting that MTX treatment causes reduced immune response to EBV-positive cells, and results in MTX-LPD development. Natural killer (NK) cells play important roles in eradicating tumor and virus-infected cells. NK cell function is modulated by multiple cell surface receptors, including Killer immunoglobulin-like receptor (KIR). There are multiple KIR genes (inhibitory or activated), which are various in number and/or composition among individuals, on chromosome 19q. Previous reports demonstrated that combination of KIR genes affects NK cell function, and is associated with the risk of development of certain types of cancers, viral infections and collagen disease. There is no report about the association of KIR genotype and MTX-LPD. We consider that NK cells play a significant role in suppression of MTX-LPD development. In this study, we focused on examining genotype KIR and KIR-ligand (HLA class I). Methods: We retrospectively analyzed 35 MTX-LPD cases diagnosed between 2009 and 2019. Genomic DNA was extracted from mononuclear cells that were isolated from the bone marrow or peripheral blood samples of patients with MTX-LPD. KIR genotypes were analyzed using the KIR genotyping sequence-specific primers kit. The variations of KIR content and haplotype and their relationship with progression to malignant lymphoma (ML) and response to chemotherapy were investigated. HLA was analyzed using PCR-Luminex assay. The frequency of each HLA allele and each combination was determined by referring to the data base of an HLA laboratory. Chi-squared (χ2) tests and Wilcoxon rank sum tests were used to test associations between the variables. Results: Among the 35 patients, 25 were diagnosed with ML and 10 with polymorphic LPD. Diffuse large B cell lymphoma (DLBCL) was most common type in ML (57.7%). Table 1 showed characteristics of patients and summary of the results. All patients underwent MTX treatment for RA. The median duration of MTX administration at the time of MTX-LPD diagnosis is 11.5 years (range=0.8-27.2), and median MTX dose was 10mg/week (range=4-17.6). The duration and dose of MTX had no effect between ML and polymorphic LPD. Twenty-three patients required chemotherapy, and 12 patients had tumor regression after stopping MTX treatment. Relative patient populations requiring chemotherapy in ML or polymorphic LPD were 85% or 11%, respectively (P=0.0001). EBV-positive patients tended to regress tumors with MTX discontinuation alone (P=0.16). In KIR genotype analysis, patterns of number and combination of the KIR genes are mainly classified as haplotype "A" containing multiple inhibitory KIR genes with a KIR 2DS4 (an activated KIR [aKIR]) and haplotype "B" (other than haplotype "A"). Patients were classified in haplotype A (13 cases, 37%) and haplotype B (22 cases, 63%), respectively. ML patients showed higher ratio in haplotype A (ML 46.2% vs LPD 11.1% P=0.045). There was no difference in number of aKIR or iKIR between ML and polymorphic LPD patients. In HLA Class I analyses, there was significant difference in frequencies of HLA-C haplotype between lymphoma and polymorphic LPD patients (P=0.026). Furthermore, HLA- C1 / C1 patients were more relapsed or refractory to chemotherapy than C1 / C2 patients (P = 0.17). Conclusion: This is the first report showing clinical significance of KIR genotypes in MTX-LPD. Patients with haplotype A, a suppressive haplotype, seems to be at high risk for developing lymphomas that require chemotherapy during MTX treatment. HLA- C1/C1 patients are more likely to develop lymphomas that respond poorly to treatment, suggesting that the activity of NK cells may be lower because ligands can match with KIRs that are more restricted than C1/C2. Considering the potential NK functions with KIR genotype would improve the understanding of the prognosis and lead to prevention for MTX-LPD. Disclosures Hagiwara: Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees. Harigai:Bristol Myers Squibb Co: Other: personal fees, Research Funding; Eisai Co: Other: personal fees, Research Funding; Ayumi Pharmaceutical Co: Other: personal fees, Research Funding; AbbVie Japan GK,: Other: personal fees, Research Funding; Eli Lilly Japan K.K: Other: personal fees; Kissei Pharmaceutical Co.: Other: personal fees; Teijin Pharma Ltd: Other: personal fees, Research Funding; Mitsubishi Tanabe Pharma Co: Research Funding; Nippon Kayaku Co.: Research Funding; Pfizer Japan Inc.: Other: personal fees; Chugai Pharmaceutical Co., Ltd.: Other: personal fees; Japan College of Rheumatology: Other: personal fees; Boehringer Ingelheim Japan, Inc: Other: personal fees; GlaxoSmithKline K.K: Other: personal fees; Oxford Immuotec,: Other: personal fees. Tanaka:Bristol-Myers Squibb: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 133-133
Author(s):  
Ryan Bjordahl ◽  
Svetlana Gaidarova ◽  
Karrune Woan ◽  
Frank Cichocki ◽  
Greg Bonello ◽  
...  

Monoclonal antibody (mAb) treatment is an effective therapeutic strategy for many cancer types, though there remains meaningful opportunity to improve mAb efficacy by optimizing the interaction with natural killer (NK) cells to enhance antibody-dependent cellular cytotoxicity (ADCC). NK cells are an ideal effector cell for combined use with tumor-targeting mAbs, as NK cells effect both innate tumoricidal capacity and ADCC. CD38-targeting mAbs, such as daratumumab, are effective in treating multiple myeloma (MM) and achieve their efficacy through multiple mechanisms, including ADCC. However, because activated NK cells express high levels of CD38, daratumumab induces NK cell depletion through fratricide, potentially reducing treatment effectiveness. Adoptive NK cell immunotherapy therefore has the potential to augment daratumumab's ADCC activity if fratricide can be reduced or prevented. FT538 is an off-the-shelf adoptive NK cell immunotherapy product candidate designed for enhanced cellular persistence and ADCC while avoiding anti-CD38 mAb induced fratricide. It is derived from induced pluripotent stem cells (iPSC) engineered to lack CD38 expression, which we have previously shown to eliminate daratumumab-induced fratricide among iPSC-derived NK cells, resulting in enhanced long-term daratumumab-mediated ADCC. FT538 is engineered to express an IL-15 receptor alpha fusion protein (IL-15RF; IL-15 tethered to IL-15 receptor α) to enhance persistence and a high-affinity non-cleavable CD16 (hnCD16, FcRγIII) to increase ADCC. To support the clinical translation of FT538, and to enable the repeatable and scalable cell production to support off-the-shelf availability of a uniform NK cell product, a clinical-grade master pluripotent stem cell line was developed. The FT538 master pluripotent stem cell line was created by reprogramming donor fibroblasts into iPSCs using our non-integrating cellular reprogramming platform, and cells were further genetically edited by targeting IL-15RF and hnCD16 to the CD38 locus. Clonal iPSC lines were generated and screened for precise knock-in and knock-out edits at the CD38 locus and a lack of off-target genome integration (15% total success rate for CD38-/-IL-15RF+CD16+). Selected engineered iPSC clones were confirmed to be free of reprogramming transgenes and to maintain genomic stability. Engineered iPSC clones were additionally tested for their NK cell differentiation potential and function, and a single clone was selected to serve as the renewable starting material for cGMP manufacturing and clinical development. Upon differentiation and expansion FT538 demonstrated a mature NK cell phenotype with expression of NK cell receptors including NKp30, NKp46, NKG2D, KIR, NKG2A, and DNAM-1. The functional impact of CD38 knockout on FT538 NK cells was confirmed in an in vitro fratricide assay, where peripheral blood (PB)-NK cells exhibited fratricide at a frequency of 33% after 3 hr culture with increasing daratumumab concentrations. In contrast, FT538 cells were entirely resistant (<1% specific cytotoxicity) to daratumumab-induced fratricide. In vitro cytotoxic re-stimulation assays showed that repeat exposure of PB-NK cells to daratumumab plus MM target cells resulted in a loss of cytotoxic capacity (from 74% to 58% upon re-stimulation), and a similar effect was seen for non-engineered iPSC-derived NK cells. In contrast, FT538 NK cells maintained robust ADCC in during primary and secondary exposure to MM target cells and daratumumab. FT538 with daratumumab resulted in 86% cytotoxicity against MM target cells upon first exposure and 92% cytotoxicity upon re-stimulation, with a 20-fold increase in viable NK cells at the conclusion of the assay compared to non-engineered iPSC-derived NK cells. Additionally, the combined survival benefit of IL-15RF expression and fratricide resistance mediated by the CD38 knockout as well as the enhanced hnCD16-mediated ADCC allowed for greater cytotoxicity of FT538 against MM tumor spheroids. Together, these preclinical data support the clinical translation of FT538, an off-the-shelf adoptive NK cell immunotherapy product engineered for uniform hnCD16 and IL-15RF expression with CD38 elimination for enhanced ADCC in combination with daratumumab and other anti-CD38 mAbs for the treatment of MM. Disclosures Bjordahl: Fate Therapeutics, Inc.: Employment. Gaidarova:Fate Therapeutics, Inc: Employment. Cichocki:Fate Therapeutics, Inc: Research Funding. Bonello:Fate Therapeutics, Inc.: Employment. Robinson:Fate Therapeutics, Inc.: Employment. Ruller:Fate Therapeutics, Inc.: Employment. Pribadi:Fate Therapeutics, Inc.: Employment. Dinella:Fate Therapeutics, Inc.: Employment. Fong:Fate Therapeutics, Inc.: Employment. Huffman:Fate Therapeutics, Inc.: Employment. Chu:FATE THERAPEUTICS: Employment. Lee:Fate Therapeutics, Inc.: Employment. Abujarour:Fate Therapeutics, Inc.: Employment. Kaufman:FATE Therapeutics: Consultancy, Research Funding. Malmberg:Fate Therapeutics, Inc.: Consultancy, Research Funding; Vycellix: Consultancy, Membership on an entity's Board of Directors or advisory committees. Miller:CytoSen: Membership on an entity's Board of Directors or advisory committees; Moderna: Membership on an entity's Board of Directors or advisory committees; OnKImmune: Membership on an entity's Board of Directors or advisory committees; GT BioPharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Dr. Reddys Laboratory: Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics, Inc: Consultancy, Research Funding. Valamehr:Fate Therapeutics, Inc: Employment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 106-106
Author(s):  
Michelle Gleason ◽  
Todd Lenvik ◽  
Valarie McCullar ◽  
Sarah Cooley ◽  
Michael Verneris ◽  
...  

Abstract Abstract 106 NK cells are an attractive option for immunotherapy as they do not require pre-sensitization for anti-tumor activity and do not induce graft versus host disease (GvHD) in an allogeneic transplant setting. The potential of NK cells in controlling human hematological malignancies has been increasingly recognized in recent years, as the adoptive transfer of alloreactive NK cells in hematopoietic cell transplantation (HCT) clinical trials have demonstrated therapeutic anti-leukemia effects. NK cell function is regulated by the integration of antagonist signals received from cell surface activating and inhibitory receptors. Tim-3 is a novel immune receptor that is a member of the T cell immunoglobulin and mucin-containing domain (TIM) family of glycoproteins. While its role in T cells and antigen presenting cells has been described, little is known about its function in human NK cells. While Tim-3 is present on a variety of immune cells, resting NK cells constitutively express Tim-3 compared to other lymphocyte populations (NK: 73±3%; NKT: 6±1%; T: 1±1%; n=14) and we hypothesized that Tim-3 may be important in mediating NK cell function. The unique subset of cytokine producing CD56Bright NK cells exhibited significantly lower resting Tim-3 expression compared to CD56Dim NK cells (53±3% vs. 75±3%; p<0.001, n=14). Distinct Tim-3 expression patterns were found on resting CD56Dim NK cells and activation with low dose IL-12 (1ng/mL) and IL-18 (10ng/mL), intended to more closely mimic physiologic conditions, resulted in further differentiation of this unique expression pattern dividing NK cells into 4 distinct populations: Tim-3 was homogeneously up-regulated on all CD56Bright NK cells after activation while CD56Dim NK cells were further stratified into 3 defined populations with Tim-3hi, Tim-3lo and Tim-3neg expression. The only identified ligand of Tim-3 is galectin-9 (Gal-9), a β-galactoside binding lectin, which is expressed on a wide range of healthy and malignant cells. To investigate the potential function of Tim-3, an expression vector containing human Gal-9 was transduced into K562 and Raji cells, both without endogenous Gal-9 expression. Resting NK cytotoxicity (51Cr release) was found to be increased in the presence of Gal-9 compared to the non-Gal-9 expressing targets [E:T=0.7:1, K562 vs. K562-Gal-9: 25±3% vs. 33±3% (n=8, p<0.05); E:T=20:1, Raji vs. Raji-Gal-9: 8±1% vs. 17±2% (n=4, p<0.05)]. Analysis of CD107a degranulation showed that resting Tim-3+ CD56Bright cells were more functional against Gal-9 expressing targets than Tim-3− CD56Bright cells, suggesting that Tim-3 might also play a role in IFN-γ production. To further investigate this, resting NK cells were activated with low-dose IL-12/IL-18 overnight and IFN-γ levels were measured in response to soluble rhGal-9 (0, 2.5, 5, 10 and 20nM). Exposure to soluble rhGal-9 alone without IL-12/IL-18 did not induce IFN-γ production. For both the CD56Bright and CD56Dim IL-12/IL-18 activated NK populations, only Tim-3+ NK cells displayed a dose dependent increase in IFN-γ production upon exposure to soluble rhGal-9 compared to Tim-3− NK cells. To understand the relevance of the distinct Tim-3 populations circulating in resting blood, CD56Bright, CD56Dim/Tim-3hi, CD56Dim/Tim-3lo and CD56Dim/Tim-3neg populations were sorted, cultured overnight in IL-12/IL-18 and exposed to soluble rhGal-9. Results showed the Tim-3 expressing populations contain the predominant IFN-γ producing cells that were responsive to rhGal-9 (results for the sorted CD56Dim/Tim-3lo population shown in the figure below). This increase in IFN-γ production within the Tim-3 expressing NK cell populations was abrogated by the addition of β-lactose, a β-galactoside that binds and blocks Gal-9 activity. Lastly, Western blot and immunohistochemistry analysis of human primary acute leukemia blasts revealed high Gal-9 expression. As the presence of ligands for NK cell activating receptors on tumors provide an important prerequisite for NK cell activation and effector function, we show a novel functional role for the receptor Tim-3 in human NK cell biology in the presence of its ligand Gal-9. We, therefore, propose a model where constitutively expressed Tim-3 is up-regulated by NK cell activation and effector function is enhanced by Tim-3/Gal-9 interaction, which may potentiate the elimination of Gal-9 positive tumors by NK cells. Disclosures: Niki: GalPharma: Membership on an entity's Board of Directors or advisory committees. Hirashima:GalPharma: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2316-2316
Author(s):  
Bethan Psaila ◽  
Nayla Boulad ◽  
Emily Leven ◽  
Naznin Haq ◽  
Christina Soo Lee ◽  
...  

Abstract The pathogenesis of immune thrombocytopenia (ITP) is multifactorial, with both cellular and humoural immune dysfunction. The role of NK cells has not been well defined in ITP but in other diseases NK cells have a role in rejecting “foreign” eg transplanted organ or tumor, and also acting against self as occurs in autoimmunity. NK cell activity is orchestrated by the balance of activating vs. inhibitory signalling, in particular via the killer cell immunoglobulin-like receptor (KIR) family of receptors. Significant variation exists in KIR allelic subtype and copy number for the KIR between individuals, and associations have been made with certain haplotypes and a number of autoimmune disorders including rheumatoid arthritis, scleroderma and diabetes. Previous reports have demonstrated a reduction in natural killer (NK) cell number and function in ITP and expression of inhibitory KIR genes is increased in patients in remission vs. active ITP. Methods To explore whether a particular KIR haplotype might predispose to ITP, and also affect response to ITP treatment, we performed KIR genotyping using the Invitrogen SSP kit on 92 patients attending a haematology centre in New York and compared the results to data from 213 controls taken from the USA Eastern Database. Genomic DNA was typed for the inhibitory KIR genes KIR2DL1, KIR2DL2, KIR2DL5A (alleles 001 and 002), KIR2DL5B (alleles 002-004, 06, and 007), KIR3DL1, KIR3DL3; the activating KIR genes KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1; the framework genes KIR2DL3, KIR2DL4, KIR3DL2, KIR3DP1; and the pseudogene KIR2DP1. The patients with ITP had been or were receiving treatment with IVIG (n=64), corticosteroids (72) and rituximab (37). Bleeding symptoms were recorded. Response to treatment was defined as complete - platelet count increase to > 100 x 109/mL; partial - platelet count increase to > 50 x 109/mL; or no response. For the purpose of analysis, PRs and CRs were combined. A comprehensive database allowed a logistic regression, assessing both responses to treatments, platelet counts, neutrophil counts, CRP, lymphocyte subsets and bleeding symptoms. Results The expression of two inhibitory KIR genes, 2DL1 and 3DL1, was significantly lower in the patients with ITP as compared to controls (87% 2DL1 and 87% 3DL1 compared to 99% in controls - P < 0.02). Response to rituximab was strongly related to KIR haplotype expression. 2DL1 expression was higher among nonresponders to Rituximab (100% of non responders compared to 82% of responders), whereas 2DL3 expression was significantly lower (79% compared to 90%) (P < 0.05, Figure 1B). Separately, patients with the 2DS3 allele, an activatory KIR, were 5.5 times more likely to have experienced significant bleeding. Conclusions Although these findings are preliminary and require further investigation, these data suggest that increased cytotoxic autoimmunity due to reduced KIR inhibition may be associated with the development of ITP and possibly contribute importantly to the pathogenesis. Anti-CD20 targeting therapy directed at B cells was strongly influenced by 2 different KIRs (1 upregulated and one down-regulated) emphasizing the potential role of NK cells in elimination of tissue-based (nodal) B cells. Finally a more pronounced clinical phenotype with a markedly higher incidence of severe bleeding associated with an increased activatory KIR expression demonstrates the role of NK cells in bleeding presumably via their effects on either endothelial cells or platelet function. These exciting findings will be pursued for confirmation in a larger number of patients. Disclosures: Bussel: Amgen: Family owns stock Other, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Cangene: Research Funding; Genzyme: Research Funding; GlaxoSmithKline: Family owns stock, Family owns stock Other, Membership on an entity’s Board of Directors or advisory committees, Research Funding; IgG of America: Research Funding; Immunomedics: Research Funding; Ligand: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Eisai: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Shionogi: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Sysmex: Research Funding; Symphogen: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 407-407
Author(s):  
Frank Cichocki ◽  
Jode P Goodridge ◽  
Ryan Bjordahl ◽  
Svetlana Gaidarova ◽  
Sajid Mahmood ◽  
...  

Abstract Treatments for B-cell malignancies have improved over the past several decades with clinical application of the CD20-specific antibody rituximab and chimeric antigen receptor (CAR) T cells targeting CD19. Despite the success of these therapies, loss of CD20 after rituximab treatment has been reported in leukemia and lymphoma patients. Additionally, up to 50% of all patients receiving anti-CD19 CAR T-cell therapy relapse within the first year with many of those patients exhibiting CD19 loss. Thus, new therapeutic approaches are needed to address tumor antigen escape. Accordingly, we generated triple gene-modified iPSC-derived NK (iNK) cells, termed "iDuo" NK cells, tailored to facilitate multi-antigen targeting. The iPSC line was clonally engineered to express high-affinity, non-cleavable CD16a (hnCD16), an anti-CD19 CAR optimized for NK cell signaling, and a membrane-bound IL-15/IL-15R fusion (IL-15RF) molecule to enhance NK cell persistence (Fig. 1A). To model antigen escape, we generated CD19 knockout AHR77 lymphoma cells alongside wild type AHR77 cells (both CD20 +) as targets in cytotoxicity assays. Activated peripheral blood NK (PBNK) cells, non-transduced iNK cells, and iDuo NK cells were tested as effectors. Unlike PBNK cells or non-transduced iNK cells, iDuo NK cells efficiently eliminated wild type AHR77 cells with or without the addition of rituximab at all tested E:T ratios. Similarly, iDuo NK cells in combination with rituximab were uniquely able to efficiently eliminate CD19 KO AHR77 cells due to enhanced antibody-dependent cellular cytotoxicity (ADCC) driven by hnCD16 (Fig. 1B-E). Cytotoxicity mediated by iDuo NK cells was also evaluated using primary chronic lymphocytic leukemia (CLL) cells. Compared to expanded PBNK cells and non-transduced iNK cells, only iDuo NK cells (in the absence of rituximab) were able to kill primary CLL cells (Fig. 1F). Expression of IL-15RF by iDuo NK cells uniquely supports in vitro expansion without the need for cytokine supplementation. To determine whether IL-15RF supports in vivo persistence of iDuo NK cells, CD19 CAR iNK cells (lacking IL-15RF) and iDuo NK cells were injected into NSG mice without the addition of cytokines or CD19 antigen availability. iDuo NK cell numbers peaked within a week after injection and persisted at measurable levels for ~5 weeks, in marked contrast to CD19 CAR iNK cell numbers that were undetectable throughout (Fig. 1G). To evaluate the in vivo function of iDuo NK cells, NALM6 leukemia cells were engrafted into NSG mice. Groups of mice received tumor alone or were treated with 3 doses of thawed iDuo NK cells. iDuo NK cells alone were highly effective in this model as evidenced by complete survival of mice in the treatment group (Fig. 1H). To assess iDuo NK cells in a more aggressive model, Raji lymphoma cells were engrafted, and groups of mice received rituximab alone, iDuo NK cells alone, or iDuo NK cells plus rituximab. Mice given the combination of iDuo NK cells and rituximab provided extended survival compared to all other arms in the aggressive disseminated Raji lymphoma xenograft model (Fig. 1I). One disadvantage of anti-CD19 CAR T cells is their inability to discriminate between healthy and malignant B cells. Because NK cells express inhibitory receptors that enable "self" versus "non-self" discrimination, we reasoned that iDuo NK cells could have higher cytotoxicity against tumor cells relative to healthy B cells. To address this, we labeled Raji cells, CD19 + B cells from healthy donor peripheral blood mononuclear cells (PBMCs) and CD19 - PBMCs. Labeled populations of cells were co-cultured with iDuo NK cells, and specific killing was analyzed. As expected, iDuo NK cells did not target CD19 - PBMCs. Intriguingly, iDuo NK cells had much higher cytotoxic activity against Raji cells compared to primary CD19 + B cells, suggesting a preferential targeting of malignant B cells compared to healthy B cells. Together, these results demonstrate the potent multi-antigen targeting capability and in vivo antitumor function of iDuo NK cells. Further, these data suggest that iDuo NK cells may have an additional advantage over anti-CD19 CAR T cells by discriminating between healthy and malignant B cells. The first iDuo NK cell, FT596, is currently being tested in a Phase I clinical trial (NCT04245722) for the treatment of B-cell lymphoma. Figure 1 Figure 1. Disclosures Cichocki: Gamida Cell: Research Funding; Fate Therapeutics, Inc: Patents & Royalties, Research Funding. Bjordahl: Fate Therapeutics: Current Employment. Gaidarova: Fate Therapeutics, Inc: Current Employment. Abujarour: Fate Therapeutics, Inc.: Current Employment. Rogers: Fate Therapeutics, Inc: Current Employment. Huffman: Fate Therapeutics, Inc: Current Employment. Lee: Fate Therapeutics, Inc: Current Employment. Szabo: Fate Therapeutics, Inc: Current Employment. Wong: BMS: Current equity holder in publicly-traded company; Fate Therapeutics, Inc: Current Employment. Cooley: Fate Therapeutics, Inc: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment. Miller: Magenta: Membership on an entity's Board of Directors or advisory committees; ONK Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Wugen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3696-3696
Author(s):  
Konstantinos Christofyllakis ◽  
Frank Neumann ◽  
Stephan Stilgenbauer ◽  
Dominic Kaddu-Mulindwa ◽  
Evi Regitz ◽  
...  

Abstract Introduction: We recently showed that vitamin D deficiency leads to decreased overall survival of DLBCL-patients treated with rituximab-chemotherapy (Bittenbring et al, JCO, 2014). We hypothesized that rituximab-mediated NK cell-cytotoxicity is more effective at higher vitamin D levels. This was confirmed by vitamin D substitution of healthy volunteers, which increased their rituximab-mediated cytotoxicity in vitro against the Daudi lymphoma cell line. To unveil the molecular mechanisms behind this finding, resting NK cells before and after vitamin D supplementation were isolated from those volunteers and a whole transcriptome analysis was performed. Methods: We collected PBMCs from eight healthy volunteers with vitamin D deficiency before and after vitamin D substitution to > 30 ng/ml 25-OH vitamin D3. NK cells were isolated from PBMCs by magnetic depletion of all non-NK cells. Purity of the CD16+ cells was confirmed by flow cytometry. After isolating total RNA, we performed a microarray analysis using an Affymetrix Gene-Chip 2.0 ™. The signals were normalized using the LMA algorithm. For pathway analysis, gene set enrichment analysis (GSEA) was used. A two-step approach was chosen. Firstly, we separated 7.705 genes due to their involvement in the NK cell-mediated immune response according to the Gene Ontology database, irrespective of their differential expression. This dataset was used separately for specific analysis of the NK cell-cytotoxicity pathway to increase sensitivity. Secondly, the complete data set of 48.145 genes was used in an exploratory analysis in an attempt to screen for other dysregulated pathways involved in the immune response and vitamin D homeostasis. We used gene sets provided from the Molecular Signature Database. A significance level of < 0.05 for p and False Discovery Rate (FDR) was chosen. Real-time quantitative PCR was performed to confirm the results. Results: The NK cell-associated cytotoxicity pathway was found to be significantly upregulated after restoration of normal vitamin D levels in the specific analysis. The most significantly overexpressed genes in the gene set were five IFN-α subtypes (IFN-α2, IFN-α4, IFN-α6, IFN-α7, and IFN-α10) as well as IFN-κ. The exploratory analysis showed an upregulation of the response to type I interferon pathway and regulation of type I interferon mediated signaling pathway. The most upregulated genes in those pathways were again the IFN-α subtypes mentioned above. Other pathways involved in the immune response were found to be downregulated after vitamin D substitution, like interferon gamma response; cytokine production and chemotaxis. The common denominator of these pathways was the downregulation of three toll-like receptor genes (TLR-8, TLR-7, TLR-2). Conclusion: The increased expression of specific IFN-α subtypes could explain the increased rituximab-mediated NK cell-cytotoxicity after vitamin D substitution in deficient individuals. To the best of our knowledge, this is the first study to suggest a role for vitamin D in IFN-α regulation. TLRs are known to stimulate cytokine production in NK cells including IFN-α. It can be assumed, that the observed upregulation of IFN-α genes after vitamin D substitution leads to a negative feedback on positive regulators of cytokine production like TLR, causing their downregulation once vitamin D levels are restored. This implies a comprehensive role of vitamin D in IFN-α biosynthesis in human NK cells. Disclosures Stilgenbauer: AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Hoffmann La-Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmcyclics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer-Ingelheim: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3132-3132
Author(s):  
Bryce Manso ◽  
Kimberly Gwin ◽  
Charla R Secreto ◽  
Henan Zhang ◽  
Wei Ding ◽  
...  

Abstract Peripheral immune dysfunction in B-Chronic Lymphocytic Leukemia (CLL) is well-studied and likely relates to the incidence of serious recurrent infections and second malignancies that plague CLL patients. However, the current paradigms of known immune abnormalities are not able to consistently explain these complications and it is not easy to correct CLL patient immune status. Here, we expand on our preliminary reports that demonstrate bone marrow (BM) hematopoietic dysfunction in early and late stage untreated CLL patients. We found reduced short-term functional capacity of hematopoietic progenitors in BM using colony forming unit assays (Figure 1A-C) and flow cytometry revealed significant reductions in frequencies of hematopoietic stem and progenitor cell (HSPC) populations (exemplified by Lin-CD34+ HSPCs, Figure 1D). We further report that protein levels of the transcriptional regulators HIF-1α, GATA-1, PU.1, and GATA-2 are overexpressed in distinct HSPC subsets from CLL patient BM, providing molecular insight into the basis of HSPC dysfunction. Interestingly, sustained myelopoiesis, evaluated by limiting dilution analysis in long-term culture-initiating cell (LTC-IC) assays maintained for five weeks, revealed no difference between healthy controls and CLL patients. These new data indicate that when HSPCs are removed from the leukemic microenvironment for ample in vitro culture time, they recover the ability to sustain myelopoiesis. To further assess the impact of the CLL microenvironment on HSPC biology, isolated HSPCs (CD34+ BM cells) from healthy controls were exposed in vitro to known leukemic microenvironment constituents. Exposure to TNFα, a cytokine constitutively produced by CLL B cells, resulted in rapid increases in PU.1 and GATA-2 proteins (Figure 2A-D). Similarly, addition of TNFα to the LTC-IC assay resulted in a striking ablation of myelopoiesis, even at the highest input cell concentration. Further, overexpression of PU.1 and GATA-2 were observed in HSPCs following co-culture with CLL B cells, a result that was not recapitulated when cells were exposed to IL-10, another cytokine constitutively produced by CLL B cells. These findings indicate specific components of the leukemic microenvironment are involved in HSPC modulation. Together, these findings expand on our previous observations of BM hematopoietic dysfunction in untreated CLL patients and offer new molecular insights into the contribution of the leukemic microenvironment on immunodeficiency in CLL. Disclosures Ding: Merck: Research Funding. Parikh:Pharmacyclics: Honoraria, Research Funding; MorphoSys: Research Funding; Janssen: Research Funding; Abbvie: Honoraria, Research Funding; Gilead: Honoraria; AstraZeneca: Honoraria, Research Funding. Kay:Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Agios Pharm: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Acerta: Research Funding; Infinity Pharm: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Cytomx Therapeutics: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-6 ◽  
Author(s):  
Veronika Bachanova ◽  
Joseph Maakaron ◽  
David H. McKenna ◽  
Qing Cao ◽  
Todd E. DeFor ◽  
...  

Background: The innate capacity of natural killer (NK) cells to kill tumor targets has been translated into cancer immunotherapy. GDA-201 is a novel allogeneic NK cell product derived from NK cells from healthy donors, expanded ex-vivo with nicotinamide (NAM) and IL-15. We previously reported improved killing function, in vivo proliferation, organ trafficking, and augmented resistance against exhaustion in pre-clinical models. We conducted a phase 1 study of GDA-201 in combination with monoclonal antibodies to enhance NK cell targeting through antibody-dependent cellular cytotoxicity (ADCC). We now report safety data in patients (pts) with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) and multiple myeloma (MM), and report efficacy outcomes in pts with NHL. Methods: Following donor apheresis, CD3-depleted mononuclear cells were cultured for 14-16 days with NAM (5mM) and IL-15 (20ng/ml), resulting in a 40-fold increase in NK cells and increased expression of CD62L from 2.9% to 21%. GDA-201 contained ~98% NK cells, and CD3 content was maintained at &lt;0.5% (&lt;5x105/kg/dose). Pts with R/R B-cell NHL or MM received lymphodepleting (LD) therapy with cyclophosphamide (400mg/m2 IV x 3d) and fludarabine (30 mg/m2 /d IV x 3d), followed by GDA-201 (days 0 and 2) and low-dose IL-2 (6 million units sc x 3 doses). Pts with NHL or MM received rituximab (375 mg/m2) or elotuzumab (10 mg/kg), respectively, x 3 weekly infusions. Results: 30 pts were enrolled:15 with NHL and 15 with MM, in 3 cohorts of escalating GDA-201 dose; 15 pts received the maximum target dose (median dose 12.4 [range 2.0-26.0] x 107 cells/kg). There were no dose limiting toxicities. The most common grade 3/4 adverse events were thrombocytopenia (n=9), hypertension (n=5), neutropenia (n=4), febrile neutropenia (n=4), and anemia (n=3). There were no neurotoxic events, confirmed cytokine release syndrome, graft versus host disease, or marrow aplasia. One patient died of E-coli sepsis. In pts with NHL, histologies included diffuse large B cell lymphoma (DLBCL) (de novo n=5, transformed n=3), follicular lymphoma (FL) (n=6), and mantle cell lymphoma (n=1). Median age was 64 (range 48-83 years). Pts had a median of 3 lines of prior therapy (range 1-8); most were multiply relapsed or refractory (n=2), and 87% had advanced stage. Median follow-up was 10.8 months (range 4.3-27.5 months). Ten pts had complete response (CR): 6/6 pts with FL and 4/8 with DLBCL; 1 pt had partial response (PR), and overall response rate in pts with NHL was 73.3%. Median duration of response was 8.7 months (range 4.3-25 months). Flow cytometry confirmed the persistence of GDA-201 in peripheral blood for 7-10 days (range 2-92% donor NK cells on day 7), as well as enhanced in vivo proliferation (median Ki 67 99%). Flow cytometry of biopsied tissues at day 4 demonstrated trafficking to bone marrow and lymph nodes. Four pts underwent re-treatment with GDA-201 without LD chemotherapy; GDA-201 cells were detectable in blood after the re-treatment and likely contributed to deepening of response in 2 patients. Post-GDA-201 therapy included allogeneic (n=2) and autologous (n=1) hematopoietic stem cell transplantation. One-year estimates of progression-free survival and overall survival were 66% (95% CI 36-84%) and 82% (95% CI 42-95%), respectively. Conclusions: Cellular therapy using GDA-201 with monoclonal antibodies to enhance ADCC was well-tolerated, and demonstrated significant clinical activity in heavily pretreated pts with advanced NHL. Data support the future testing of multiple infusions to potentially enhance anti-tumor effect. The omission of lymphodepleting chemotherapy is feasible and contributes to safety of this approach. Phase II studies in aggressive and indolent NHL cohorts are planned. Disclosures Bachanova: Incyte: Research Funding; FATE: Research Funding; Kite: Membership on an entity's Board of Directors or advisory committees; Karyopharma: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Gamida Cell: Membership on an entity's Board of Directors or advisory committees, Research Funding. McKenna:Gamida: Other: Cell Manufacturing; Fate Therapeutics: Other: Cell Manufacturing; Intima: Other: Cell Manufacturing; Magenta: Other: Cell Manufacturing. Janakiram:Takeda, Fate, Nektar: Research Funding. Simantov:Gamida Cell: Current Employment. Lodie:Gamida Cell: Current Employment. Miller:Vycellix: Consultancy; Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Onkimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3199-3199 ◽  
Author(s):  
Subhashis Sarkar ◽  
Sachin Chauhan ◽  
Arwen Stikvoort ◽  
Alessandro Natoni ◽  
John Daly ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is a clonal plasma cell malignancy typically associated with the high and uniform expression of CD38 transmembrane glycoprotein. Daratumumab is a humanized IgG1κ CD38 monoclonal antibody (moAb) which has demonstrated impressive single agent activity even in relapsed refractory MM patients as well as strong synergy with other anti-MM drugs. Natural Killer (NK) cells are cytotoxic immune effector cells mediating tumour immunosurveillance in vivo. NK cells also play an important role during moAb therapy by inducing antibody dependent cellular cytotoxicity (ADCC) via their Fcγ RIII (CD16) receptor. Furthermore, 15% of the population express a naturally occurring high affinity variant of CD16 harbouring a single point polymorphism (F158V), and this variant has been linked to improved ADCC. However, the contribution of NK cells to the efficacy of Daratumumab remains debatable as clinical data clearly indicate rapid depletion of CD38high peripheral blood NK cells in patients upon Daratumumab administration. Therefore, we hypothesize that transiently expressing the CD16F158V receptor using a "safe" mRNA electroporation-based approach, on CD38low NK cells could significantly enhance therapeutic efficacy of Daratumumab in MM patients. In the present study, we investigate the optimal NK cell platform for generating CD38low CD16F158V NK cells which can be administered as an "off-the-shelf"cell therapy product to target both CD38high and CD38low expressing MM patients in combination with Daratumumab. Methods: MM cell lines (n=5) (MM.1S, RPMI-8226, JJN3, H929, and U266) and NK cells (n=3) (primary expanded, NK-92, and KHYG1) were immunophenotyped for CD38 expression. CD16F158V coding m-RNA transcripts were synthesized using in-vitro transcription (IVT). CD16F158V expression was determined by flow cytometry over a period of 120 hours (n=5). 24-hours post electroporation, CD16F158V expressing KHYG1 cells were co-cultured with MM cell lines (n=4; RPMI-8226, JJN3, H929, and U266) either alone or in combination with Daratumumab in a 14-hour assay. Daratumumab induced NK cell fratricide and cytokine production (IFN-γ and TNF-α) were investigated at an E:T ratio of 1:1 in a 14-hour assay (n=3). CD38+CD138+ primary MM cells from newly diagnosed or relapsed-refractory MM patients were isolated by positive selection (n=5), and co-cultured with mock electroporated or CD16F158V m-RNA electroporated KHYG1 cells. CD16F158V KHYG1 were also co-cultured with primary MM cells from Daratumumab relapsed-refractory (RR) patients. Results: MM cell lines were classified as CD38hi (RPMI-8226, H929), and CD38lo (JJN3, U266) based on immunophenotyping (n=4). KHYG1 NK cell line had significantly lower CD38 expression as compared to primary expanded NK cells and NK-92 cell line (Figure 1a). KHYG1 electroporated with CD16F158V m-RNA expressed CD16 over a period of 120-hours post-transfection (n=5) (Figure 1b). CD16F158V KHYG1 in-combination with Daratumumab were significantly more cytotoxic towards both CD38hi and CD38lo MM cell lines as compared to CD16F158V KHYG1 alone at multiple E:T ratios (n=4) (Figure 1c, 1d). More importantly, Daratumumab had no significant effect on the viability of CD38low CD16F158V KHYG1. Moreover, CD16F158V KHYG1 in combination with Daratumumab produced significantly higher levels of IFN-γ (p=0.01) upon co-culture with CD38hi H929 cell line as compared to co-culture with mock KHYG1 and Daratumumab. The combination of CD16F158V KHYG1 with Daratumumab was also significantly more cytotoxic to primary MM cell ex vivo as compared to mock KHYG1 with Daratumumab at E:T ratio of 0.5:1 (p=0.01), 1:1 (p=0.005), 2.5:1 (p=0.003) and 5:1 (p=0.004) (Figure 1e). Preliminary data (n=2) also suggests that CD16F158V expressing KHYG1 can eliminate 15-17% of primary MM cells from Daratumumab RR patients ex vivo. Analysis of more Daratumumab RR samples are currently ongoing. Conclusions: Our study provides the proof-of-concept for combination therapy of Daratumumab with "off-the-shelf" CD38low NK cells transiently expressing CD16F158V for treatment of MM. Notably, this approach was effective against MM cell lines even with low CD38 expression (JJN3) and primary MM cells cultured ex vivo. Moreover, the enhanced cytokine production by CD16F158V KHYG1 cells has the potential to improve immunosurveillance and stimulate adaptive immune responses in vivo. Disclosures Sarkar: Onkimmune: Research Funding. Chauhan:Onkimmune: Research Funding. Stikvoort:Onkimmune: Research Funding. Mutis:Genmab: Research Funding; OnkImmune: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Research Funding; Celgene: Research Funding; Novartis: Research Funding. O'Dwyer:Abbvie: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; BMS: Research Funding; Glycomimetics: Research Funding; Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document