scholarly journals Ing4 Regulates Stress Hematopoiesis and Represses Self-Renewal in Multipotent Progenitor Cells

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 724-724
Author(s):  
Zanshe Thompson ◽  
Melanie Rodriguez ◽  
Seth Gabriel ◽  
Georgina Anderson ◽  
Vera Binder ◽  
...  

Hematopoiesis is tightly regulated by a network of transcription factors and complexes that are required for the maintenance and development of HSCs. In a screen for epigenetic regulators of hematopoiesis in zebrafish, we identified a requirement of the tumor suppressor protein, Ing4, in hematopoietic stem and progenitor cell (HSPC) specification. Though the Ing4 mechanism of action remains poorly characterized, it has been shown to promote stem-like cell characteristics in malignant cells and is a frequent target of inactivation in various cancer types. The tumor suppressive activity is, in part, due to the inhibitory role of Ing4 in the NF-kB signaling pathway. In zebrafish, loss of Ing4 results in loss of HSC specification and a significant increase in NF-kB target gene expression. Knockdown of NF-kB expression in Ing4 deficient zebrafish recovered HSC marker expression in the aorta suggesting that NF-kB inhibition could remediate the loss of Ing4 expression. Small molecule NF-kB pathway inhibitors with varying mechanisms were also observed to rescue of HSC marker staining in the zebrafish aorta. Ing4 deficient embryos incubated with a lower dose of inhibitor had a 31% recovery of marker staining and 82% of embryos incubated in the highest dose recovered HSC marker staining emphasizing a dose dependent rescue of HSC specification through NF-kB suppression. As in the zebrafish, we have identified a requirement for Ing4 in murine hematopoiesis. Ing4-/- bone marrow has aberrant hematopoiesis resulting in an increase in the number of short term-HSCs (ST-HSCs) (11.4% vs 31.7%) and a dramatic decrease in multipotent progenitor cells (MPPs) (47.9% vs 19.3%) along with a concurrent modest increase in the population of long-term HSCs (LT-HSCs) (2.4% vs 5.5%). Analysis of differentiation in Ing4 null bone marrow also reveals skewed hematopoiesis. We see a 14% increase in granulocytes in the null mouse marrow and observe similar skewing in CFU assays. Additionally, there were alterations in stress hematopoiesis following hematopoietic stem cell transplant. Sorted LT-HSCs fail to engraft, suggesting an evolutionarily conserved requirement for Ing4 in HSCs. Surprisingly, competitive transplantation assay with Ing4-defecient MPPs versus wild-type showed dramatic increase in peripheral blood multilineage chimerism up to 9 months post-transplantation (19% vs. 59%). This lends to the hypothesis that Ing4 deficient MPPs gain self-renewal capabilities. In further characterization of these cells, we found an increase in MPPs that express lower levels of CD34 (55.5% vs 67.7%). CD34 expression is a marker of HSCs. This CD34+/mid population also express CD229 (85% positive), which is barely detectable in wildtype marrow (less that 0.01%). CD229 is also an HSC marker. Based on these exciting findings, we hypothesize that we have identified a subset of CD34+/midCD229+ MPPs in Ing4 deficient mice that retain self-renewal characteristics. Our data suggest that Ing4 normally functions as a critical suppressor for genes required for self-renewal and developmental potency in MPPs. Overall, our findings suggest that Ing4 plays a crucial role in the regulation of hematopoiesis and provides key tools for further identification and characterization of Ing4 pathways and functions. Given the role of Ing4 in both normal hematopoiesis and cancer, this gene likely has a critical role in regulation of stem cell self-renewal and maintenance. Disclosures Zon: CAMP4: Equity Ownership; Fate Therapeutics: Equity Ownership; Scholar Rock: Equity Ownership.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 797-797
Author(s):  
Krasimira Rozenova ◽  
Jing Jiang ◽  
Chao Wu ◽  
Junmin Wu ◽  
Bernadette Aressy ◽  
...  

Abstract The balance between self-renewal and differentiation of hematopoietic stem cells (HSCs) is maintained by cell intrinsic and extrinsic mechanisms, including tight regulation of signaling pathways such as Tpo-Mpl and SCF-ckit. Posttranslational modifications, such as phosphorylation and ubiquitination, regulate these pathways. While the role of protein phosphorylation is well established, the importance of ubiquitination in HSC self-renewal has not been well addressed. It is known that of the seven different lysines on ubiquitin, Lys48 polyubiquitination is a marker for protein degradation, and Lys63 polyubiquitination is associated with regulation of kinase activity, protein trafficking, and localization. In this study, we provide evidence that the adaptor protein MERIT40 has multiple roles in hematopoietic stem/progenitor cells (HSPCs). MERIT40 is a scaffolding protein shared by two distinct complexes with Lys63 deubiquitinase (DUB) activities: the nuclear RAP80 complex with a known role in DNA damage repair in breast/ovarian cancer cells, whereas the functions of the cytoplasmic BRISC remains less characterized. MERIT40 is important for integrity of both complexes, and its deficiency leads to their destabilization and a >90% reduction in deubiquitinase activity. By using MERIT40 knockout (M40-/-) mice, we found that lack of MERIT40 leads to a two-fold increase in phenotypic and functional HSCs determined by FACS and limiting dilution bone marrow transplantation (BMT), respectively. More importantly, M40-/- HSCs have increased regenerative capability demonstrated by increased chimerism in the peripheral blood after BMT of purified HSCs. The higher self-renewal potential of these HSCs provides a survival advantage to M40-/- mice and HSCs after repetitive administration of the cytotoxic agent 5-flurouracil (5FU). MERIT40 deficiency also preserves HSC stemness in culture as judged by an increase in peripheral blood chimerism in recipient mice transplanted with M40-/- Lin-Sca1+Kit+ (LSK) cells cultured in cytokines for nine days compared to recipient mice receiving cultured wildtype (WT) LSK cells. In contrast to the increased HSC homeostasis and superior stem cell activity due to MERIT40 deficiency, M40-/- mice are hypersensitive to DNA damaging agents caused by inter-cross linking (ICL), such as Mitomycin C (MMC) and acetaldehydes that are generated as side products of intracellular metabolism. MMC injection caused increased mortality in M40-/- mice compared to WT controls attributable to DNA damage-induced bone marrow failure. MMC-treated M40-/- mice showed marked reduction in LSK progenitor numbers accompanied by increased DNA damage, in comparison to WT mice. Consistent with the in vivo studies, M40-/- progenitor cells are hypersensitive to MMC and acetaldehyde treatment in a cell-autonomous manner in colony forming assays. ICL repair is known to require Fanconi Anemia (FA) proteins, an ICL repair network of which mutations in at least 15 different genes in humans cause bone marrow failure and cancer predisposition. Thus, M40-/- mice represent a novel mouse model to study ICL repair in HSPCs with potential relevance to bone marrow failure syndromes. Taken together, our data establishes a complex role of MERIT40 in HSPCs, warranting future investigation to decipher functional events downstream of two distinct deubiquitinating complexes associated with MERIT40 that may regulate distinct aspects of HSPC function. Furthermore, our findings reveal novel regulatory pathways involving a previously unappreciated role of K63-DUB in stem cell biology, DNA repair regulation and possibly bone marrow failure. DUBs are specialized proteases and have emerged as potential “druggable” targets for a variety of diseases. Hence, our work may provide insights into novel therapies for the treatment of bone marrow failure and associated malignancies that occur in dysregulated HSCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-30
Author(s):  
Katie L Kathrein ◽  
Zanshe Thompson ◽  
Seth Gabriel ◽  
Melanie Rodriguez ◽  
Georgina Anderson

A network of transcription factors and associated complexes regulate the process of hematopoiesis and are required for maintenance and development of the hematopoietic program. Ing4, a tumor suppressor protein, was identified in a screen for epigenetic regulators of hematopoiesis in zebrafish as required for specification of hematopoietic stem and progenitor cells (HSPCs). Recent work has shown that Ing4 is inactivated in various cancer cells. This inactivation promotes stem cell-like qualities in malignant cells. Ing4 plays an inhibitory role in the NF-κB pathway, conferring, in part, Ing4's tumor-suppressor capability. Loss of Ing4 is correlated to diminished hematopoietic stem cell (HSC) specification in zebrafish and increased NF-κB target gene expression. NF-κB knockdown assays in zebrafish embryos suggest inhibition of NF-κB remediates loss of Ing4 expression, with HSC rescue efficacy varying directly with concentration of inhibitor. Similarly, the necessity of Ing4 in murine hematopoiesis has been observed. Here, Ing4 deficiency impairs HSC function, while simultaneously enhancing the regenerative capacity of multipotent progenitor cells (MPPs). Characterization of bone marrow from Ing4-deficient mice shows abnormal hematopoiesis, with a striking decrease in MPPs as compared to wildtype mice (47.9% vs 19.3%). Hematopoiesis under stress conditions is also altered in Ing4-deficient mice, as observed following competitive HSC transplantation. In a surprising finding, MPPs from Ing4-deficient mice showed a dramatic increase in peripheral blood multilineage chimerism compared to wildtype mice up to 9 months post-transplantation in a competitive transplant assay (19% vs. 59%). This supports the hypothesis that MPPs from Ing4-deficient mice have enhanced self-renewal capacity. Additionally, we have observed a subpopulation of Ing4-deficient MPPs that express lower levels of CD34, CD34+/mid. This population of CD34+/mid cells was also shown to express CD229 (85% positive), while very few WT MPPs express both CD34+/mid and CD229 (5.0%). Reduced levels of CD34 expression combined with CD299 are known to be markers of HSCs, and so we hypothesize that a subset of CD34+/midCD229+ MPPs in Ing4-deficient mice retain their self-renewal capacity. Taken together, our data suggest Ing4 typically functions as a suppressor of genes necessary for self-renewal and developmental potency of MPPs. Additionally, cell cycle analysis combined with Ki-67 expression showed Ing4-deficient MPPs have enhanced ability to maintain quiescence, with 15.2% of cells found to be in G0 phase as compared to 6.5% of wildtype MPPs in G0. Finally, after 5-FU treatment, levels of MPPs in WT mice were similar pre- and post-treatment. Future experiments will seek to elucidate this observation in consideration of the pro-inflammatory environment. These findings suggest Ing4 is a critical regulator of hematopoiesis, and these data provide important clues for further characterization of the pathways and functions of Ing4. Our data show that Ing4 deficiency promotes stem cell-like properties in MPPs, suggesting it has crucial regulatory functions in both stem cell self-renewal and maintenance. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Author(s):  
Yuqing Yang ◽  
Andrew J Kueh ◽  
Zoe Grant ◽  
Waruni Abeysekera ◽  
Alexandra L Garnham ◽  
...  

The histone acetyltransferase HBO1 (MYST2, KAT7) is indispensable for postgastrulation development, histone H3 lysine 14 acetylation (H3K14Ac) and the expression of embryonic patterning genes. In this study, we report the role of HBO1 in regulating hematopoietic stem cell function in adult hematopoiesis. We used two complementary cre-recombinase transgenes to conditionally delete Hbo1 (Mx1-Cre and Rosa26-CreERT2). Hbo1 null mice became moribund due to hematopoietic failure with pancytopenia in the blood and bone marrow two to six weeks after Hbo1 deletion. Hbo1 deleted bone marrow cells failed to repopulate hemoablated recipients in competitive transplantation experiments. Hbo1 deletion caused a rapid loss of hematopoietic progenitors (HPCs). The numbers of lineage-restricted progenitors for the erythroid, myeloid, B-and T-cell lineages were reduced. Loss of HBO1 resulted in an abnormally high rate of recruitment of quiescent hematopoietic stem cells (HSCs) into the cell cycle. Cycling HSCs produced progenitors at the expense of self-renewal, which led to the exhaustion of the HSC pool. Mechanistically, genes important for HSC functions were downregulated in HSC-enriched cell populations after Hbo1 deletion, including genes essential for HSC quiescence and self-renewal, such as Mpl, Tek(Tie-2), Gfi1b, Egr1, Tal1(Scl), Gata2, Erg, Pbx1, Meis1 and Hox9, as well as genes important for multipotent progenitor cells and lineage-specific progenitor cells, such as Gata1. HBO1 was required for H3K14Ac through the genome and particularly at gene loci required for HSC quiescence and self-renewal. Our data indicate that HBO1 promotes the expression of a transcription factor network essential for HSC maintenance and self-renewal in adult hematopoiesis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2190-2190 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Gerald de Haan ◽  
Ronald P. van Os

Abstract Adhesion molecules have been implicated in the interactions of hematopoietic stem and progenitor cells with the bone marrow extracellular matrix and stromal cells. In this study we examined the role of very late antigen-5 (VLA-5) in the process of stem cell mobilization and homing after stem cell transplantation. In normal bone marrow (BM) from CBA/H mice 79±3 % of the cells in the lineage negative fraction express VLA-5. After mobilization with cyclophosphamide/G-CSF, the number of VLA-5 expressing cells in mobilized peripheral blood cells (MPB) decreases to 36±4%. The lineage negative fraction of MPB cells migrating in vitro towards SDF-1α (M-MPB) demonstrated a further decrease to 3±1% of VLA-5 expressing cells. These data are suggestive for a downregulation of VLA-5 on hematopoietic cells during mobilization. Next, MPB cells were labelled with PKH67-GL and transplanted in lethally irradiated recipients. Three hours after transplantation an increase in VLA-5 expressing cells was observed which remained stable until 24 hours post-transplant. When MPB cells were used the percentage PKH-67GL+ Lin− VLA-5+ cells increased from 36% to 88±4%. In the case of M-MPB cells the number increased from 3% to 33±5%. Although the increase might implicate an upregulation of VLA-5, we could not exclude selective homing of VLA-5+ cells as a possible explanation. Moreover, we determined the percentage of VLA-5 expressing cells immediately after transplantation in the peripheral blood of the recipients and were not able to observe any increase in VLA-5+ cells in the first three hours post-tranpslant. Finally, we separated the MPB cells in VLA-5+ and VLA-5− cells and plated these cells out in clonogenic assays for progenitor (CFU-GM) and stem cells (CAFC-day35). It could be demonstared that 98.8±0.5% of the progenitor cells and 99.4±0.7% of the stem cells were present in the VLA-5+ fraction. Hence, VLA-5 is not downregulated during the process of mobilization and the observed increase in VLA-5 expressing cells after transplantation is indeed caused by selective homing of VLA-5+ cells. To shed more light on the role of VLA-5 in the process of homing, BM and MPB cells were treated with an antibody to VLA-5. After VLA-5 blocking of MPB cells an inhibition of 59±7% in the homing of progenitor cells in bone marrow could be found, whereas homing of these subsets in the spleen of the recipients was only inhibited by 11±4%. For BM cells an inhibition of 60±12% in the bone marrow was observed. Homing of BM cells in the spleen was not affected at all after VLA-5 blocking. Based on these data we conclude that mobilization of hematopoietic progenitor/stem cells does not coincide with a downregulation of VLA-5. The observed increase in VLA-5 expressing cells after transplantation is caused by preferential homing of VLA-5+ cells. Homing of progenitor/stem cells to the bone marrow after transplantation apparantly requires adhesion interactions that can be inhibited by blocking VLA-5 expression. Homing to the spleen seems to be independent of VLA-5 expression. These data are indicative for different adhesive pathways in the process of homing to bone marrow or spleen.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 252-252
Author(s):  
Joydeep Ghosh ◽  
Baskar Ramdas ◽  
Anindya Chatterjee ◽  
Peilin Ma ◽  
Michihiro Kobayashi ◽  
...  

Abstract Regulation of hematopoietic stem cell (HSC) function(s) via the mammalian target of rapamycin complex1 (mTORC1) and its upstream regulators including PI3K and Akt has been described before. To this end, we and others have shown that hyperactivation and deficiency of the PI3K-mTORC1 pathway results in altered development, maintenance and function(s) of HSCs. However, the role of downstream effector of mTORC1, p70S6 kinase (S6K1), in HSC development and functions is unknown. Previous studies have implicated S6K1 as a regulator of ageing, by virtue of its ability to regulate cellular metabolic processes as well as protein translation. In certain cells, however S6K1 regulates cell survival and also acts as a negative regulator of PI3K-mTORC1 pathway, thus creating a negative feedback loop. Thus, how S6K1 impacts HSC ageing and stem cell functions remains an enigma. We have assessed the role of S6K1 in HSC development and function under steady-state as well as during recovery of hematopoietic system following myelosuppressive stress. We used a genetic model of S6K1 knockout mice (S6K1-/-). S6K1 deficiency in bone marrow hematopoietic cells resulted in decrease of absolute number of bone marrow hematopoietic progenitor cells as well as HSCs (Lin- Sca1+ c-Kit+; LSK) were significantly reduced relative to controls (n=14 in each group, p<0.04). Interestingly, in vitro, hematopoietic progenitor cells from S6K1-/- mice showed increased colony forming ability in response to cytokines which was associated with hyperactivation of Akt and ERK MAP kinase. To determine whether the reduced number of HSCs in S6K1-/- mice was due to deficiency of S6K1 in bone marrow microenvironment, we transplanted WT hematopoietic bone marrow cells into lethally irradiated WT or S6K1-/- mice. S6K1-/- mice transplanted with WT hematopoietic cells showed similar bone marrow cellularity and HSC numbers compared to controls suggesting that the bone marrow hypocellularity and reduced HSCs numbers in S6K1-/- mice were due to a cell intrinsic defect. To assess whether the reduced HSC number in S6K1-/- mice impacted the recovery of hematopoietic system following stress, WT and S6K1-/- mice were treated with a single dose of 5-fluorouracil (5-FU). In response to myelosuppressive stress, S6K1 deficiency resulted in increased frequency of HSCs in bone marrow despite a significant reduction in overall cellularity (n=12 in each group, p<0.02). Following administration of 5-FU, S6K1 deficiency resulted in increased cell cycle progression of HSCs in bone marrow and showed increased expression of CDK4 and CDK6 as compared to control suggesting that 5-FU administration results in upregulation of cell cycle regulatory genes in S6K1 deficient HSCs. Moreover, S6K1-/- mice showed more sensitivity to repeated injections of 5-FU (n=11 WT, 15 S6K1-/-, p<0.01). Given the differential role of S6K1 in HSCs and mature progenitors, we assessed the effect of S6K1 deficiency in HSC function. We performed competitive repopulation assay using S6K1 deficient HSCs. When transplanted into lethally irradiated primary and secondary recipients, S6K1 deficient HSCs show significantly reduced engraftment relative to controls (n=11-13 in each group; p<0.05). Interestingly, overexpression of S6K1 in wild type HSCs also resulted in reduced engraftment of HSCs in primary and secondary transplant recipients, suggesting that S6K1 overexpression in HSCs leads to decreased self-renewal. In summary, our study identifies S6K1 as a critical regulator of hematopoietic stem cell development and functions both under steady-state conditions as well as under conditions of genotoxic stress. Using both gain of function and loss of function approaches, we demonstrate that the level of expression and activation of S6K1in HSCs plays a critical role in the maintenance of HSC self-renewal and engraftment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 470-470 ◽  
Author(s):  
Kentaro Hosokawa ◽  
Fumio Arai ◽  
Toshio Suda

Abstract Hematopoietic stem cells (HSCs) are responsible for blood cell production throughout the lifetime of individuals. Interaction of HSCs with their particular microenvironments, known as stem cell niches, is critical for maintaining the stem cell properties, including self-renewal capacity and the ability of differentiation into single or multiple lineages. The niche cells produce signaling molecules, extracellular matrix, and cell adhesion molecules, and regulate stem cell fates. Recently, it was clarified that long-term bone marrow (BM) repopulating (LTR) HSCs exist frequently in BM trabecular bone surface, and that N-cadherin + spindle-shaped osteoblasts (OBs) are identified as a major niche component. We found that side-population (SP) in c-Kit +Sca-1 +Lin −(KSL) fraction, which is the quiescent HSC in the OB niche, expressed N-cadherin. Expression of N-cadherin in both of the quiescent HSCs and OBs thought to be essential for an adherens junction between HSCs and OBs in the niche. However, the role of N-cadherin in hematopoiesis is still unclear. In this study, we focused on the function of N-cadherin in the maintenance of the stem cell specific property, such as cell adhesion, quiescence, and LTR-activity. To clarify the function of N-cadherin in hematopoiesis, we prepared the retroviruses expressing wild-type N-cadherin, transfected retroviruses into OP9 stromal cell line and KSL cells, and performed the coculture. After coculture of KSL cells with OP9 cells, long-term culture-initiating cells (LTC-ICs) were maintained on OP9 cells overexpressing WT-N-cadherin (OP9/WT-NCAD). In addition, overexpression of WT-N-cadherin in both of the KSL cells and stromal cells enhanced cobblestone formation. N-cadherin overexpressing KSL cell showed slow-cell division from the single cell, when they cultured on OP9/WT-N-cedherin or N-cadherin-Fc protein coated plates, suggesting that N-cadherin-mediated cell-cell adhesion between HSCs and stromal cells enhances the quiescence of HSCs and keeps HSCs in immature state in in vitro. To clarify the role of N-cadherin in the BM reconstitution ability of HSC, we transfected control-IRES-GFP, WT-N-cadherin-IRES-GFP and N-cedherin/390Δ-IRES-GFP retrovirus into the Ly5.1 BM mononuclear cells and transplanted into lethally irradiated Ly5.2 mice. N-cedherin/390Δ, which is a mutant N-cadherin with a deletion at the extracellular domain, exhibits a dominant negative effect on the activity of endogenous cadherins. Control and WT-N-cadherin expressing cell reconstitute the recipient mice BM, while N-cadherin/390Δ expressing cells did not. It suggests that the adhesion between HSCs and BM niche cell is indispensable for the LTR-activity. In addition, we found that WT-N-cadherin overexpressing HSCs were enriched in the SP fraction after 4 months of BM transplantation, indicating that N-cadherin-mediated cell adhesion induced HSCs in the quiescent and kept quiescent HSCs in the niche. Altogether, these observations suggest that N-cadherin is a critical niche factor for the maintenance of the quiescence and self-renewal activity of HSCs. N-cadherin promotes tight adhesion of HSCs to the niche and keeps HSCs in the quiescent state


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 941-941
Author(s):  
Pratibha Singh ◽  
Jennifer Speth ◽  
Peirong Hu ◽  
Louis M. Pelus

Abstract Abstract 941 Hematopoietic stem cells reside in osteoblastic and vascular niches within the bone marrow. The osteoblastic niche is composed of mesenchymal stem cell derived progenitor cells (MPC) and osteoblasts and are the main sources of the CXC chemokine CXCL12/SDF-1 in the bone marrow microenvironment. Several published studies suggest that the interaction between CXCR4 expressed on hematopoietic stem cells with SDF-1 produced in the bone marrow microenvironment is important for their retention in the bone-marrow. However, the role of SDF-CXCR4 signaling in formation and maintenance of osteoblastic niches in the bone marrow is not known. In this study, we examined the role of CXCR4 signaling in MPC proliferation and differentiation and its effects on hematopoietic stem cell (HSC) function. Flow cytometry analysis demonstrated that CXCR4 is expressed on the phenotypically defined MPC. Deletion of CXCR4 in tamoxifen cre inducible CXCR4flox-flox mice (verified by PCR and flow cytometry; 90% gene deletion and surface CXCR4 expression) results in significantly decreased numbers of Lin- CD45- CD31- Sca-1+ ALCAM- MPC (39±4.2%) and Lin- CD45- CD31- Sca-1-CD51+ osteoblasts (25±2.6%) in bone marrow 15 days after tamoxifen treatment. SDF-1 induced proliferation of CXCR4 deficient MPC was decreased by 4-fold compared to control, measured by the colony forming unit-fibroblast (CFU-F) assay. To determine, whether CXCR4 deficiency in bone marrow stromal cells affects SDF-1 induced HSC proliferation, we cultured FACS sorted wild-type SLAM SKL (103 cells) on CXCR4 deficient stroma for 5 days and total SLAM SKL cell numbers were counted by flow-cytometey analysis. CXCR4 deficient stroma failed to support optimal HSC proliferation and 48±5.2% less SLAM KSL cells was observed on CXCR4 deficient stroma compared to wild-type stroma. To investigate the mechanisms through which CXCR4-SDF-1 signaling regulates MPC proliferation, we evaluated the effect of SDF-1 treatment on expression of the anti-apoptotic and cell-cycle regulator protein, Survivin, in MPC. Multivariate intracellular flow cytometry demonstrated that Survivin expression increased by 23±4.2% in wild-type MPC after SDF-1 treatment (50ng/ml), however no significant increased was demonstrated in CXCR4 deficient MPC cells. CFU-F formation was reduced by 2.5 fold when the Survivin gene was conditionally deleted in MPC. Moreover, fewer SLAM SKL cells were detected on Survivin deficient stroma compared to wild-type stroma after SDF-1 treatment for 5 days. In conclusion, our data suggest that CXCR4-SDF-1 signaling mediated Survivin expression in MPC is important for their proliferation and maintenance of the bone-marrow hematopoietic niche. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3237-3237 ◽  
Author(s):  
Kam Tong Leung ◽  
Karen Li ◽  
Kam Sze Kent Tsang ◽  
Kathy Yuen Yee Chan ◽  
Pak Cheung Ng ◽  
...  

Abstract The stromal cell-derived factor-1 (SDF-1)/chemokine C-X-C receptor 4 (CXCR4) axis plays a critical role in homing, engraftment and retention of hematopoietic stem/progenitor cells. We previously demonstrated that expression of CD9 is a downstream signal of the SDF-1/CXCR4 axis, and that CD9 regulates short-term (20 hours) homing of cord blood (CB) CD34+ cells in the NOD/SCID mouse xenotransplantation model (Leung et al, Blood, 2011). Here, we provided further evidence that pretreatment of CB CD34+ cells with a CD9-neutralizing antibody significantly reduced their long-term (6 weeks) engraftment, as indicated by the presence of human CD45+ cells, in the recipient bone marrow and spleen by 70.9% (P = .0089) and 87.8% (P = .0179), respectively (n = 6). However, CD9 blockade did not bias specific lineage commitment, including the CD14+ monocytic, CD33+ myeloid, CD19+ B-lymphoid and CD34+ stem/progenitor cells (n = 4). We also observed an increase of the CD34+CD9+ subsets in the bone marrow (9.6-fold; P < .0001) and spleens (9.8-fold; P = .0014) of engrafted animals (n = 3-4). These data indicate that CD9 possesses important functions in regulating stem cell engraftment and its expression level on CD34+ cells is up-regulated in the target hematopoietic organs. Analysis of paired bone marrow (BM) and peripheral blood (PB) samples from healthy donors revealed a higher CD9 expression in BM-resident CD34+ cells (57.3% ± 8.1% CD9+ cells in BM vs. 29.3% ± 5.8% in PB; n = 5, P = 0.0478). Consistently, CD34+ cells in granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (MPB) expressed lower levels of CD9 (33.8% ± 3.0% CD9+ cells, n = 24), when compared with those in BM (56.4% ± 4.9% CD9+ cells, n = 8, P = 0.0025). In vitro exposure of MPB CD34+ cells to SDF-1 significantly enhanced CD9 expression (1.55-fold increase, n = 4, P = 0.0103), concomitant with a 75.2% reduction in the CD34+CXCR4+ subsets (P = 0.0118). Treatment of NOD/SCID chimeric mice with G-CSF increased the frequency of circulating CD45+ cells (3.4-fold) and CD34+ cells (3.3-fold), and substantially decreased the CD34+CD9+ subsets in the BM from 75.8% to 30.8%. Importantly, the decline in CD9 levels during G-CSF mobilization was also observed in the CD34+CD38-/low primitive stem cell subpopulation. Interestingly, in vitro treatment of BM CD34+ cells with G-CSF did not affect CD9 expression (n = 3), suggesting that a signaling intermediate is required for G-CSF-mediated CD9 down-regulation in vivo. Transwell migration assay revealed a significant enrichment of CD9- cells that were migrated towards a SDF-1 gradient (n = 4 for BM CD34+ cells, P = 0.0074; n = 7 for CB CD34+ cells, P = 0.0258), implicating that CD9 might negatively regulate stem cell motility. In contrast, pretreatment with the CD9-neutralizing antibody inhibited adhesion of CD34+ cells to the osteoblastic cell line Saos-2 by 33.5% (n = 2). Our results collectively suggest a previously unrecognized role of CD9 in stem cell retention by dual regulation of cell motility and adhesion, and reveal a dynamic regulation of CD9 expression in the BM microenvironment, which might represent an important event in controlling stem cell homing and mobilization. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 908-919 ◽  
Author(s):  
Osamu Ohneda ◽  
Christopher Fennie ◽  
Zhong Zheng ◽  
Christopher Donahue ◽  
Hank La ◽  
...  

Abstract Hematopoietic stem cells are capable of extensive self-renewal and expansion, particularly during embryonic growth. Although the molecular mechanisms involved with stem cell maintenance remain mysterious, it is now clear that an intraembryonic location, the aorta-gonad-mesonephros (AGM) region, is a site of residence and, potentially, amplification of the definitive hematopoietic stem cells that eventually seed the fetal liver and adult bone marrow. Because several studies suggested that morphologically defined hematopoietic stem/progenitor cells in the AGM region appeared to be attached in clusters to the ventrally located endothelium of the dorsal aorta, we derived cell lines from this intraembryonic site using an anti-CD34 antibody to select endothelial cells. Analysis of two different AGM-derived CD34+ cell lines revealed that one, DAS 104-8, efficiently induced fetal-liver hematopoietic stem cells to differentiate down erythroid, myeloid, and B-lymphoid pathways, but it did not mediate self-renewal of these pluripotent cells. In contrast, a second cell line, DAS 104-4, was relatively inefficient at the induction of hematopoietic differentiation. Instead, this line provoked the expansion of early hematopoietic progenitor cells of the lin−CD34+Sca-1+c-Kit+phenotype and was proficient at maintaining fetal liver–derived hematopoietic stem cells able to competitively repopulate the bone marrow of lethally irradiated mice. These data bolster the hypothesis that the endothelium of the AGM region acts to mediate the support and differentiation of hematopoietic stem cells in vivo. © 1998 by The American Society of Hematology.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 642-642
Author(s):  
Zanshe Thompson ◽  
Vera Binder ◽  
Michelle Ammerman ◽  
Ellen Durand ◽  
Leonard I. Zon ◽  
...  

Abstract Hematopoiesis is tightly regulated by a network of transcription factors and complexes that are required for the maintenance and development of HSCs. In a screen for epigenetic regulators of hematopoiesis in zebrafish, we identified a requirement of the tumor suppressor protein, Ing4, in hematopoietic stem and progenitor cell (HSPC) specification. Though the Ing4 mechanism of action remains poorly characterized, it has been shown to promote stem-like cell characteristics in malignant cells. This activity is, in part, due to the inhibitory role of Ing4 in the NF-kB signaling pathway. In the absence of Ing4, there is a significant increase in NF-kB target gene expression. As in the zebrafish, we have identified a requirement for Ing4 in murine hematopoiesis, where Ing4 deficiency impairs hematopoietic stem cell (HSC) function, but enhances multipotent progenitor cell (MPP) regenerative capacity. Given the role of Ing4 in both normal hematopoiesis and cancer, this gene likely has a critical role in regulation of stem cell self-renewal and maintenance. To define the role of Ing4 in zebrafish HSPCs, we designed an anti-sense morpholino oligo against Ing4 and injected into zebrafish embryos at the single cell stage. Embryos were screened using in situ hybridizations for c-myb and runx1 expression, which are highly expressed in the aorta, gonad, mesonephros (AGM) region in the developing zebrafish embryo. We found that Ing4-deficient zebrafish embryos lose >90% of runx1+/c-myb+ cells in the AGM, demonstrating a lack of HSPC specification. Analysis of ephrinB2 expression showed normal specification of the aorta in Ing4 morphant embryos, signifying that the step of HSPC specification is affected in the absence of Ing4. Overexpression of human Ing4 in zebrafish embryos resulted in increased HSPC marker staining suggesting that normal expression levels of Ing4 are required for HSC specification. As Ing4 is an epigenetic regulator that binds specific gene loci, we examined the chromatin occupancy of Ing4 in human peripheral blood CD34+ progenitor cells. Using ChIP-seq for Ing4 in CD34+ cells, we show that Ing4 binds to many regulators of blood development including MYB, LMO2, RUNX1, and IKAROS, and several NF-kB target genes. In other tissues, Ing4 negatively regulates NF-kB, so accordingly, loss of Ing4 results in an overabundance of NF-kB signaling. To address NF-kB target gene expression in Ing4-deficient zebrafish embryos, we performed qPCR analysis at 36hpf. These assays showed an increase in the expression of a subset of NF-kB target genes (IKBKE, IL-19, IL-1b, IL-20R). Simultaneous knockdown of both Ing4 and RelA, through combined morpholino injections against both factors, resulted in the rescue of HSC marker expression in the aorta. These results suggest that NF-kB inhibition could remediate the loss of Ing4. A mouse model for Ing4 deficiency was generated to further evaluate the role of Ing4 in differentiated immune cells. These mice are developmentally normal but are hypersensitive to stimulation with LPS. Interestingly, we found that Ing4-/- mice showed skewed hematopoiesis resulting in an increase in the number of short term-HSCs (ST-HSCs) (11.4% vs 31.7%) and a dramatic decrease in multipotent progenitor cells (MPPs) (47.9% vs 19.3%) along with concurrent modest increase in the population of long-term HSCs (LT-HSCs) (2.4% vs 5.5%). Additionally, there were alterations in stress hematopoiesis following hematopoietic stem cell transplant. Sorted LT-HSCs fail to engraft, suggesting an evolutionarily conserved requirement for Ing4 in HSCs. Surprisingly, competitive transplantation assay with Ing4-defecient MPPs versus wild-type showed dramatic increase in peripheral blood multilineage chimerism up to 9 months post-transplantation (19% vs. 59%). This lends to the hypothesis that Ing4 deficient MPPs gain self-renewal capabilities. Based on these exciting findings, we hypothesize that Ing4 normally functions as a critical suppressor for genes required for self-renewal and developmental potency in MPPs. Overall, our findings suggest that Ing4 plays a crucial role in the regulation of hematopoiesis and provides key tools for further identification and characterization of Ing4 pathways and functions. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document