scholarly journals Evaluation of Bone Marrow CD8+ tissue-Resident Memory T Cells in Multiple Myeloma

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4389-4389
Author(s):  
Melania Carlisi ◽  
Salvatrice Mancuso ◽  
Marco Pio La Manna ◽  
Valentina Orlando ◽  
Nadia Caccamo ◽  
...  

Background: CD8+ T cell responses are an essential component of the adaptive immune system. After resolution of infection a small population of memory cells is formed. In relation to circulatory patterns, different subsets of memory CD8+ T cells can be identified: the central memory (CM) and the effector memory T cells (EM) (Martin MD, et al., Front Immunol. 2018). In addition, it has been described a subset of resident memory T cells (TRM) permanently living in peripheral tissues, including the bone marrow (BM) (Di Rosa F., et al., Nat Rev Immunol. 2016). It is conceivable that these cells can contribute to the defence toward haematological tumours infiltrating the BM. Therefore, we performed a study to evaluate the frequency and the phenotype of BM CD8+ TRM in patients with multiple myeloma (MM). Moreover, to evaluate the contribution that the microenvironment can have on the homeostatic and functional maintenance of these cells, we performed in vitro experiments of BM-derived mononucleate cells of MM patients cultured in the presence of different homeostatic cytokines. Patients and Methods: we prospectively analysed 21 patients, 16 with a new diagnosis of IgA, IgG and light chain multiple myeloma (MM) and 5 with IgA and IgG smoldering myeloma (SM). At the time of the bone marrow assessment, we collected a sample for the flow cytometry analysis and in vitro cell culture. The ex vivo evaluation of CD8+ TRM frequency and phenotype in BM samples was performed using anti-human mAbs to CD3, CD103, CD69, CD45, CD8, CD45RA and CCR7 (CD197). The sequential gating strategy was: gate on lymphocytes population with CD45 vs. SSC, 7AAD negative cells, exclusion of doublets with FSC-H vs. FSC-A, CD8+CD3+ and evaluation of percentage of CD103+CD69+ cells. Was also established the subsets using CCR7 and CD45RA. Moreover, to evaluate the role of the microenvironment on maintenance of these cells, we performed in vitro experiments of BM-derived mononucleate cells of MM patients cultured in the presence of homeostatic cytokines in maintaining these cells for a long time. BM derived mononucleate cells from patients were then cultured in vitro in complete RPMI with 10% of human serum for 4 days with IL15 (25 ng/ml), IL7 (25 ng/ml) and TGF-β (2 ng/ml), in different combination and in RPMI alone. After culture, we analyzed the frequency of CD8+ TRM and the proliferating fraction with intracellular staining with anti human Ki67 APC. Non parametric Mann-Whitney and Kruskall-wallis tests were performed to determine statistical differences in the distribution of the results using GraphPad Prism 7.00. Values of * p<0.05 were considered significant. Results: the ex vivo average frequency of CD8+ TRM in 16 MM patients was of 0.48% and the phenotype was represented mainly by TEM (72,9%) followed by TEMRA (12.3%) and (7,6%) of naïve cells and (7,2%) of TCM (Fig. A). The comparison with the ex vivo frequency of CD8 TRM in SM patients did not show any significant difference between two groups (data not showed). To evaluate factors capable of maintaining or to induce the expansion of these cells in vitro, we maintained BM-derived mononucleate cells from MM patients for 4 days in presence of homeostatic cytokines, IL-15, IL-7 plus IL-15 and IL-7 together with IL-15 and TGF-β. The result showed an increase of the percentage of CD8+ TRM in all conditions tested, especially in presence of all cytokines (Fig. B), with a percentage of CD8 TRM of 2,74%. Regarding the phenotype distribution, we observed an expansion of CM compared to the other subsets (Fig. C). We also analysed the percentage of CD8+ TRM proliferating through the identification of Ki67 positive cells. Data highlight that IL-15 gives the strongest proliferative input, but also other cytokines contribute to the homeostatic maintenance of these cells (Fig. D). Conclusions: we evaluated the frequency and the phenotype of CD8 TRM in BM of MM patients compared to SM patients with the conclusion that these cells do not differ significantly in percentage and phenotypic distribution in both conditions. In MM patients, the increase of CD8+ TRM cells with a CM phenotype after in vitro culture with the three cytokines could have an anti-tumor role in the control of MM. Further studies are needed to investigate the cytotoxic capacity of these cells against myeloma cells, in order to study their functional role, also in the perspective of a possible use in future therapeutic programs. Disclosures No relevant conflicts of interest to declare.

2006 ◽  
Vol 204 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Catherine Riou ◽  
Bader Yassine-Diab ◽  
Julien Van grevenynghe ◽  
Roland Somogyi ◽  
Larry D. Greller ◽  
...  

The molecular events involved in the establishment and maintenance of CD4+ central memory and effector memory T cells (TCM and TEM, respectively) are poorly understood. In this study, we demonstrate that ex vivo isolated TCM are more resistant to both spontaneous and Fas-induced apoptosis than TEM and have an increased capacity to proliferate and persist in vitro. Using global gene expression profiling, single cell proteomics, and functional assays, we show that the survival of CD4+ TCM depends, at least in part, on the activation and phosphorylation of signal transducer and activator of transcription 5a (STAT5a) and forkhead box O3a (FOXO3a). TCM showed a significant increase in the levels of phosphorylation of STAT5a compared with TEM in response to both IL-2 (P &lt; 0.04) and IL-7 (P &lt; 0.002); the latter is well known for its capacity to enhance T cell survival. Moreover, ex vivo TCM express higher levels of the transcriptionally inactive phosphorylated forms of FOXO3a and concomitantly lower levels of the proapoptotic FOXO3a target, Bim. Experiments aimed at blocking FOXO3a phosphorylation confirmed the role of this phosphoprotein in protecting TCM from apoptosis. Our results provide, for the first time in humans, an insight into molecular mechanisms that could be responsible for the longevity and persistence of CD4+ TCM.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2116-2116 ◽  
Author(s):  
Kodandaram Pillarisetti ◽  
Eric Baldwin ◽  
Alexander Babich ◽  
Nate Majewski ◽  
Linda Barone ◽  
...  

Abstract B-cell maturation antigen (BCMA) is a tumor necrosis factor (TNF) family surface protein predominantly expressed on terminally differentiated B-cells. BCMA signals through P38/NF-κB pathway upon binding to its ligands; a proliferation inducing ligand (APRIL) and B-cell activator of the TNF family (BAFF) and promote anti-apoptotic gene expression. BCMA expression is elevated in plasma blasts, plasma cells from spleen and bone marrow and correlates with disease progression in multiple myeloma (MM). BCMA expression in premalignant MM settings such as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) also gives an opportunity for early cancer interception. To target cancer cells expressing BCMA, we developed a BCMAxCD3 bispecific antibody using the Genmab DuoBody® technology (Ab-957) to recruit T cells to BCMA-expressing MM cells so that T cells could be activated and induced to kill BCMA+ cancer cells. This antibody can induce cytotoxicity of BCMA+ MM cell lines in vitro (H929 cells: EC50=0.15nM, MM1.R cells: EC50=0.06nM, RPMI8226 cells: EC50=0.45nM) with a concomitant T cell activation (H929 cells: EC50=0.21nM, MM1.R cells: EC50=0.1nM, RPMI8226 cells: EC50=0.28nM). In contrast, this antibody was unable to kill BCMA- cancer cell line (MV4-11), demonstrating the specificity of the cytotoxicity. Ab-957 also inhibited tumor development or growth in two BCMA+ MM murine xenograft models inoculated with human T cells. Furthermore, this antibody could deplete BCMA+ cells in bone marrow samples from MM patient's in an ex-vivo assay with an average EC50 value of 2.5 nM. Lastly, Ab-957 is well-tolerated in cynomolgus monkey and is being developed for Phase I clinical trial in patients with multiple myeloma. Disclosures Pillarisetti: Janssen: Employment. Baldwin:Janssen: Employment. Babich:Janssen: Employment. Majewski:Janssen: Employment. Barone:Janssen: Employment. Li:Janssen: Employment. Zhang:Janssen: Employment. Chin:Janssen: Employment. Luistro:Janssen: Employment. Mendonça:Janssen: Employment. Nanjunda:Janssen: Employment. Rudnick:Janssen Pharmaceuticals R&D: Employment. Bellew:Janssen: Employment. Elsayed:Janssen: Employment, Other: stock options. Attar:Janssen: Employment. Gaudet:Janssen Pharmaceuticals R&D: Employment, Other: Stock options, Patents & Royalties: pending, not yet issued.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A19.2-A20
Author(s):  
C Ripamonti ◽  
C Steinkuhler ◽  
G Fossati

BackgroundCentral memory T cells show superior persistence and antitumor immunity compared to effector memory and effector T cells. T effector cells respond quickly to tumors, but they are terminally differentiated and undergo apoptosis upon killing activity. T memory differentiate rapidly into T effector cells and maintain a pool of cells that can continuously differentiate thus sustaining a more lasting response. In adoptive cell therapy (ACT), T cells infused into patients may have a limited time of activity if they are terminally differentiated, and may rapidly undergo exhaustion and apoptosis. The development of new strategies based on novel agents able to generate memory T cells ex-vivo is important for a successful clinical application of ACT.We have studied the effect of a potent and selective HDAC6 inhibitor, ITF3756, on CD8 T cells differentiation during an in vitro induced exhaustion process.Materials and MethodsTo induce exhaustion purified human CD8+ cells were stimulated twice with anti-CD3/CD28 beads (1:2) during 5 days, with or without ITF3756 1μM or 2μM added at all times of stimulation. At day 3 and 5 the expression of exhaustion, memory and effector T cells markers were analyzed by flow cytometry. Cells were also collected at day 5 for genes expression analysis. Expression of exhaustion, T phenotype, metabolic pathway and inflammatory cytokines were investigated by qPCR. Paired two-tailed t-tests was used to determine statistical significance between control versus treatment group at day 3 and 5 in 10 different donors. P-values ≤ 0.05 were considered significant.ResultsITF3756 1μM increased significantly the T central memory phenotype (CD45RO+CD62L+CCR7+) and decreased significantly the T effector phenotype (CD45RO+CD62L-CCR7-). The expression of CD62L in T central memory cells was significantly increased in agreement with the high expression of this marker in naïve and memory T cells. ITF3756 treatment decreased significantly the expression of exhaustion markers PD-1 and LAG-3. No effect was observed on TIM-3 expression. In agreement with the data obtained with protein analysis, treatment with ITF3756 reduced the mRNA level of Pd-1 and Lag-3. Gene expression of Tim-3 was also downmodulated, but this effect did not result in reduction of protein expression at the time of detection. ITF3756 reduced the expression of t-bet (Tbx21) driving T effector differentiation and increased genes related to T memory phenotype (Eomes, Lef-1 and albeit slightly, Tcf-7). T cell activation requires a metabolic reprogramming that supports highly proliferative phenotype and T effector differentiation. ITF3756 treatment decreased both Hif-1α and Glut-1 gene expression that are associated with TCR activation during the exhaustion process. T central memory cells produce less cytokines compared to T effector and effector memory cells. ITF3756 treatment decreased the genes expression of Il-2, Ifn-γ and Tnf-α. All these effects resulted dose dependent.ConclusionsThe selective inhibitor of HDAC6 ITF3756 delays the terminal differentiation of CD8 T cells and increases the percentage of memory T cells with a reduced expression of exhaustion markers in vitro. These results are the basis to further explore the possible use of ITF3756 as a safe ex vivo treatment of CD8 T cells for adoptive cell transfer.Disclosure InformationC. Ripamonti: A. Employment (full or part-time); Significant; Italfarmaco SpA. C. Steinkuhler: A. Employment (full or part-time); Significant; Italfarmaco SpA. G. Fossati: A. Employment (full or part-time); Significant; Italfarmaco SpA.


2021 ◽  
Vol 9 (3) ◽  
pp. e001803
Author(s):  
Louise M E Müller ◽  
Gemma Migneco ◽  
Gina B Scott ◽  
Jenny Down ◽  
Sancha King ◽  
...  

BackgroundMultiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported.MethodsThis study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment.ResultsUsing the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes.ConclusionThese data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A168-A168
Author(s):  
Eric Lutz ◽  
Lakshmi Rudraraju ◽  
Elizabeth DeOliveira ◽  
Amanda Seiz ◽  
Monil Shah ◽  
...  

BackgroundMarrow infiltrating lymphocytes (MILsTM) are the product of activating and expanding bone marrow T cells.1 The bone marrow is a specialized niche in the immune system enriched for antigen-experienced, memory T cells. In patients with multiple myeloma and other hematological malignancies that relapse post-transplant, MILs have been shown to contain tumor antigen-specific T cells and adoptive cell therapy (ACT) using MILs has demonstrated antitumor activity.2 3 The bone marrow has been shown to harbor tumor-antigen specific T cells in patients with melanoma,4 5 glioblastoma,6 breast,7 non-small-cell lung8 and pancreatic cancers.9 Here, we sought to determine if tumor-specific MILs could be expanded from the bone marrow of patients with a range of different solid tumors.MethodsBone marrow and blood samples were collected from patients with advanced and metastatic cancers. To date, samples have been collected from a minimum of four patients with non-small cell lung cancer (NSCLC), prostate cancer, head and neck cancer, glioblastoma, and breast cancer. Samples from patients with multiple myeloma were used as a reference control. Utilizing a 10-day proprietary process, MILs and peripheral blood lymphocytes (PBLs) were activated and expanded from patient bone marrow and blood samples, respectively. T cell lineage-specific markers (CD3, CD4 and CD8) were characterized by flow cytometry pre- and post-expansion.Tumor-specific T cells were quantitated in expanded MILs and PBLs using a previously described cytokine-secretion assay [2]. Briefly, autologous antigen-presenting cells (APCs) were pulsed with lysates from allogeneic cancer cell lines and co-cultured with activated MILs or PBLs. APCs pulsed with irrelevant mis-matched cancer cell line lysates or media alone were used as negative controls. Tumor-specific T cells were defined as the IFNgamma-producing population by flow cytometry.ResultsMILs were successfully expanded from all patient bone marrow samples tested, regardless of tumor type. Cytokine-producing tumor-specific CD4+ and CD8+ T cells were detected in each of the expanded MILs. In contrast, tumor-specific T cells were not detected in any of the matched activated and expanded PBLs.ConclusionsMILs have been successfully grown for all solid tumor types evaluated, including NSCLC, prostate, head and neck, glioblastoma and breast cancer. Clinical studies have been completed in patients with multiple myeloma and other hematological cancers. 2 3 A phase IIa trial to evaluate MILs in combination with a checkpoint inhibitor is underway in patients with anti-PD1/PDL1-refractory NSCLC (ClinicalTrials.gov Identifier: NCT04069936). The preclinical data presented herein demonstrate that expanding MILs is feasible. MILs-based therapies hold therapeutic promise across a wide range of tumor indications.Ethics ApprovalThis study was approved by each participating instituion’s IRB.ReferencesBorrello I and Noonan KA. Marrow-Infiltrating Lymphocytes - Role in Biology and Cancer Therapy. Front Immunol 2016 March 30; 7(112)Noonan KA, Huff CA, Davis J, et al. Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci. Transl. Med 2015;7:288ra78.Biavati L, Noonan K, Luznik L, Borrello I. Activated allogeneic donor-derived marrow-infiltrating lymphocytes display measurable in vitro antitumor activity. J Immunother 2019 Apr;42(3):73–80.Müller-Berghaus J, Ehlert K, Ugurel S, et al. Melanoma-reactive T cells in the bone marrow of melanoma patients: association with disease stage and disease duration. Cancer Res 2006;66(12):5997–6001.Letsch A, Keilholz U, Assfalg G, et al., Bone marrow contains melanoma-reactive CD8+ effector T Cells and, compared with peripheral blood, enriched numbers of melanoma-reactive CD8+ memory T cells. Cancer Res 2003 Sep 1;63(17):5582–5586.Chongsathidkiet P, Jackson C, Koyama S, et al., Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nature Medicine 2018 Aug 13; 24:1459–1468.Feuerer M, Rocha M, Bai L, et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer 2001; 92(1):96–105.Safi S, Yamauchi Y, Stamova S, et al. Bone marrow expands the repertoire of functional T cells targeting tumor-associated antigens in patients with resectable non-small-cell lung cancer. Oncoimmunology 2019;8(12):e1671762.Schmitz-Winnenthal FH, Volk C, Z’Graggen K, et al. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 2005;65(21):10079–87.


2017 ◽  
Vol 8 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Andreas Meryk ◽  
Michael Keller ◽  
Brigitte Jenewein ◽  
...  

2020 ◽  
Vol 22 (5) ◽  
pp. 837-846
Author(s):  
E. A. Blinova ◽  
A. V. Kolerova ◽  
V. E. Balyasnikov ◽  
V. A. Kozlov

IL-7 is a key factor for the survival and maintenance of CD4+ central (Tcm) and effector (Tem) memory cells in the whole body. In many autoimmune diseases, an elevated level of IL-7 is detected in blood serum and at the site of inflammation, thus suggesting participation of this homeostatic factor in the survival of memory T cells, including auto-reactive clones, in inflammatory disorders. The aim of the study was to investigate the mechanisms of maintaining CD4+ memory T cells under normal and inflammatory conditions. We developed an in vitro model of inflammation, based on induction of pro-inflammatory cytokines, and then evaluated the effects of IL-7 upon purified sorted populations of CD4+Tcm and Tem under normal conditions and in vitro inflammatory model. IL-7 treatment promoted maintenance of CD4+Tcm phenotype in all variants of cultures. In the absence of contact with adherent cell fraction, the IL-7-induced proliferation of Tcm and Tem was slightly reduced, both under normal and inflammatory conditions, thus suggesting low sensitivity of memory T cells to contacts with MHC, and, probably, a requirement for additional signals to provide complete stimulation with IL-7. The last suggestion is also supported by data about CD127 and CD132 expression, i.e., in the absence of contact with MHC, the proportion of CD127+CD132+ cells was decreased in both subpopulations of CD4+ memory cells. Upon in vitro cultures, IL-7 contributed to decreased expression of CD127, and increased expression of CD132 on CD4+Tcm and Tem. We have evaluated the CD4+Tcm and Tem populations by affinity of T cell receptor (TCR), using the level of CD5 expression. Т cells with high TCR affinity for self-antigens are known to have higher expression of CD5. In comparison to Tem, the Tcm contained more CD5high cells. In cultures, IL-7 promoted a high level of CD5 expression on Tcm, which was comparable to levels observed in peripheral blood cells. High CD5 expression on Tem was observed after stimulation with IL-7 in the in vitro inflammatory model. In the absence of contact with MHC, the number of CD5high cells decreased among CD4+Tem and Tcm. Thus, CD4+Tcm cells with high affinity for autologous antigens are probably dependent on the presence of homeostatic factors, in particular, IL-7, and contacts with antigen-presenting cells (APCs). Under conditions of inflammation, no changes were revealed in the mechanism of maintaining CD4+Tcm, in contrast to CD4+Tem. Being less dependent on IL-7 under normal conditions, CD4+CD5highTem are accumulated in the presence of IL-7 under in vitro inflammatory conditions.


Leukemia ◽  
2016 ◽  
Vol 31 (8) ◽  
pp. 1743-1751 ◽  
Author(s):  
S Hipp ◽  
Y-T Tai ◽  
D Blanset ◽  
P Deegen ◽  
J Wahl ◽  
...  

Abstract B-cell maturation antigen (BCMA) is a highly plasma cell-selective protein that is expressed on malignant plasma cells of multiple myeloma (MM) patients and therefore is an ideal target for T-cell redirecting therapies. We developed a bispecific T-cell engager (BiTE) targeting BCMA and CD3ɛ (BI 836909) and studied its therapeutic impacts on MM. BI 836909 induced selective lysis of BCMA-positive MM cells, activation of T cells, release of cytokines and T-cell proliferation; whereas BCMA-negative cells were not affected. Activity of BI 836909 was not influenced by the presence of bone marrow stromal cells, soluble BCMA or a proliferation-inducing ligand (APRIL). In ex vivo assays, BI 836909 induced potent autologous MM cell lysis in both, newly diagnosed and relapsed/refractory patient samples. In mouse xenograft studies, BI 836909 induced tumor cell depletion in a subcutaneous NCI-H929 xenograft model and prolonged survival in an orthotopic L-363 xenograft model. In a cynomolgus monkey study, administration of BI 836909 led to depletion of BCMA-positive plasma cells in the bone marrow. Taken together, these results show that BI 836909 is a highly potent and efficacious approach to selectively deplete BCMA-positive MM cells and represents a novel immunotherapeutic for the treatment of MM.


2007 ◽  
Vol 82 (1) ◽  
pp. 471-486 ◽  
Author(s):  
R. Alvarez ◽  
J. Reading ◽  
D. F. L. King ◽  
M. Hayes ◽  
P. Easterbrook ◽  
...  

ABSTRACT Understanding why human immunodeficiency virus (HIV) preferentially infects some CD4+ CD45RO+ memory T cells has implications for antiviral immunity and pathogenesis. We report that differential expression of a novel secreted factor, ps20, previously implicated in tissue remodeling, may underlie why some CD4 T cells are preferentially targeted. We show that (i) there is a significant positive correlation between endogenous ps20 mRNA in diverse CD4 T-cell populations and in vitro infection, (ii) a ps20+ permissive cell can be made less permissive by antibody blockade- or small-interference RNA-mediated knockdown of endogenous ps20, and (iii) conversely, a ps20low cell can be more permissive by adding ps20 exogenously or engineering stable ps20 expression by retroviral transduction. ps20 expression is normally detectable in CD4 T cells after in vitro activation and interleukin-2 expansion, and such oligoclonal populations comprise ps20positive and ps20low/negative isogenic clones at an early differentiation stage (CD45RO+/CD25+/CD28+/CD57−). This pattern is altered in chronic HIV infection, where ex vivo CD4+ CD45RO+ T cells express elevated ps20. ps20 promoted HIV entry via fusion and augmented CD54 integrin expression; both of these effects were reversed by anti-ps20 antibody. We therefore propose ps20 to be a novel signature of HIV-permissive CD4 T cells that promotes infection in an autocrine and paracrine manner and that HIV has coopted a fundamental role of ps20 in promoting cell adhesion for its benefit. Disrupting the ps20 pathway may therefore provide a novel anti-HIV strategy.


Sign in / Sign up

Export Citation Format

Share Document