scholarly journals Metabolomic Characterization of Red Blood Cell Differentiation

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Kelsey Temprine ◽  
Amanda Sankar ◽  
Costas Lyssiotis ◽  
Yatrik Shah

Background: Erythropoiesis is the highly coordinated multi-step process by which multipotent hematopoietic stem cells differentiate into mature enucleated red blood cells (RBCs). As erythroid cells become more terminally differentiated, they undergo changes in morphology and gene expression, start synthesizing hemoglobin, commit to an irreversible loss of proliferation, and eventually expulse their nuclei and other cytoplasmic organelles. Thus, RBCs must rely on their proteome and metabolome for proper function. The RBC proteome is estimated to contain 2,800 proteins, including a variety of receptors and transporters that allow RBCs to uptake xenobiotics or endogenous metabolites as they circulate for ∼120 days. Furthermore, they are metabolically active with glycolysis, nucleotide catabolism, and glutathione metabolism as the major pathways supporting cell survival and function. However, it is unclear how the metabolome is altered during erythropoiesis, what role metabolites play in normal erythropoiesis, and if dysregulation of metabolites contributes to diseases of ineffective erythropoiesis, such as sickle cell anemia and thalassemia. Methods: Four models of erythropoiesis were used in this study. 1) Mice were treated with phenylhydrazine (Phz) to induce acute hemolysis followed by erythropoietic recovery, leading to an increase in circulating reticulocytes. 2) Mice were lethally irradiated and transplanted with wild-type or sickle cell bone marrow, leading to anemic profiles in sickle cell chimeras. 3) The mouse erythroleukemic (MEL) cell line was treated with DMSO to induce differentiation. 4) The human erythroleukemic (K562) cell line was treated with sodium butyrate to induce differentiation. For the in vivo mouse models, blood was collected from control and treated animals, and complete blood count (CBC) analysis was performed. For the in vitro cell culture models, the mRNA levels of β-globin were measured by Q-RT-PCR in control and differentiated cells, and the degree of hemoglobinization was determined visually and via staining for heme. In addition, metabolites were extracted from the collected RBCs and erythroleukemic cell lines, and a Snapshot LC/MS metabolomic platform was used to identify commonly altered metabolites. Results: We first validated our four models of erythropoiesis. Treatment with Phz decreased the number of total RBCs while increasing the RBC distribution width, indicating an increased number of reticulocytes (more immature RBCs) in circulation. Similar results were seen in the sickle cell chimeras. Treatment of MEL and K562 cells with DMSO and sodium butyrate, respectively, resulted in increased expression of β-globin, increased levels of heme, and increased red color. Then, using our Snapshot metabolomic platform, we identified global changes in RBC metabolism during erythropoiesis. Analyses of the commonly altered metabolites in the in vitro and in vivo models revealed an increase in amino acid, mitochondrial, and urea cycle metabolism during erythropoiesis. L-aspartate levels were particularly upregulated, especially in DMSO-treated MEL cells. We are now investigating the role of aspartate in the regulation of erythropoiesis. Conclusions: We defined how the metabolome was altered in multiple in vitro and in vivo models of erythropoiesis and identified global changes in RBC metabolism between the different models. Specifically, we found that L-aspartate was upregulated during RBC differentiation in all four models. Aspartate is an amino acid that plays a role in many processes in cells, including nucleotide biosynthesis, redox homeostasis, and amino acid biosynthesis. We hypothesize that aspartate metabolism is critical for RBC differentiation and that its dysregulation exacerbates disease of ineffective erythropoiesis, such as sickle cell anemia and β-thalassemia. We are currently testing its role in inducing hemoglobinization and in regulating the commitment of erythroid progenitor cells to an irreversible loss of proliferation. Overall, we believe that understanding the precise mechanisms by which cellular metabolism plays a role in proper RBC differentiation may lead to better therapies for diseases of ineffective erythropoiesis, such as sickle cell anemia and thalassemia. Disclosures No relevant conflicts of interest to declare.

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1435
Author(s):  
Divya Beri ◽  
Manpreet Singh ◽  
Marilis Rodriguez ◽  
Karina Yazdanbakhsh ◽  
Cheryl Ann Lobo

Babesia is an intraerythrocytic, obligate Apicomplexan parasite that has, in the last century, been implicated in human infections via zoonosis and is now widespread, especially in parts of the USA and Europe. It is naturally transmitted by the bite of a tick, but transfused blood from infected donors has also proven to be a major source of transmission. When infected, most humans are clinically asymptomatic, but the parasite can prove to be lethal when it infects immunocompromised individuals. Hemolysis and anemia are two common symptoms that accompany many infectious diseases, and this is particularly true of parasitic diseases that target red cells. Clinically, this becomes an acute problem for subjects who are prone to hemolysis and depend on frequent transfusions, like patients with sickle cell anemia or thalassemia. Little is known about Babesia’s pathogenesis in these hemoglobinopathies, and most parallels are drawn from its evolutionarily related Plasmodium parasite which shares the same environmental niche, the RBCs, in the human host. In vitro as well as in vivo Babesia-infected mouse sickle cell disease (SCD) models support the inhibition of intra-erythrocytic parasite proliferation, but mechanisms driving the protection of such hemoglobinopathies against infection are not fully studied. This review provides an overview of our current knowledge of Babesia infection and hemoglobinopathies, focusing on possible mechanisms behind this parasite resistance and the clinical repercussions faced by Babesia-infected human hosts harboring mutations in their globin gene.


Anemia ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mário Angelo Claudino ◽  
Kleber Yotsumoto Fertrin

Sickle cell anemia is one of the best studied inherited diseases, and despite being caused by a single point mutation in theHBBgene, multiple pleiotropic effects of the abnormal hemoglobin S production range from vaso-occlusive crisis, stroke, and pulmonary hypertension to osteonecrosis and leg ulcers. Urogenital function is not spared, and although priapism is most frequently remembered, other related clinical manifestations have been described, such as nocturia, enuresis, increased frequence of lower urinary tract infections, urinary incontinence, hypogonadism, and testicular infarction. Studies on sickle cell vaso-occlusion and priapism using bothin vitroandin vivomodels have shed light on the pathogenesis of some of these events. The authors review what is known about the deleterious effects of sickling on the genitourinary tract and how the role of cyclic nucleotides signaling and protein kinases may help understand the pathophysiology underlying these manifestations and develop novel therapies in the setting of urogenital disorders in sickle cell disease.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3566-3566
Author(s):  
Myriam Salazar-Terreros ◽  
Kleber Yotsumoto Fertrin ◽  
Nicolas Moreno Reyes ◽  
Fernando Ferreira Costa ◽  
Carla F. Franco-Penteado

Mast cell function (MC) in pathologic states can be studied through their ability to secrete mediators in vitro depending on MC phenotype and the nature of the stimuli. Reports on MC mediators in sickle cell anemia (SCA) patients are scarce, but clinical signs of MC activation syndrome, such as increased plasma histamine in vaso‐occlusive crisis (VOC), and normal or slightly elevated serum tryptase have been reported. However, assessing the biological relevance of MC as a cytokine source is more challenging because it is unclear under which circumstances they secrete those products in vivo, or if the cytokines measured systemically stem from a different cell type. We aimed to investigate the profile of mediators involved in the inflammatory process produced by MC in SCA. Methods:The supernatant of 5-week old MC cultures (17 SCA, 8 HV) obtained from peripheral blood CD34+ cells from 29 SCA patients and 13 healthy volunteers (HV) was analyzed using a multiplex platform and colorimetric assays for endothelin-1 (ET-1) and substance P (SP) (10 SCA, 6 HV). A correlation matrix (Pearson correlations, R software, v. 3.6.1) was generated using laboratory and clinical data chosen based on their value as inflammatory or prognosis markers (hydroxyurea [HU] treatment, fetal hemoglobin [HbF], hemoglobin [Hb], vaso-occlusive crisis [VOC], percentage of peripheral blood neutrophils, eosinophils (Eos), basophils, erythroblasts, and reticulocytes), MC surface expression of CD117, CD48 and CD63, and the supernatant content of 11 cytokines. To investigate MC cytokine release, we tested the supernatants from Eos-MC co-cultures (3:1 ratio), and after stimulation with ET-1 (20 nM), SP (10 µM) and imatinib (20 µg/ml)(n=3 per treatment). Results: Out of 26 cytokines, we found elevated levels of the following in the supernatants of SCA-MC cultures (data represented as mean in pg/ml±SE): TNFα: SCA=88.7±18.4, HV=32.6±3.8; IFNγ: SCA=55.3±11.2, HV=15.7±1.8; MCP1: SCA=555.0±147.2, HV=145.3±35.2; RANTES: SCA=24.7±3.9, HV=10.7±1.8 (p<0.05). However, SCA-MC from patients treated with HU (n = 11) showed higher values of IL-1b, IL-4, IL-5, IL-9, IL-15, and FGF than HV (n=8) and HU-free patients (n=6) (p<0.05). Supernatants from SCA-MC had higher ET-1 production compared to HV-MC (SCA=16.3±1.2, HV=11.93±1.3, pg/ml, p=0.02) but SP production was similar (SCA=27.9±1.3; HV=31.49±0.7 pg/ml). ET-1 stimulation of MC cultures caused 2-fold increase in IL-1AR production on HV-MC, but failed to produce any effect on SCA-MC. Similarly, imatinib reduced FGF only in HV-MC samples (HV: 15.1±3.5, HV-HU: 4.0±1.6, pg/ml). No effect on cytokine production was observed with SP. Conversely, Eos-MC cocultures showed a 10- and 4-fold increase of IL-5 and IL-9, respectively, regardless of the origin of Eos (HV or SCA). SCA-MC/SCA-Eos co-cultures had elevated proinflammatory (IL-1b, IL-12, TNF-α) and angiogenic (FGF, VEGF) cytokines, RANTES, IL-7, IL-4, and IL1-RA compared with SCA-MC/HV-Eos and HV-MC/HV-Eos (p<0.05). Preliminary multiparametric analysis on data from SCA patients showed a strong negative correlation between HU therapy and VGEF production, and between HbF levels and CD63 expression (MC activation marker).We also found a positive correlation between history of VOC and eotaxin-1 produced by SCA-MC. Conclusions: We found that MC responses depend both on the origin of the cultured cell and the stimuli utilized. Despite differences between in vitro and in vivo MC populations, our data show that cultured SCA-MC have a sustained activated state and produce a repertoire of mediators that could contribute to a perivascular microenvironment in favor of leukocyte and endothelium activation. In terms of cytokine production, cultured SCA-MC were more sensitive to stimulation by SCA-Eos than by HV-Eos, which may be relevant to the pathophysiology of airway inflammation in SCA patients with asthma. Differences in cytokine production between SCA-MC cultures from patients treated or not with HU may reflect the variability in adherence to treatment, individual response to each compound, or epigenetic modifications during the MC differentiation process that affect the phenotype of the mature MC. These results support that mediators produced by MC can contribute to the chronic inflammatory state and may be implicated in exacerbated responses to eosinophil activation in SCA. Disclosures Fertrin: Agios Pharmaceuticals, Inc.: Research Funding.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 161-165 ◽  
Author(s):  
MS Guis ◽  
WM Lande ◽  
N Mohandas ◽  
R Pennathur-Das ◽  
H Preisler ◽  
...  

Abstract The effect of dimethyl adipimidate (DMA), an amino-reactive crosslinking reagent with demonstrated antisickling properties in vitro, on the survival of 51Cr-labeled autologous sickle cells was evaluated in five adult males with sickle cell anemia. The survival of cells pretreated with 5 mmol/L DMA (pH 7.4), normal (t1/2 28–33 days) in four subjects and near-normal (t1/2 20 days) in the fifth, was considerably longer than that usually observed in sickle cell disease. In fact, the effect of DMA on the survival of sickle cells in vivo equals or exceeds that of any other agent tested to date. In three subjects, the survival of a second infusion of DMA-treated red cells was much shorter (t1/2 1.8, 3, 4.5 days) than in the initial study. An antibody was detected in the serum of these subjects that was directed to DMA-treated red cells. Modification of the immunogenicity of treated cells will be required before further consideration of DMA for use in the therapy of sickle cell anemia.


1968 ◽  
Vol 127 (4) ◽  
pp. 711-716 ◽  
Author(s):  
Johanna Döbler ◽  
John F. Bertles

Venous blood removed anaerobically from patients with sickle-cell anemia was transferred immediately into fixative, thus precluding significant loss or gain of oxygen by the cells. Electron microscopy demonstrated an intraerythrocytic fibrillar fine structure similar to that described in prior studies on erythrocytes sickled by deoxygenation in vitro. Observations reported here lead to these conclusions: (a) explanations of the sickling process derived from in vitro experimentation may with validity be applied to sickling in vivo; and (b) the term "sickled" must be used with caution: a sickle-shaped membrane does not necessarily endose Hb S in filamentous form.


2020 ◽  
Vol 222 (9) ◽  
pp. 1531-1539
Author(s):  
Razieh Kebriaei ◽  
Kyle C Stamper ◽  
Kavindra V Singh ◽  
Ayesha Khan ◽  
Seth A Rice ◽  
...  

Abstract Background The combination of daptomycin (DAP) plus ampicillin (AMP), ertapenem (ERT), or ceftaroline has been demonstrated to be efficacious against a DAP-tolerant Enterococcus faecium strain (HOU503). However, the mechanism for the efficacy of these combinations against DAP-resistant (DAP-R) E. faecium strains is unknown. Methods We investigated the efficacy of DAP in combination with AMP, ERT, ceftaroline, ceftriaxone, or amoxicillin against DAP-R E. faecium R497 using established in vitro and in vivo models. We evaluated pbp expression, levels of penicillin-binding protein (PBP) 5 (PBP5) and β-lactam binding affinity in HOU503 versus R497. Results DAP plus AMP was the only efficacious regimen against DAP-R R497 and prevented emergence of resistance. DAP at 8, 6, and 4 mg/kg in combination with AMP was efficacious but showed delayed killing compared with 10 mg/kg. PBP5 of HOU503 exhibited amino acid substitutions in the penicillin-binding domain relative to R497. No difference in pbp mRNA or PBP5 levels was detected between HOU503 and R497. labeling of PBPs with Bocillin FL, a fluorescent penicillin derivative, showed increased β-lactam binding affinity of PBP5 of HOU503 compared with that of R497. Conclusions Only DAP (10 mg/kg) plus AMP or amoxicillin was efficacious against a DAP-R E. faecium strain, and pbp5 alleles may be important contributors to efficacy of DAP plus β-lactam therapy.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 161-165
Author(s):  
MS Guis ◽  
WM Lande ◽  
N Mohandas ◽  
R Pennathur-Das ◽  
H Preisler ◽  
...  

The effect of dimethyl adipimidate (DMA), an amino-reactive crosslinking reagent with demonstrated antisickling properties in vitro, on the survival of 51Cr-labeled autologous sickle cells was evaluated in five adult males with sickle cell anemia. The survival of cells pretreated with 5 mmol/L DMA (pH 7.4), normal (t1/2 28–33 days) in four subjects and near-normal (t1/2 20 days) in the fifth, was considerably longer than that usually observed in sickle cell disease. In fact, the effect of DMA on the survival of sickle cells in vivo equals or exceeds that of any other agent tested to date. In three subjects, the survival of a second infusion of DMA-treated red cells was much shorter (t1/2 1.8, 3, 4.5 days) than in the initial study. An antibody was detected in the serum of these subjects that was directed to DMA-treated red cells. Modification of the immunogenicity of treated cells will be required before further consideration of DMA for use in the therapy of sickle cell anemia.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Aejin Lee ◽  
McKensie L. Mason ◽  
Tao Lin ◽  
Shashi Bhushan Kumar ◽  
Devan Kowdley ◽  
...  

Diabetes poses a high risk for debilitating complications in neural tissues, regulating glucose uptake through insulin-dependent and predominantly insulin-independent pathways. Supramolecular nanostructures provide a flexible strategy for combinatorial regulation of glycemia. Here, we compare the effects of free insulin to insulin bound to positively charged nanofibers comprised of self-assembling amino acid compounds (AACs) with an antioxidant-modified side chain moiety (AAC2) in both in vitro and in vivo models of type 1 diabetes. Free AAC2, free human insulin (hINS) and AAC2-bound-human insulin (AAC2-hINS) were tested in streptozotocin (STZ)-induced mouse model of type 1 diabetes. AAC2-hINS acted as a complex and exhibited different properties compared to free AAC2 or hINS. Mice treated with the AAC2-hINS complex were devoid of hypoglycemic episodes, had improved levels of insulin in circulation and in the brain, and increased expression of neurotransmitter taurine transporter, Slc6a6. Consequently, treatment with AAC2-hINS markedly advanced both physical and cognitive performance in mice with STZ-induced and genetic type 1 diabetes compared to treatments with free AAC2 or hINS. This study demonstrates that the flexible nanofiber AAC2 can serve as a therapeutic platform for the combinatorial treatment of diabetes and its complications.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


Sign in / Sign up

Export Citation Format

Share Document