3D Genomics of Acute Meyloid Leukemia Reveals the Imbalance between DNA Methylation Canyon Interactions and Leukemic Specific Enhancer Network Interactions

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 45-45
Author(s):  
Xiaotian Zhang ◽  
Xue Qing David Wang ◽  
Haley Gore ◽  
Pamela Himadewi ◽  
Fan Feng ◽  
...  

Changes in 3D chromatin organization like enhancer hijacking are believed to the driver for disease development like leukemia. Here we performed high-resolution HiC assays on primary acute myeloid leukemia (AML) samples and cell lines to dissect the abnormal 3D chromatin organization in AML. Our data set covers 5 AML samples and 3 AML cell lines. This dataset includes the common genetic abnormalities in AML: MLL-rearrangement, NPM1 mutation, RUNX1 mutation, and IDH1/TET2 mutations. We have recently generated high-resolution map for normal human hematopoietic stem cells (HSC) (Zhang et al. Mole Cell. 2020). In comparison with the HSC 3D chromatin organization, we found TADs and loops are very stable in both primary leukemia samples and cell lines. Less than 5% of all TADs in HSC fuse in AML, mimicking the enhancer hijacking scenario. These fusion events do not cause the gene expression changes of genes in the fused TAD. Interestingly, in TET2 or IDH1 mutated AML blast, two-fold more TAD fusion events occurred in primary AML blast in comparison with RUNX1 and MLL-r leukemia, with a loss in the CTCF sites on the TAD fusion break point. We previously found in HSC, the Polycomb marked DNA methylation Canyons (DMC) form multi-Mb size long-range interactions. DMC interactions in general decrease in primary AMLs. AMLs with IDH1 or TET2 mutations shows the biggest reduction in DMC interactions. Hypermethylation in the DMCs is observed in the AML samples with IDH1/2 or TET2 mutations, suggesting DNA methylation level in DMCs controls DMC 3D interactions directly. In leukemia cell lines, the DMC interactions almost disappear, with further hypermethylation in DMCs. Compared with normal HSC, we found in AML, the AML-specific H3K27ac marked regions form leukemia specific loops and transcription stripes in both cell lines and primary samples. Particularly in MLL-r primary leukemias, we found broad H3K27ac covered, hyperacetylated domains (10kb to 200kb). 22 such hyperacetylated domains were identified and associated with leukemogenic genes such as SATB1, ZEB2 and HOXA. All these domains formed distinct 3D micro TAD in the MLL-r primary leukemia in comparison with the HSPC, and CTCFs are not located at the border of these domains. Taken together, suggest active leukemia specific transcription created new 3D genomic interactions which is independent of cohesion-CTCF mediated loop extrusion. Interestingly, in HOXA cluster, we found a geneless DMC 1.3MB upstream of HOXA switched from Polycomb binding site to active enhancer site in the leukemia cells. By applying CRISPR/Cas9 editing, we found this canyon is essential for survival of HOXA high expressing leukemia cell lines like OCI-AML3 and MV4:11. In summary, we found the 3D chromatin organization in human leukemia significantly alters in two opposite way 1. The significant loss of Polycomb marked DMC interactions caused by the DNA hypermethylation and 2. The leukemic specific hyperacetylated domains form its own distinct micro TAD and stripes in the 3D chromatin organization. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 113 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Toshiki Ochi ◽  
Hiroshi Fujiwara ◽  
Koichiro Suemori ◽  
Taichi Azuma ◽  
Yoshihiro Yakushijin ◽  
...  

Abstract Aurora-A kinase (Aur-A) is a member of the serine/threonine kinase family that regulates the cell division process, and has recently been implicated in tumorigenesis. In this study, we identified an antigenic 9–amino-acid epitope (Aur-A207-215: YLILEYAPL) derived from Aur-A capable of generating leukemia-reactive cytotoxic T lymphocytes (CTLs) in the context of HLA-A*0201. The synthetic peptide of this epitope appeared to be capable of binding to HLA-A*2402 as well as HLA-A*0201 molecules. Leukemia cell lines and freshly isolated leukemia cells, particularly chronic myelogenous leukemia (CML) cells, appeared to express Aur-A abundantly. Aur-A–specific CTLs were able to lyse human leukemia cell lines and freshly isolated leukemia cells, but not normal cells, in an HLA-A*0201–restricted manner. Importantly, Aur-A–specific CTLs were able to lyse CD34+ CML progenitor cells but did not show any cytotoxicity against normal CD34+ hematopoietic stem cells. The tetramer assay revealed that the Aur-A207-215 epitope–specific CTL precursors are present in peripheral blood of HLA-A*0201–positive and HLA-A*2402–positive patients with leukemia, but not in healthy individuals. Our results indicate that cellular immunotherapy targeting Aur-A is a promising strategy for treatment of leukemia.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1542-1542
Author(s):  
Koyu Hoshino ◽  
Hui Yang ◽  
Claritsa Santos-Malave ◽  
Blanca Sanchez-Gonzalez ◽  
Guillermo Garcia-Manero

Abstract Aberrant DNA methylation of promoter-associated CpG islands is a frequent phenomenon in human leukemias, and in particular in adult ALL. Hck is a member of the Src family of tyrosine kinases, and functionally is located downstream of BCR-ABL signaling in chronic myelogenous leukemia (CML). Hck expression is limitedly to myeloid cells and B cell lymphocytes. Although some evidence indicates that Hck is required for malignant transformation and apoptosis, its role in leukemia is not fully understood. Here we analyze the role of aberrant DNA methylation of Hck in leukemia cell lines and patients. Using BLAT, we first identified the presence of a canonical CpG island in the near proximity of the transcription start site of HcK. To detect and measure DNA methylation, we designed a combined bisulfite restriction PCR assay. Using this assay, we found that Hck was methylated in 13 out of 23 hematopoietic and 8 out of 10 non-hematopoietic cell lines, but not in the bone marrow from 6 healthy individuals. We subsequently studied Hck expression by real-time PCR using GAPDH expression as an internal control. Hck expression was lower (dCT = −14.2± 3.6) in 7 Hck methylated cell lines than in 8 Hck unmethylated ones (dCT= −9.0± 3.5), p=0.017. All the cell lines studied were of myeloid or B cell origin. We then treated the Raji cell line with the hypomethylating agent 5-aza-2-deoxycytidine (DAC). DAC treatment resulted in partial hypomethylation of Hck and in an increment of Hck expression (dCT: −19.37 to −8.47). Subsequently, the effects of DAC treatment on Hck protein expression levels were analyzed using Western blot. These experiments showed a strong correlation between hypomethylation, gene re-expression and protein expression levels. These data therefore indicates that DNA methylation is an important aberrant regulator of Hck expression in leukemia cell lines. Based on the relevance of these findings, we then analyzed the frequency of Hck methylation in patients with leukemia. Using a cut-off of 10%, Hck was found to be methylated in 15 out of 44 (34%) patients with ALL, 9 out 23 pts (39%) with CML, and 3 out 10 pts (30%) with AML. Of importance, the density of Hck methylation was significantly higher in patients with ALL (mean 11.3%; range 0–76) compared to those with CML(5.2%; range 0–12) or AML ( 7.5%, range 0–14), p=0.02. Hck methylation was not associated with a B cell phenotype or the presence of the Philadelphia chromosome in patients with ALL. Nine ALL pts out of 15 with Hck methylation had died compared to 7 out 29 unmethylated (total ALL group n=34). Median survival had not been reached for the group of patients with no Hck methylation (n=29) compared to 116 weeks for those with Hck methylation (n=15) (p=0.08). All pts had been treated with hyperCVAD based chemotherapy. These data indicates that Hck methylation is a frequent phenomenon in human leukemia that maybe associated with a worse prognosis in ALL and suggests that Hck has a tumor suppressor like function in these disorders.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4976-4976
Author(s):  
Emmanuel Zorn ◽  
Blair Floyd ◽  
Andrew Tweel ◽  
David B. Miklos ◽  
Roberto Bellucci ◽  
...  

Abstract H-Y minor histocompatibility antigens (mHA) are common targets of immune responses following allogeneic hematopoietic stem cell transplantation (HSCT) in male patients who receive stem cells from female donors. These H-Y antigens are encoded by a group of genes located on the non-recombining portion of the Y chromosome. H-Y genes are ubiquitously expressed with 1 to 13% disparity at the protein level with their X homologues. The same portion of the Y chromosome also contains a distinct group of 11 Y-specific genes, for which there are no X homologues. Expression of Y-specific genes is reportedly restricted to the testis thereby limiting the potential relevance of these proteins as immune targets following allogeneic HSCT. However, atypical expression of Y-specific genes has recently been reported in prostate cancer, suggesting that these genes might follow a pattern of expression characteristic of cancer-testis antigens. In this study, we investigated the expression of a representative Y-specific gene, PRY, in male leukemia cell lines, and examined the immunogenicity of this protein in male patients who received allogeneic HSCT from female donors. Using DNAse treated RNA in RT-PCR experiments we showed that PRY gene is expressed in 3 of 6 male leukemia cell lines tested but not in 4 female cell lines. Results were confirmed by southern blotting of PCR products using an internal specific probe. We next assessed PRY expression in normal blood cells collected from 3 male and 3 female donors. In contrast to what has previously been reported, PRY gene was found expressed at low levels in blood cells from all male donors but not from female donors. Although the precise phenotype of cells expressing PRY remains unknown, expression in normal hematopoietic as well as tumor cells suggested that Y-specific gene products could also elicit immune responses after sex mismatched allogeneic HSCT. We used a series of overlapping peptides encompassing the entire sequence of PRY in ELISA assays to examine the antibody response to PRY antigen in male recipients of female transplant. Thus far, 1 of 13 serum samples has been positive for antibody to PRY. This sample, collected approximately one year post-transplant, strongly reacted with a single peptide, indicating that the patient had developed a B cell response to the PRY antigen. This patient with AML had received a HSCT from his HLA identical female sibling. After transplant, he developed acute and chronic GVHD. Remarkably, this patient also developed a strong CD4+ T cell and B cell response to another H-Y antigen, DBY, following HSCT. Studies are ongoing to further characterize the immune response elicited towards this newly defined antigen. Overall, our data indicate that the Y-specific gene PRY is expressed in normal blood cells as well as leukemia cells. Following allogeneic HSCT, PRY can also trigger B cell immunity in male patients with female donors. Further studies are required to determine whether other Y-specific gene products are also immunogenic and constitute a new category of mHA with significant implications in the development of GVL and GVH reactions.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2127-2127
Author(s):  
Shao-qing Kuang ◽  
Weigang Tong ◽  
Hui Yang ◽  
Mathew K. Lee ◽  
Zhi-Hong Fang ◽  
...  

Abstract Aberrant DNA methylation is a common molecular feature of both pediatric and adult ALL. Specific methylation patterns predict for poor prognosis (Shen et al Blood 2004), and reactivation of epigenetically inactivated molecular pathways results in induction of leukemia cell death (Kuang et al. Oncogene 2007). Until now most studies of methylation in ALL have been based on arbitrary gene selection methods. To overcome this limitation and to study hundreds of promoter CpG islands simultaneously, we have developed a method that combines MCA (Methylated CpG Island Amplification) with either RDA (Representational Difference Analysis) or the Agilent Promoter Microarray platform. With these methods differentially methylated DNA treated with bisulfite is generated after mixing tester DNA (in our case DNA from de novo refractory Ph negative and MLL negative ALL patients) with driver DNA (normal B cell controls) and using specific restriction enzymes and several rounds of PCR. DNA fragments thus generated are either cloned (RDA) or labeled and spotted on the Agilent Array. Using this technology, that can potentially interrogate up to 17K promoters, we have identified 932 promoters targets of aberrant DNA methylation in poor risk ALL from patients that cannot be currently identified by standard molecular methods (Ph and MLL negative). The genes associated with these promoters are distributed through the human genome but an overrepresentation of methylated promoters located in chromosomes 3, 9, 11 and 19 was detected. Using molecular pathway clustering analysis, 404 of these genes are grouped together in 29 specific functional pathways. We have validated the methylation of 31 of these 923 genes by bisulfite pyrosequencing. Of these, 27 (87%) were confirmed to be hypermethylated in 23 human leukemia cell lines but not in normal controls (N=15). Methylation status analysis of these 27 genes allowed for the segregation of T cell versus B cell leukemia cell lines. Fifteen of these genes (GIPC2, RSPO1, MAGI1, CAST1, ADCY5, HSPA4L, OCLN, EFNA5, MSX2, GFPT2, GNA14, SALL1, MYO5B, ZNF382 and MN1) were also frequently hypermethylated in primary ALL samples. Expression analysis of 6 of these genes (GIPC2, MAGI1, ADCY5, HSPA4L, OCLN and GNA14) in leukemia cell lines further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with 5′-aza-2′-deoxycytidine and trichostatin A resulted in gene re-expression, further confirming the role of DNA methylation in their silencing. In summary, we have identified in excess of 900 targets of aberrant DNA methylation in ALL. The study of the epigenetically suppressed pathways represented by these genes should allow us to further understand the molecular pathogenesis of ALL and develop new prognostic biomarkers for patients with Ph and MLL negative disease.


1998 ◽  
Vol 103 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Mustapha Bensaada ◽  
Héléne Kiefer ◽  
Gérard Tachdjian ◽  
Jean Michel Lapierre ◽  
Valère Cacheux ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2123-2123
Author(s):  
Jaroslav Jelinek ◽  
Marcos R.H. Estecio ◽  
Kimie Kondo ◽  
Rong He ◽  
Jiri Zavadil ◽  
...  

Abstract Acute leukemia is caused by alterations of blood-forming stem cells leading to uncontrolled growth and diminished capacity to differentiate into mature functional blood elements. Beside genetic changes, epigenetic alterations are increasingly recognized as important events in the pathogenesis of leukemia. Cytosine methylation in CpG islands at gene transcription start regions can cause heritable gene silencing and have the same functional effects as inactivating mutations. Hundreds of genes may become epigenetically silenced in leukemia. While many of the methylated genes are not expressed in blood cells, silencing of genes critically important for control of stem cell self-renewal, proliferation, differentiation, and/or survival can contribute to the malignant phenotype. We used a genome-wide method to identify methylated genes by hybridizing a CpG island microarray with amplicons obtained by the methylated CpG island amplification technique (MCAM). We analyzed 10 leukemia cell lines with different cellular origin (myeloid cell lines KG1, KG1a, HEL, K562, and TF1; T lymphoid cell lines CEM and JTAg; and B lymphoid cell lines ALL1, BJAB, and Raji). On average, 266 genomic loci were found to be hypermethylated in these cell lines, ranging from 56 (KG1) to 483 loci (Raji), reinforcing the idea of extensive epigenome alteration in leukemia. Unsupervised hierarchical clustering showed distinct methylation pattern in the cell lines of lymphoid origin versus myeloid leukemia cell lines and a GM-CSF-dependent erythroleukemia cell line TF-1, justifying the use of methylation markers for uncovering of tumor-specific pathways of gene inactivation. There was a striking difference in the number of hypermethylated genes between two closely related myeloid leukemia cell lines: KG1 (56 methylated loci) and its undifferentiated variant KG1a (225 methylated loci). cDNA microarray analysis showed that deoxy-azacitidine treatment induced expression of genes differentially methylated in KG1a (DKKL1, GBX, HIVEP3, KCNAB1, KIAA1102, NAV2, NEIL1, and RAX) but not in KG1 cells where these genes were unmethylated. Finally, we used bisulfite PCR followed by pyrosequencing analysis to quantitatively measure DNA methylation of several genes detected by MCAM. Ongoing analyses of bone marrow samples from leukemia patients showed hypermethylation of the following genes: GDNF (in 4/22 [18%] AML and 7/20 [35%] ALL patients), HAND2 (in 5/22 [23%] AML and 7/20 [35%] ALL patients), HIVEP3 (in 9/22 [41%] AML and 6/20 [30%] ALL patients), MPDZ (in 2/6 [33%] AML and 15/20 [75%] ALL patients), and NEIL1 (in 2/20 [10%] AML and 1/12 [8%] ALL patients). Mapping of DNA methylation abnormalities may detect epigenetic markers important for leukemia classification and prognosis. Identification of pathways frequently silenced by DNA methylation may also suggest new targets for specific therapy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2116-2116 ◽  
Author(s):  
Bjoern Hackanson ◽  
Kristi L. Bennett ◽  
Romulo M. Brena ◽  
Jinmai Jiang ◽  
Katie Maharry ◽  
...  

Abstract CCAAT/enhancer binding protein α (C/EBPα) is a master regulator for myeloid differentiation. As a potential tumor suppressor, its loss of function through mutations and posttranslational mechanisms has been thoroughly investigated in acute myeloid leukemia (AML). Recently, we have demonstrated the importance of epigenetic alterations in deregulating C/EBPα expression patterns in lung cancer and head and neck squamous cell carcinoma (HNSCC). In this study we investigated the role of DNA methylation and other epigenetic factors in the regulation of C/EBPα in AML using 94 patient samples and 7 leukemia cell lines. A comprehensive and quantitative DNA methylation analysis of C/EBPα’s large CpG island using MassARRAY (Sequenom©) technology and BioCOBRA identified a distinct and densely methylated upstream promoter region (−1423 bp to −1121 bp in relation to the transcription start site) in 20% (19 of 94) of AML patient samples and in five of seven leukemia cell lines, while the core promoter remained unmethylated. This aberrant DNA methylation pattern was associated with two generally prognostically favorable cytogenetic subgroups: inv(16)(p13q22) and t(15;17)(q22;q21). While DNA methylation levels in normal bone marrow samples (NBM) were very low (median: 0%, range: 0%–5%) when compared to NBM, we observed significantly higher DNA methylation levels in the inv(16) and t(15;17) cytogenetic subgroups, with median DNA methylation levels of 29% (range: 1% to 81%) and 5% (range: 1% to 94%), respectively (p<0.05). However, using semi-quantitative RT-PCR, we could not detect a significant correlation between DNA methylation of C/EBPα and its expression in the inv(16) subgroup. Interestingly, while epigenetic-targeting compounds induced up-regulation of C/EBPα mRNA in vitro, C/EBPα protein was diminished. This unexpected scenario was postulated to be compatible with the presence of a microRNA targeting C/EBPα mRNA. Using a computational microRNA prediction approach and functional studies, we show that C/EBPα mRNA is a target for microRNA-124a. We additionally demonstrate that microRNA-124a is frequently silenced by epigenetic mechanisms in AML, becomes upregulated following epigenetic treatment and targets the C/EBPα 3′-untranslated region (3′UTR). In this way, C/EBPα protein expression is reduced in a posttranscriptional manner. Our results indicate that epigenetic alterations of C/EBPα are a frequent event in AML and that epigenetic treatment can result in down-regulation of a key hematopoietic transcription factor.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1721-1721
Author(s):  
Ha-Yon Kim ◽  
Ji-Young Hwang ◽  
Seong-Woo Kim ◽  
Gak-Won Yun ◽  
Young-Joon Yang ◽  
...  

Abstract Abstract 1721 Poster Board I-747 AMD3100, a small bicyclam antagonist for chemokine receptor CXCR4, induces the peripheral mobilization of hematopoietic stem cells. It also induces the segregation of leukemia cells in the bone marrow microenvironment, which should enhance the chemosensitivity of the cells. Based on these observations, AMD3100 is being considered for clinical use. However, AMD3100 activates G-protein coupled with CXCR4 and acts as a partial CXCR4 agonist. In this study, we explored whether AMD3100 affects the proliferation and survival of myeloid leukemia cells. As demonstrated previously, both AMD3100 and T140, another CXCR4 antagonist, markedly inhibited stromal cell-derived factor-1 (SDF-1)-induced chemotaxis and induced the internalization of CXCR4 in myeloid leukemia cell lines (U937, HL-60, MO7e, KG1a, and K562 cells) and CD34+ primary human acute myeloid leukemia (AML) cells. SDF-1 alone did not stimulate the proliferation of these leukemia cells, nor did it rescue the cells from apoptosis induced by serum deprivation. By contrast, AMD3100, but not T140, stimulated the proliferation of all five leukemia cell lines and primary AML cells in a dose-dependent manner in serum-free conditions for up to 5 days (∼ 2-fold increases at a concentration of 10-5M), which was abrogated by pretreating the cells with pertussis toxin. AMD3100 binds to CXCR7, another SDF-1 receptor, and all of the cells examined in this study expressed CXCR4 on the cell surface to some extent. The proliferation-enhancing effects of AMD3100 were not changed by knocking-down CXCR7 using the siRNA technique, whereas knocking-down CXCR4 significantly delayed the enhanced proliferation induced by AMD3100. Neither AMD3100 nor T140 induced the phosphorylation of Akt, Stat3, MAPK p44/p42, or MAPK p38, which are involved in SDF-1 signaling. In extended cultures of these cells for up to 14 days, AMD3100, but not T140, induced a marked decrease in the number of cells, compared to the control, after incubation for 5-7 days. Adding SDF-1 at the beginning and middle of the incubation did not affect the early increase or later decrease in the number of cells. AMD3100 reduced the apoptosis of these cells to a modest degree over the first 5-7 days and then markedly increased it. Consistent with the proliferation assay, AMD3100 increased the number of leukemia cell colonies during the early period of the assay, while it markedly decreased the number and size of the colonies in the later period of the assay. In conclusion, AMD3100 exerts dual effects, initially enhancing and subsequently inhibiting the survival and proliferation, in myeloid leukemia cells in vitro. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3635-3635
Author(s):  
Frank Neumann ◽  
Jean-Pierre Issa ◽  
Yue Lu ◽  
Marcos R Estecio ◽  
Rong He ◽  
...  

Abstract Abstract 3635 DNA methylation is a key epigenetic mark affecting the configuration of chromatin and the potential for gene expression. Disorganization of DNA methylation contributes to the development of leukemia. There is a need for high resolution, quantitative and cost effective methods to investigate changes of methylome in leukemia. To achieve this goal, we have recently developed a digital restriction enzyme analysis of methylation (DREAM) for quantitative mapping of DNA methylation at approximately 50,000 CpG sites across the whole genome (Jelinek et al., ASH 2009, abstract 567). The method is based on creating distinct DNA signatures at unmethylated or methylated CCCGGG sites by sequential restriction digests of genomic DNA with the SmaI and XmaI endonucleases and on resolving these signatures by massively parallel sequencing. Using the DREAM method, we have analyzed DNA methylation in bone marrow cells from 2 patients with AML, 3 samples of white blood cells from healthy adults and 2 myeloid leukemia cell lines (K562 and HEL). The first patient (Pt#1) was a 72 year-old male with AML transformation of the myelodysplastic syndrome (MDS). He had 32% blasts in the bone marrow and a complex karyotype. He had received lenalidomide treatment only. The second AML patient (Pt#2) was a 28 year-old male suffering from a relapse of an AML FAB M1. The bone marrow showed 87% of blasts and a complex karyotype. The patient was heavily pretreated with daunorubicin, ara-C, etoposide, 6-thioguanine, dexamethasone and l-asparaginase. Neither of the patients received demethylating drugs. Using typically 2 sequencing lanes per sample and paired-end reads of 36 bases on the Illumina Gene Analyzer II platform, we acquired 20–38 (median 33) million sequence tags per sample; of these, 7–17 (median 12) million were mapped to SmaI/XmaI sites unique in the human genome. With a threshold of minimum 20-fold coverage, we obtained quantitative information on the DNA methylation level of 39,603-53,312 (median 44,490) CpG sites associated with 8,939-10,735 (median 9,517) genes. In general, methylation was largely absent within CpG islands (CGI). The CpG sites most protected from methylation were in CGI and within 1 kb from gene transcription start sites (TSS). These regions were represented by 13,474 CpG sites. Focusing our analysis on these CpG sites, methylation >10% was detected only in 268 sites in normal controls (1.9%). The numbers of sites with methylation >10% were significantly higher (P<.0001, chi-square test) in both AML patients: 397 sites in Pt#1 (2.9%) and 2,143 sites in Pt#2 (15.6%), respectively. Leukemia cell lines mirrored the pattern of CGI hypermethylation seen in primary AML cells. Methylation >10% in CGI within 1 kb from TSS was observed at 2,331 sites (17.0%) in K562 and at 2,484 sites (18.1%) in HEL. Differential hypermethylation in AML patients affected 906 genes, including multiple genes previously shown to be methylated in cancer, such as CDKN1B, FOXO3, GATA2, GATA4, GDNF, HOXA9, IGFBP3, SALL1 and WT1. Methylated genes were significantly enriched in canonical pathways affecting embryonic stem cell signaling, Wnt-beta-catenin signaling and pluripotency suggesting an important role in AML stem cells. In contrast to CGI, it is known that CpG sites outside of CpG islands (NCGI) are generally fully methylated in normal cells. We analyzed 11,220 NCGI sites that were >1 kb from gene TSS. Methylation >90% was observed at 5,217 (46%) sites in normal controls, in 5,380 sites (48%) in Pt#1, while only in 1,873 sites (17%) in Pt#2 (P<.0001). Leukemia cell lines also showed this NCGI hypomethylation with only 1,422 (13%) fully methylated sites in K562 and 4,200 sites (37%) in HEL. Thus, significant degrees of hypomethylation in NCGI were observed in Pt#2, and in K562 and HEL cell lines, but not in Pt#1. In conclusion, high resolution quantitative mapping of DNA methylation changes in leukemia is feasible using the DREAM method. Relatively small alterations in DNA methylation observed in the MDS/AML Pt#1 contrasted with extensive hyper and hypomethylation found in Pt#2 with relapsed AML M1. Our results illustrate the complexity and diverse extent of DNA methylation changes in leukemia. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document