scholarly journals FT576: Multi-Specific Off-the-Shelf CAR-NK Cell Therapy Engineered for Enhanced Persistence, Avoidance of Self-Fratricide and Optimized Mab Combination Therapy to Prevent Antigenic Escape and Elicit a Deep and Durable Response in Multiple Myeloma

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-5
Author(s):  
Jode P Goodridge ◽  
Ryan Bjordahl ◽  
Sajid Mahmood ◽  
John Reiser ◽  
Svetlana Gaidarova ◽  
...  

Multiple redundancy within the spectrum of an immune response is required to prevent antigen escape or adaptation of the targeted population to host defenses. As adoptive cell therapies continue to evolve, multi-modal engineering of effector cells offers the prospect of tackling increasingly complex disease settings such as multiple myeloma (MM), where targeting of a single tumor associated antigen is frequently confounded by antigen shedding and escape variation resulting in the inability to develop a curative therapy. There are multiple advantages in expanding treatment options beyond autologous primary T and NK cells, including the use of induced pluripotent stem cells (iPSC) to derive effector cells that can be uniformly manufactured at scale from renewable starting cellular material and where precision genetic engineering can be achieved at the clonal level which can be applied sequentially in order to build multiple specificities and functional modalities. To create a platform targeted toward MM, a multiplexed edited base iPSC-derived NK (iNK) cell configuration consisting of a CD38 KO iPSC modified to overexpress a recombinant IL-15 signaling complex (IL15RF) for autonomous persistence and a functionally enhanced high-affinity, non-cleavable CD16 (hnCD16) was developed. Introduction of IL15RF enabled expansion of iNK cells without additional exogenous cytokine support during the manufacturing process and greatly improved functional persistence of iNK cells both in vitro and in various xenograft mouse models (Figure 1). To target MM in a broad and comprehensive manner, we tested our novel BCMA-CAR in combination with different myeloma targeted antibodies. In combination with hnCD16, co-expression of BCMA-CAR and IL15RF culminates in an iNK cell therapeutic, termed FT576, capable of multiantigen-specificity through combinatorial use of CAR and hnCD16 with monoclonal antibodies to tackle antigen escape. Chimerization of an anti-BCMA scFv shown to elicit higher affinity onto the CAR platform produced specific in vitro recognition of BCMA+ myeloma cells in short-term and long-term NK cell cytotoxicity assays. Specificity of the BCMA-CAR was demonstrated using NALM6 overexpressing BCMA using a short range 4H caspase assay (NALM6_BCMA EC50 14.4, NALM6wt EC50 39.1, p*<0.0001). Utilizing a long range clearance assay, serial restimulation by repeated rounds of exposure to fresh MM1S MM target cells was tested, showing remarkable persistence and antigen-mediated expansion of CAR function in isolation or combined with antibody through 3 rounds of stimulation in the absence of exogenous cytokine support (Figure 2). Continuous long-range clearance assays demonstrated levels of BCMA targeting activity of FT576 alone was equivalent to primary BCMA-targeted CAR-T cells against a panel of BCMA+ target cells. Utilizing hnCD16, BCMA-CAR was tested in combination with anti-CD38 (daratumumab), anti-SLAMF7 (elotuzumab), or anti-CD19, showing synergistic increase in tumor targeting through various tumor associated antigens (TAAs). Polyfunctionality of FT576 stimulated either through CAR or ADCC was similarly measured by both Isoplexis and single cell RNA sequencing. Specificity for plasma cells was confirmed using primary bone marrow samples from either healthy donors or patients. In animal models, as a monotherapy, FT576 achieved sustained tumor control against disseminated MM1s with persistence profile suggestive of antigen mediated expansion (Figure 3). In combination with daratumumab, FT576 was able to achieve complete clearance of MM1S. Combination with other monoclonal antibodies displayed a similar response demonstrating the unique ability of FT576 to be directed to target multiple TAAs. Together, these studies demonstrate the versatility of FT576 as a highly effective multi-antigen targeting and cost-effective off-the-shelf BCMA-CAR iNK cell product and supports the rational for a first-of-kind Phase I Study as a monotherapy or in combination with therapeutic mAbs targeted to MM-associated surface antigens, driving a path towards a curative therapeutic in MM. Disclosures Goodridge: Fate Therapeutics, Inc: Current Employment. Bjordahl:Fate Therapeutics: Current Employment. Mahmood:Fate Therapeutics, Inc: Current Employment. Reiser:FATE THERAPEUTICS: Current Employment. Gaidarova:Fate Therapeutics, Inc: Current Employment. Blum:Fate Therapeutics: Current Employment. Cichocki:Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding. Chu:Fate Therapeutics, Inc: Current Employment. Bonello:Fate Therapeutics, Inc: Current Employment. Lee:Fate Therapeutics, Inc.: Current Employment. Groff:Fate Therapeutics, Inc: Current Employment. Meza:Fate Therapeutics, Inc: Current Employment. Chu:Roche Holding AG: Current equity holder in publicly-traded company; Fate Therapeutics, Inc.: Current Employment, Current equity holder in publicly-traded company. Walcheck:Fate Therapeutics: Consultancy, Research Funding. Malmberg:Vycellix: Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics: Consultancy, Patents & Royalties. Miller:Vycellix: Consultancy; Onkimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees; Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; GT Biopharma: Consultancy, Patents & Royalties, Research Funding. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-11
Author(s):  
Kate Dixon ◽  
Robert Hullsiek ◽  
Kristin Snyder ◽  
Zachary Davis ◽  
Melissa Khaw ◽  
...  

Natural killer (NK) cells are innate cytotoxic lymphocytes. They target malignant cells via non-clonotypic receptors to induce natural cytotoxicity and also recognize tumor-bound antibodies to induce antibody-dependent cell-mediated cytotoxicity (ADCC). While ADCC by NK cells is a key mechanism of several clinically successful therapeutic monoclonal antibodies (mAbs), most patients exhibit or acquire resistance to mAb therapies. ADCC by human NK cells is exclusively mediated by the IgG Fc receptor, CD16A (FcγRIIIA). Studies have demonstrated that increasing the binding affinity between CD16A and therapeutic mAbs can augment their clinical efficacy. Given the exquisite specificity and diverse antigen detection of anti-tumor mAbs, we are interested in enhancing the ADCC potency of NK cell-based therapies for various malignancies. CD64 is the only high affinity FcγR family member and binds to the same IgG isotypes as CD16A (IgG1 and IgG3) but with > 30-fold higher affinity. CD64 (FcγRI) is normally expressed by certain myeloid cells but not by NK cells. We generated a recombinant version of this receptor consisting of the extracellular region of CD64 and the transmembrane and intracellular regions of human CD16A, referred to as CD64/16A (figure 1A). An important feature of CD64/16A is that due to its high affinity state, soluble monomeric anti-tumor mAbs can be pre-adsorbed to engineered NK cells expressing the recombinant FcγR, and these pre-absorbed mAbs can be switched or mixed for universal tumor antigen targeting (figure 1B). The engineered NK cells used in our study were derived from genetically edited and clonally derived induced pluripotent stem cells (iPSCs) through a series of stepwise differentiation stages (figure 2). Engineered iPSC-derived NK (iNK) cells can be produced in a uniform and clinically scalable manner (figure 2). In Figure 3, using an in vitro Delfia® ADCC assay, we show that iNK-CD64/16A cells mediated ADCC against SKOV3 cells, an ovarian adenocarcinoma cell line, in the presence of the anti-HER2 therapeutic mAb trastuzumab (Herceptin) or anti-EGFR1 therapeutic mAb cetuximab (Erbitux), when either added to the assay or pre-adsorbed to the iNK cells (figure 3). Considering the high affinity state of CD64, we examined the effects of free IgG in human serum on ADCC by iNK-CD64/16A cells. Using an IncuCyte® Live Cell Analysis System, ADCC was evaluated in the presence or absence of 5% human AB serum, in which free IgG was approximately 50-fold higher than the IgG saturation level of the CD64/16A receptors on iNK cells (data not shown). Despite the high levels of excess free IgG, iNK-CD64/16A cells mediated efficient ADCC when Herceptin was either added to the assay or pre-adsorbed to the cells (figure 4). ADCC assays were also performed with Raji cells, a Burkitt lymphoma cell line, as target cells and the therapeutic mAb rituximab (Rituxan). iNK-CD64/16A cells were added with or without pre-adsorbed Rituxan and the assay was performed in 10% AB serum. Again, iNK-CD64/16A cells mediated effective target cell killing in the presence of serum IgG (figure 5), demonstrating that saturating levels of free IgG did not prevent ADCC. To determine if we can further optimize the function of recombinant CD64, we engineered CD64 with the transmembrane regions of CD16A or NKG2D and signaling/co-signaling domain from CD28, 2B4 (CD244), 4-1BB (CD137), and CD3ζ (figure 6). CD64/16A signals by non-covalent association with the immunoreceptor tyrosine-based activation motif (ITAM)-containing signaling adapters CD3ζ and FcRγ found in the cell membrane, whereas the other recombinant CD64 constructs use ITAM and non-ITAM regions to mediate their signaling. The various recombinant CD64 constructs were initially expressed in NK92 cells (lacks expression of endogenous FcγRs) (figure 7). Using the Delfia® ADCC assay system, we examined the function of each recombinant CD64 construct and found all combinations are able to effectively induce ADCC (figure 8). We are in the process of generating iNK cells with these constructs and testing their ability to kill hematologic and solid tumors in vitro and in vivo. Our goal is to utilize this docking approach to pre-absorb mAbs to iNK cells for adoptive cell therapy. The mAbs would thus provide tumor-targeting elements that could be exchanged as a means of preventing tumor cell escape by selectively and easily altering NK cell specificity for tumor antigens. Figure Disclosures Lee: Fate Therapeutics, Inc.: Current Employment. Chu:Fate Therapeutics: Current Employment. Abujarour:Fate Therapeutics, Inc: Current Employment. Dinella:Fate Therapeutics: Current Employment. Rogers:Fate Therapeutics, Inc: Current Employment. Bjordahl:Fate Therapeutics: Current Employment. Miller:Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Onkimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company. Walcheck:Fate Therapeutics: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 133-133
Author(s):  
Ryan Bjordahl ◽  
Svetlana Gaidarova ◽  
Karrune Woan ◽  
Frank Cichocki ◽  
Greg Bonello ◽  
...  

Monoclonal antibody (mAb) treatment is an effective therapeutic strategy for many cancer types, though there remains meaningful opportunity to improve mAb efficacy by optimizing the interaction with natural killer (NK) cells to enhance antibody-dependent cellular cytotoxicity (ADCC). NK cells are an ideal effector cell for combined use with tumor-targeting mAbs, as NK cells effect both innate tumoricidal capacity and ADCC. CD38-targeting mAbs, such as daratumumab, are effective in treating multiple myeloma (MM) and achieve their efficacy through multiple mechanisms, including ADCC. However, because activated NK cells express high levels of CD38, daratumumab induces NK cell depletion through fratricide, potentially reducing treatment effectiveness. Adoptive NK cell immunotherapy therefore has the potential to augment daratumumab's ADCC activity if fratricide can be reduced or prevented. FT538 is an off-the-shelf adoptive NK cell immunotherapy product candidate designed for enhanced cellular persistence and ADCC while avoiding anti-CD38 mAb induced fratricide. It is derived from induced pluripotent stem cells (iPSC) engineered to lack CD38 expression, which we have previously shown to eliminate daratumumab-induced fratricide among iPSC-derived NK cells, resulting in enhanced long-term daratumumab-mediated ADCC. FT538 is engineered to express an IL-15 receptor alpha fusion protein (IL-15RF; IL-15 tethered to IL-15 receptor α) to enhance persistence and a high-affinity non-cleavable CD16 (hnCD16, FcRγIII) to increase ADCC. To support the clinical translation of FT538, and to enable the repeatable and scalable cell production to support off-the-shelf availability of a uniform NK cell product, a clinical-grade master pluripotent stem cell line was developed. The FT538 master pluripotent stem cell line was created by reprogramming donor fibroblasts into iPSCs using our non-integrating cellular reprogramming platform, and cells were further genetically edited by targeting IL-15RF and hnCD16 to the CD38 locus. Clonal iPSC lines were generated and screened for precise knock-in and knock-out edits at the CD38 locus and a lack of off-target genome integration (15% total success rate for CD38-/-IL-15RF+CD16+). Selected engineered iPSC clones were confirmed to be free of reprogramming transgenes and to maintain genomic stability. Engineered iPSC clones were additionally tested for their NK cell differentiation potential and function, and a single clone was selected to serve as the renewable starting material for cGMP manufacturing and clinical development. Upon differentiation and expansion FT538 demonstrated a mature NK cell phenotype with expression of NK cell receptors including NKp30, NKp46, NKG2D, KIR, NKG2A, and DNAM-1. The functional impact of CD38 knockout on FT538 NK cells was confirmed in an in vitro fratricide assay, where peripheral blood (PB)-NK cells exhibited fratricide at a frequency of 33% after 3 hr culture with increasing daratumumab concentrations. In contrast, FT538 cells were entirely resistant (<1% specific cytotoxicity) to daratumumab-induced fratricide. In vitro cytotoxic re-stimulation assays showed that repeat exposure of PB-NK cells to daratumumab plus MM target cells resulted in a loss of cytotoxic capacity (from 74% to 58% upon re-stimulation), and a similar effect was seen for non-engineered iPSC-derived NK cells. In contrast, FT538 NK cells maintained robust ADCC in during primary and secondary exposure to MM target cells and daratumumab. FT538 with daratumumab resulted in 86% cytotoxicity against MM target cells upon first exposure and 92% cytotoxicity upon re-stimulation, with a 20-fold increase in viable NK cells at the conclusion of the assay compared to non-engineered iPSC-derived NK cells. Additionally, the combined survival benefit of IL-15RF expression and fratricide resistance mediated by the CD38 knockout as well as the enhanced hnCD16-mediated ADCC allowed for greater cytotoxicity of FT538 against MM tumor spheroids. Together, these preclinical data support the clinical translation of FT538, an off-the-shelf adoptive NK cell immunotherapy product engineered for uniform hnCD16 and IL-15RF expression with CD38 elimination for enhanced ADCC in combination with daratumumab and other anti-CD38 mAbs for the treatment of MM. Disclosures Bjordahl: Fate Therapeutics, Inc.: Employment. Gaidarova:Fate Therapeutics, Inc: Employment. Cichocki:Fate Therapeutics, Inc: Research Funding. Bonello:Fate Therapeutics, Inc.: Employment. Robinson:Fate Therapeutics, Inc.: Employment. Ruller:Fate Therapeutics, Inc.: Employment. Pribadi:Fate Therapeutics, Inc.: Employment. Dinella:Fate Therapeutics, Inc.: Employment. Fong:Fate Therapeutics, Inc.: Employment. Huffman:Fate Therapeutics, Inc.: Employment. Chu:FATE THERAPEUTICS: Employment. Lee:Fate Therapeutics, Inc.: Employment. Abujarour:Fate Therapeutics, Inc.: Employment. Kaufman:FATE Therapeutics: Consultancy, Research Funding. Malmberg:Fate Therapeutics, Inc.: Consultancy, Research Funding; Vycellix: Consultancy, Membership on an entity's Board of Directors or advisory committees. Miller:CytoSen: Membership on an entity's Board of Directors or advisory committees; Moderna: Membership on an entity's Board of Directors or advisory committees; OnKImmune: Membership on an entity's Board of Directors or advisory committees; GT BioPharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Dr. Reddys Laboratory: Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics, Inc: Consultancy, Research Funding. Valamehr:Fate Therapeutics, Inc: Employment.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4451-4451
Author(s):  
Sarah A. Holstein ◽  
Sarah Cooley ◽  
Parameswaran Hari ◽  
Sundar Jagannath ◽  
Catherine R Balint ◽  
...  

Background: PNK-007 is an allogeneic, off the shelf cell therapy product enriched for CD56+/CD3- NK cells expanded from placental CD34+ cells. PNK-007 cells exhibit cytotoxicity against various cancer cell types, including multiple myeloma (MM), and secrete cytokines during co-culture with cancer cells. This is a Phase I study of single infusion PNK-007 after autologous stem cell transplant (ASCT) in MM. Methods: Placental CD34+ cells were cultivated in the presence of cytokines for 35 days to generate PNK-007 under cGMP standards followed by release testing. HLA matching and KIR mismatching were not used. Four treatment arms were evaluated on patients (pts) following ASCT: 10 million (M) cells/kg Day (D) 14 with or without recombinant human IL-2 (rhIL-2), 30M cells/kg D14 with rhIL-2, or 30M cells/kg D7 with rhIL-2. rhIL-2 was administered subcutaneously at 6M units every other day for up to 6 doses to facilitate PNK-007 expansion. Pts received variable pre-ASCT induction therapy. Maintenance therapy was permitted after the Day 90-100 visit (D90). Subjects were followed for up to 1-year. Results: 15 pts who received PNK-007 (12 of whom received rhIL-2) were followed on this study. Pts aged 44-69 yrs included 12 newly diagnosed (ND)MM and 3 relapsed/refractory (RR)MM. The 3 RRMM pts had received 1, 2 or 5 prior lines of therapy, with 2 pts having previous ASCT. All pts had been exposed to immunomodulatory drug (IMiDs) and proteasome inhibitors (PIs). No serious adverse events (AEs) were attributable to PNK-007 and no dose-limiting toxicity, GvHD, graft failure or graft rejection were observed. 12/15 pts started maintenance therapy following the transplant while participating in this study, at the physician's discretion. Based on physician assessed responses by International Myeloma Working Group pre-ASCT, of the NDMM pts 10/12 achieved VGPR or better (1 CR and 9 VGPR), 1/12 achieved PR and 1/12 was not assessed during pre-ASCT induction. By D90 10/12 pts achieved VGPR or better (5 CR or sCR and 5 VGPR), 1/12 maintained PR and 1/12 stable disease. At 1-year 9/11 achieved VGPR or better (4 CR or sCR and 5 VGPR), 2/11 were not assessed and 1 was removed from the study prior to 1 year due to failure to respond to ASCT. Of the RRMM pts 2/3 achieved PR and 1/3 was not assessed during pre-ASCT induction, by D90 2/3 achieved VGPR and the pt that had not been assessed pre-ASCT achieved PR. At 1-year, 1 pt maintained VGPR, 1 pt was not assessed and 1 pt did not continue to the 1-year visit. Using a validated Euro-flow minimal residual disease (MRD) assay of bone marrow aspirate (BMA) samples, of the NDMM pts 4/12 were MRD negative (MRD-) pre-ASCT; by D90 9/12 were MRD-. At 1-year 6/12 were MRD-, 2/12 had insufficient BMA to perform testing, 2/12 refused BMA procedure, 1/12 did not convert to MRD-, and 1 was removed from the study prior to 1-year due to failure to respond to ASCT. Of the RRMM pts 0/3 were MRD- pre-ASCT with 1/3 having insufficient BMA to perform testing; by D90 1/3 were MRD-. At 1-year 1/3 was MRD-, 1/3 did not convert to MRD- and 1 pt did not continue to the 1-year visit. PNK-007 infusion did not interfere with immune reconstitution kinetics. Platelet, neutrophil, and absolute lymphocyte counts recovered by day 28 post-ASCT in 12/15 patients. All pts' sera tested negative for the presence of anti-HLA antibodies at all timepoints indicating the absence of humoral immunity and alloantibodies to PNK-007. Conclusion: PNK-007 is the first fully allogeneic, off the shelf CD34+ derived NK cell product in MM clinical trials. A single infusion of PNK-007 up to 30M cells/kg with and without rhIL-2 was well tolerated in the post-ASCT setting. We established the feasibility of infusing PNK-007 as early as 7 days post-ASCT without negative impact on blood count recovery or successful engraftment. BMA MRD- status was observed in 7/9 MRD evaluable pts at 1-year post ASCT. These clinical data are encouraging and warrant further evaluation. Disclosures Holstein: Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Takeda: Membership on an entity's Board of Directors or advisory committees; Sorrento: Consultancy; GSK: Consultancy; Genentech: Membership on an entity's Board of Directors or advisory committees. Cooley:Fate Therapeutics, Inc: Employment, Equity Ownership. Hari:Cell Vault: Equity Ownership; Celgene: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Research Funding; Janssen: Consultancy, Honoraria; Kite: Consultancy, Honoraria; Amgen: Research Funding; Spectrum: Consultancy, Research Funding; Sanofi: Honoraria, Research Funding; AbbVie: Consultancy, Honoraria. Jagannath:BMS: Consultancy; Merck: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Medicom: Speakers Bureau; Multiple Myeloma Research Foundation: Speakers Bureau. Balint:Celgene: Equity Ownership; Celularity, Inc: Employment. Van Der Touw:Celularity, Inc: Employment. Zhang:Celularity Inc: Employment. Hariri:Celularity Inc: Employment. Vij:Bristol-Myers Squibb: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Genentech: Honoraria; Janssen: Honoraria; Karyopharm: Honoraria; Sanofi: Honoraria; Takeda: Honoraria, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1868-1868 ◽  
Author(s):  
Brian Tunquist ◽  
Karin Brown ◽  
Gary Hingorani ◽  
Sagar Lonial ◽  
Jonathan L. Kaufman ◽  
...  

Abstract Abstract 1868 Background ARRY-520 is a kinesin spindle protein (KSP) inhibitor that has demonstrated clinical activity in patients with relapsed and refractory multiple myeloma (MM). Although ARRY-520 is administered IV, it displays variable pharmacokinetics (PK) among patients. The degree of binding of certain drugs to serum proteins can alter their free fraction (fu) and PK, with a possible impact on clinical activity. Alpha 1-acid glycoprotein (AAG) is an acute-phase reactant protein that is often elevated in the blood of patients with cancer, including multiple myeloma. We investigated the significance of the interaction of ARRY-520 with AAG, and other relevant blood proteins, using both in vitro models and clinical data. Methods Compound-protein binding was assessed using several in vitro assays. In addition, the effect of increasing concentrations of AAG on MM cell line viability was measured. Patient data were obtained from 3 clinical studies of ARRY-520: a Phase 1 solid tumor study, a Phase 1/2 AML study, and a Phase 1/2 study in MM. The MM Phase 2 portion consists of 2 separate, 2-stage cohorts. Cohort 1 evaluated ARRY-520 administered as a single agent, and cohort 2 investigated ARRY-520 in combination with low-dose dexamethasone (LoDex). The concentrations of multiple proteins, including AAG, and the degree of ARRY-520 total protein binding, were measured in pre- and post-dose blood samples for patients in the analysis. AAG levels in MM patients were further correlated with time-on-study and clinical response rate. Results ARRY-520 exhibits low micromolar affinity for AAG in in vitro assays, but not for other common serum proteins, such as albumin. To investigate whether AAG binding impacts biological activity, we found that increasing AAG concentrations within a clinically relevant range resulted in increasing IC50 values for ARRY-520 on MM cell line viability. Of other MM agents tested, none exhibited high affinity binding to AAG in vitro, and a range of AAG concentrations did not alter the cellular activity of these compounds. Pre-dose concentrations of AAG were measured using blood samples collected from patients on all 3 ARRY-520 studies (0.4 – 4.1 g/L AAG in solid tumor study; 0.5 – 2.4 g/L in AML study; 0.2 – 2.8 g/L in MM study). Post-dose blood samples from the MM study also indicated that AAG levels do not significantly change with time. The fu of ARRY-520 in blood was meaningfully reduced among patients with the highest AAG concentrations. Furthermore, AAG and fu were correlated with changes in clinical PK: CL and Vd decreased with increasing AAG, trends consistent with a lower fu. Among the MM patients, 72 patients were evaluable for AAG determination (27 from the dose-escalation portion, 27 from Cohort 1, and 18 from Stage 1 of Cohort 2). Across all of these cohorts, the group of patients with AAG above an empirically-determined cutoff of 1.1 g/L showed a decreased median time on study (1.5 months vs 4.7 months) and no clinical responses (0/19 vs 12/53) as compared to patients below this cutoff. For example, as reported separately, ARRY-520 in combination with LoDex showed a promising 22% overall response rate (≥PR) in the 1st-stage of Cohort 2. In this cohort, 6 patients were determined to have AAG concentrations above the empirical cutoff. None of these patients had clinical benefit. Excluding these 6 patients would significantly improve the overall response rate (≥PR) from 22% (4/18) to 33% (4/12). Summary AAG has been proposed as a prognostic marker for MM disease severitya. Our preliminary data suggest that AAG levels can affect the free fraction of ARRY-520 in blood over a clinically relevant range both preclinically and in clinical studies. In retrospective analysis, patients with higher AAG levels show a lower fu and therefore may not achieve sufficient exposure to gain therapeutic benefit from ARRY-520. In preclinical analyses, this effect is specific to ARRY-520, suggesting that AAG levels may be predictive for ARRY-520 activity relative to other MM drugs. We hypothesize that prospective screening for AAG may enable exclusion of patients who may not achieve therapeutic exposure to ARRY-520, increasing the overall activity of ARRY-520 and preventing exposure of non-responders to an ineffective therapeutic dose. Further, experiments are currently underway to investigate the relevance of other acute-phase proteins in blood. Disclosures: Tunquist: Array BioPharma: Employment. Off Label Use: ARRY-520 alone and with dexamethasone for the treatment of relapsed/refractory multiple myeloma. ARRY-520 is not currently approved for any indication. Brown:Array BioPharma: Employment. Hingorani:Array BioPharma: Employment. Lonial:Millennium Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bristol-Meyers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Onyx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees. Kaufman:Millenium: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Onyx: Consultancy. Zonder:Celgene: Honoraria, Research Funding; Millenium: Honoraria, Research Funding. Orlowski:Array BioPharma: Honoraria, Membership on an entity's Board of Directors or advisory committees. Shah:Array BioPharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Research Funding, Speakers Bureau; Novartis: Honoraria, Research Funding, Speakers Bureau. Hilder:Array BioPharma: Employment. Ptaszynski:Array BioPharma: Consultancy. Koch:Array BioPharma: Employment. Litwiler:Array BioPharma: Employment. Walker:Array BioPharma: Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 901-901
Author(s):  
Claudia Manriquez Roman ◽  
Michelle J. Cox ◽  
Reona Sakemura ◽  
Kun Yun ◽  
Mohamad M. Adada ◽  
...  

Abstract Introduction: It has become increasingly apparent that chimeric antigen receptor T (CART) cell activation and differentiation level is an important determinant of CART cell fate and response to therapy. In this study, we aimed to 1) measure levels of activation-induced surface death receptors and ligands on CART cells; 2) investigate how CART cell activation could impact their fitness and clinical responses, and 3) identify cell-based targets to modulate CART cell activation, apoptosis, and cytotoxicity to improve anti-tumor activity. Methods: We performed flow cytometric studies on ex-vivo stimulated, clinically annotated CART products of patients with large B cell lymphoma from the pivotal ZUMA-1 clinical trial that led to FDA-approved Axicabtagene ciloleucel (Axi-Cel). We investigated possible correlations of a number of surface death receptors and ligands with T cell differentiation status and post-infusion CART cell expansion, utilizing samples from ZUMA-1 patients who achieved a complete response as a best outcome ('responders') vs patients who achieved stable or progressive disease('non-responders'). CART cell effector functions in vitro were measured, and CART apoptosis was assessed using Annexin V. For in vitro and in vivo functional studies, we used CART19 generated from healthy donors (HD CART19) as indicated in the specific experiment. CRISPR/Cas9 was employed during CART cell production to disrupt specific genes. A xenograft model of lymphoma was used to investigate the in vivo antitumor activity of CART19. Results: Following an ex vivo stimulation of Axi-Cel products with CD19 + target cells, we observed upregulation of death receptors and ligands in CART19 from non-responders, compared to responders. We also observed a possible association between such upregulated surface markers with CART cell differentiation as measured by CCR7 expression. In an extended in vitro co-culture assay, where HD CART19 cells were repeatedly stimulated through the CAR, we found that tumor necrosis factor α receptor 2 (TNFR2), unlike other death receptors and ligands, was persistently elevated, suggesting a possible role for TNFR2 in long-term antigen-dependent CART19 dysfunction (Figure 1A). We further found that HD CART19 upregulate TNFR2, but not TNFR1, upon CAR stimulation (Figure 1B). While non-specific TCR activation (CD3 stimulation) of HD CART19 cells protected them from activation-induced apoptosis, antigen-specific activation through the CAR resulted in significant initiation of apoptosis within 2 hours of stimulation (Figure 1C). Having identified a possible association between TNFR2 and CART19 dysfunction, we aimed to study the impact of TNFR2 knockout on HD CART19 functions. Using CRISPR/Cas9 during CART cell manufacturing, we generated TNFR2 k/o HD CART19 cells with a knockout efficiency of around 50%, where the expression levels of TNFR2 in activated CART19 cells were reduced, compared to control CART19 cells (with non-targeting gRNA CRISPR/Cas9, Figure 1D). TNFR2 k/o CART19 cells demonstrated reduced early activation surface markers compared to control CART19, as measured by CD25 and CD69 surface expression (Figure 1E), reduced apoptosis initiation as measured by the Annexin V assay (Figure 1F), and enhanced antigen-specific proliferation and cytotoxicity (Figure 1G). Finally, in an in vivo xenograft model of CD19 + lymphoma, TNFR2 k/o CART19 resulted in enhanced CART cell expansion and anti-tumor activity (Figure 1H). Conclusions: Our results indicate that TNFR2 plays a role in early activation and apoptosis initiation of CART19 following CAR stimulation with CD19 + target cells and present TNFR2 knockout as a strategy to enhance CART19 anti-tumor activity. Figure 1 Figure 1. Disclosures Cox: Humanigen: Patents & Royalties. Sakemura: Humanigen: Patents & Royalties. Ding: Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; DTRM: Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees. Parikh: Pharmacyclics, MorphoSys, Janssen, AstraZeneca, TG Therapeutics, Bristol Myers Squibb, Merck, AbbVie, and Ascentage Pharma: Research Funding; Pharmacyclics, AstraZeneca, Genentech, Gilead, GlaxoSmithKline, Verastem Oncology, and AbbVie: Membership on an entity's Board of Directors or advisory committees. Kay: Juno Therapeutics: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; MEI Pharma: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Agios Pharm: Membership on an entity's Board of Directors or advisory committees; Targeted Oncology: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Acerta Pharma: Research Funding; Genentech: Research Funding; Behring: Membership on an entity's Board of Directors or advisory committees; CytomX Therapeutics: Membership on an entity's Board of Directors or advisory committees; Sunesis: Research Funding; TG Therapeutics: Research Funding; Tolero Pharmaceuticals: Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Rigel: Membership on an entity's Board of Directors or advisory committees. Scholler: Kite: Current Employment. Bot: Kite, a Gilead Company: Current Employment; Gilead Sciences: Consultancy, Current equity holder in publicly-traded company, Other: Travel support. Mattie: Kite: Current Employment. Kim: Gilead Sciences: Current equity holder in publicly-traded company; Kite, a Gilead Company: Current Employment. Filosto: Kite, a Gilead Company: Current Employment; Tusk Therapeutics: Patents & Royalties: or other intellecular property; Gilead Sciences: Other: stock or other ownership . Kenderian: Humanigen, Inc.: Consultancy, Honoraria, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 891-891
Author(s):  
Annamaria Gulla ◽  
Eugenio Morelli ◽  
Mehmet K. Samur ◽  
Cirino Botta ◽  
Megan Johnstone ◽  
...  

Abstract Immune therapies including CAR T cells and bispecific T cell engagers are demonstrating remarkable efficacy in relapsed refractory myeloma (MM). In this context, we have recently shown that proteasome inhibitor bortezomib (BTZ) results in immunogenic cell death (ICD) and in a viral mimicry state in MM cells, allowing for immune recognition of tumor cells. Induction of a robust anti-MM immune response after BTZ was confirmed both in vitro and in vivo: treatment of 5TGM1 MM cells with BTZ induced tumor regression associated with memory immune response, confirmed by ELISPOT of mouse splenocytes. We have confirmed the obligate role of calreticulin (CALR) exposure in phagocytosis and the ICD process, since BTZ-induced ICD is impaired in CALR KO MM cells both in vitro and in vivo. We further showed that the therapeutic efficacy of BTZ in patients was correlated with ICD induction: BTZ-induced ICD signature was positively correlated with OS (p=0.01) in patients enrolled in the IFM/DFCI 2009 study. Together, these studies indicate that ICD is associated with long-term response after BTZ treatment. In this work, we reasoned that genomic or transcriptomic alterations associated with shorter survival of MM patients after BTZ treatment may impair activation of the ICD pathway. To this aim, we performed a transcriptomic analysis of purified CD138+ cells from 360 newly diagnosed, clinically-annotated MM patients enrolled in the IFM/DFCI 2009 study. By focusing on genes involved in the ICD process, we found that low levels of GABA Type A Receptor-Associated Protein (GABARAP) were associated with inferior clinical outcome (EFS, p=0.0055). GABARAP gene locus is located on chr17p13.1, a region deleted in high risk (HR) MM with unfavorable prognosis. Remarkably, we found that correlation of low GABARAP levels with shorter EFS was significant (p=0.018) even after excluding MM patients with del17p; and GABARAP is therefore an independent predictor of clinical outcome. GABARAP is a regulator of autophagy and vesicular trafficking, and a putative CALR binding partner. Interestingly, among a panel of MM cell lines (n=6), BTZ treatment failed to induce exposure of CALR and MM cell phagocytosis by DCs in KMS11 cells, which carry a monoallelic deletion of GABARAP. This effect was rescued by stable overexpression of GABARAP. Moreover, CRISPR/Cas9-mediated KO of GABARAP in 3 ICD-sensitive cell lines (AMO1, H929, 5TGM1) abrogated CALR exposure and ICD induction by BTZ. GABARAP add-back by stable overexpression in KO clones restored both CALR exposure and induction of ICD, confirming GABARAP on-target activity. Similarly, pre-treatment of GABARAP KO cells with recombinant CALR restored MM phagocytosis, further confirming that GABARAP impairs ICD via inhibition of CALR exposure. Based on these findings, we hypothesized that GABARAP loss may alter the ICD pathway via CALR trapping, resulting in the ICD resistant phenotype observed in GABARAP null and del17p cells. To this end, we explored the impact of GABARAP KO on the CALR protein interactome, in the presence or absence of BTZ. Importantly, GABARAP KO produced a significant increase of CALR binding to stanniocalcin 1 (STC1), a phagocytosis checkpoint that mediates the mitochondrial trapping of CALR, thereby minimizing its exposure upon ICD. Consistently, GABARAP KO also affected CALR interactome in BTZ-treated cells, which was significantly enriched in mitochondrial proteins. Importantly, co-IP experiments confirmed GABARAP interaction with STC1. These data indicate a molecular scenario whereby GABARAP interacts with STC1 to avoid STC1-mediated trapping of CALR, allowing for the induction of ICD after treatment with ICD inducers; on the other hand, this mechanism is compromised in GABARAP null or del17p cells, and the STC1-CALR complex remains trapped in the mitochondria, resulting in ICD resistance. To functionally validate our findings in the context of the immune microenvironment, we performed mass Cytometry after T cell co-culture with DCs primed by both WT and GABARAP KO AMO1 clones. And we confirmed that treatment of GABARAP KO clones with BTZ failed to activate an efficient T cell response. In conclusion, our work identifies a unique mechanism of immune escape which may contribute to the poor clinical outcome observed in del17p HR MM patients. It further suggests that novel therapies to restore GABARAP may allow for the induction of ICD and improved patient outcome in MM. Disclosures Bianchi: Jacob D. Fuchsberg Law Firm: Consultancy; MJH: Honoraria; Karyopharm: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria. Richardson: AstraZeneca: Consultancy; Regeneron: Consultancy; Protocol Intelligence: Consultancy; Secura Bio: Consultancy; GlaxoSmithKline: Consultancy; Sanofi: Consultancy; Janssen: Consultancy; Takeda: Consultancy, Research Funding; AbbVie: Consultancy; Karyopharm: Consultancy, Research Funding; Celgene/BMS: Consultancy, Research Funding; Oncopeptides: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy, Research Funding. Chauhan: C4 Therapeutics: Current equity holder in publicly-traded company; Stemline Therapeutics, Inc: Consultancy. Munshi: Legend: Consultancy; Karyopharm: Consultancy; Amgen: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Abbvie: Consultancy; Takeda: Consultancy; Adaptive Biotechnology: Consultancy; Novartis: Consultancy; Pfizer: Consultancy; Bristol-Myers Squibb: Consultancy. Anderson: Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1613-1613
Author(s):  
Chad C Bjorklund ◽  
Michael Amatangelo ◽  
Hsiling Chiu ◽  
Jian Kang ◽  
Tiziana Civardi ◽  
...  

Abstract Background: Pomalidomide (POM) is an established agent in relapsed/refractory (R/R) multiple myeloma (MM) with direct cytotoxicity against MM cells and immunostimulatory activities in multiple cell types including T cells and NK cells. CC-92480 is a novel Aiolos/Ikaros degrading cereblon E3 ligase modulator (CELMoD ®) agent is currently being investigated in combination with the proteasome inhibitor (PI) bortezomib (BTZ) and corticosteroid dexamethasone (DEX), or with DEX only in R/R MM (CC-92480-MM-002 and CC-92480-MM-001). Previous results indicate that triplet combination of POM/BTZ/DEX may enhance some T, B and NK cell subpopulations, overcoming immunosuppression when compared to BTZ/DEX-only treated patients (Rao et al, 2019). Mechanisms of action (MOA) of CC-92480- and POM-mediated substrate depletion occurs via ubiquitination and proteasome degradation, where BTZ has been speculated as potentially antagonistic as a PI. Here, we report pre-clinical and clinical observations of an immune MOA of CC-92480 or POM in combination with BTZ. Results: To mimic the clinical pharmacokinetics, BTZ was utilized as a high-dose pulse method alone and in combination with POM or CC-92480, followed by flow cytometric measurements of Aiolos and Ikaros protein abundance in healthy donor (HD) T cells. The addition of BTZ modestly delayed CRBN-dependent substrate depletion compared to single agent POM or CC-92480; however, this effect was only apparent at early time points (1-6 hr) where the effect was negligible by 24 hr. To understand the functional implications of BTZ combination, we conducted CD3-stimulated PBMC-mediated cytotoxicity assay against H929 MM target cells in a co-culture model. The efficiency of POM or CC-92480 induced PBMC-mediated killing in a dose dependent manner (~65% increase compared to DMSO) were similar at a 100-fold lower dose range of CC-92480 compared to POM, with the effect not being altered by co-treatment with BTZ. These data were replicated with a POM or CC-92480 treated supernatant stimulation of purified NK cells co-culture, which induced an 80% reduction in target cell viability with the BTZ combination having no negative effects on CELMoD-mediated activity. Cytokine analysis on PBMC supernatants treated with either POM or CC-92480 in the absence or presence of BTZ-pulse showed a dose-dependent increase in IL-2 (>2.4-fold) and Granzyme B (>3.1-fold), which were not impacted by BTZ co-treatment. As a secondary readout on activation status, we measured multiple signaling molecules and activation markers on the cell surface of T and NK cell subsets in CD3 stimulated HD PBMCs treated with dose-dependent POM or CC-92480 with or without co-treatment of BTZ. Compared to DMSO controls, elevated expression levels of CD25 (IL2RA), CD278 (ICOS), Granzyme B, CD134 (OX40R) and HLA-DR were observed with both POM and CC-92480 on CD4, CD8 and NK cells demonstrating a CELMoD-mediated increase in immune activation. These effects were not impacted by the co-treatment of BTZ. Examination of peripheral blood samples from MM patients enrolled in the CC-92480-MM-001/002 (NCT03374085/NCT03989414) clinical trials revealed that CC-92480 promoted potent immunomodulation when administered in combination with DEX and with BTZ/DEX. These data included increased numbers of activated and central memory T cells, as well as increased Ki67+ proliferating T and NK cell populations compared to samples collected during the screening period before any drugs had been administered, consistent with earlier observation of POM in combination with BTZ/DEX treated patients. Conclusions: Taken together, these data demonstrate that POM and CC-92480 are potent immunomodulatory agents with enhanced induction of PBMC and NK mediated cell killing of MM tumor cells and activation of T and NK cells, at 100-fold lower concentrations of CC-92480 compared to POM. Additionally, we showed that combination with BTZ in preclinical assays and in the clinical setting did not antagonistically affect the immunostimulatory ability of POM or CC-92480. Disclosures Bjorklund: BMS: Current Employment, Current equity holder in publicly-traded company. Amatangelo: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Chiu: Bristol Myers Squibb: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Kang: BMS: Current equity holder in publicly-traded company. Civardi: Bristol Myers Squibb: Current Employment. Katz: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Maciag: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Hagner: BMS: Current Employment, Current equity holder in publicly-traded company. Pourdehnad: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties: No royalty. Bahlis: Pfizer: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Genentech: Consultancy; BMS/Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; GlaxoSmithKline: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria. Richardson: Oncopeptides: Consultancy, Research Funding; Celgene/BMS: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Karyopharm: Consultancy, Research Funding; Protocol Intelligence: Consultancy; Janssen: Consultancy; Sanofi: Consultancy; Secura Bio: Consultancy; GlaxoSmithKline: Consultancy; Regeneron: Consultancy; AstraZeneca: Consultancy; AbbVie: Consultancy; Jazz Pharmaceuticals: Consultancy, Research Funding. Thakurta: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3411-3411
Author(s):  
Maro Ohanian ◽  
Martha L. Arellano ◽  
Moshe Y. Levy ◽  
Kristen O'Dwyer ◽  
Hani Babiker ◽  
...  

Abstract INTRODUCTION: APTO-253 represses expression of the MYC oncogene by targeting a conserved G-quadruplex structure in its promoter, down-regulates MYC mRNA and protein levels and induces apoptosis in AML cell lines and marrow samples from patients with AML, MDS, and MPN in vitro. After injection, a large fraction of APTO-253 binds iron and transforms to the Fe(253) 3 complex which retains full activity. APTO-253 has been granted orphan drug designation for AML by the US FDA and is being studied in a Phase 1a/b clinical trial in patients with relapsed or refractory AML (R/R AML) or high-risk myelodysplasias (high-risk MDS) (NCT02267863). AIMS: Primary objectives are to determine the safety and tolerability of APTO-253, MTD, dose limiting toxicities (DLT), and the RP2D. Key secondary objectives are to assess the pharmacokinetic (PK) profile, pharmacodynamic (PD) activity, and preliminary evidence of antitumor activity. METHODS: Eligible patients have R/R AML or high-risk MDS for which either standard treatment has failed, is no longer effective, or can no longer be administered safely. Treatment- emergent adverse events (TEAEs) and tumor responses are evaluated using International Working Group criteria. APTO-253 is administered by IV infusion once weekly on days 1, 8, 15, and 22 of each 28-day cycle; ascending dose cohorts were enrolled at a starting dose of 20 mg/m 2 with planned escalation to 403 mg/m 2. RESULTS: As of June 7, 2021, a total of 18 patients (median age 64.0 years, 16 AML and 2 high-risk MDS) with a median of 2.5 prior treatments (range of 1 - 9) have been treated with APTO-253 at doses of 20 (n=1), 40 (n=1), 66 (n=4), 100 (n=4) and 150 mg/m 2 (n=8). Most patients were RBC (87.5% of AML and 100% of MDS) and/or platelet (75% of AML and 50% MDS) transfusion-dependent. No DLTs or drug-related serious adverse events have been reported. Only 1 patient had a drug-related TEAE of grade 3 or greater (fatigue, Grade 3, probably related). Preliminary PK analysis (Figure 1) showed that serum levels of APTO-253 were dose proportional. C max and AUC 0-72h for C1D1 dosing were 0.06, 0.02, 0.36 ± 0.37, 0.44 ± 0.41 and 0.72 ± 0.70 µM and 0.11, 0.15, 3.98 ± 1.77, 4.79 ± 0.87 and 2.51 ± 1.73 µM*h for dose levels of 20, 40, 66, 100 and 150 mg/m 2, respectively. Plasma levels for Fe(253) 3 were significantly higher than those for the APTO-253 monomer. For example, C max and AUC 0-72h of Fe(253) 3 for C1D1 dosing of patients in Cohort 150 mg/m 2 were 2- and 20- fold higher than the ATPO-253 monomer at 15.09 ± 0.42 µM and 51.52 ± 28.26 µM*h, respectively. Following dosing at 150 mg/m 2, serum concentrations of Fe(253) 3 were above 0.5 µM for > 48 h, which approaches the therapeutic range based on in vitro studies. CONCLUSIONS: APTO-253 has been well-tolerated at doses of 20, 40, 66, 100 and 150 mg/m 2 over multiple cycles and escalated to 210 mg/m 2 (Cohort 6). PK analysis revealed that APTO-253 is rapidly transformed to and co-exists with the Fe(253) 3 in serum from R/R AML and high-risk MDS patients. Enrollment of patients at the 210 mg/m 2 dose level is ongoing and updated clinical data will be presented at the meeting. Figure 1 Figure 1. Disclosures Arellano: KITE Pharma, Inc: Consultancy; Syndax Pharmaceuticals, Inc: Consultancy. Levy: AstraZeneca: Consultancy, Honoraria, Speakers Bureau; Jazz Pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; GSK: Consultancy, Other: Promotional speaker; Janssen Pharmaceuticals: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; AbbVie: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Morphosys: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Bristol Myers Squibb: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Seattle Genetics: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Epizyme: Consultancy, Other: Promotional speaker; Takeda: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Dova: Consultancy, Other: Promotional speaker; Novartis: Consultancy, Other: Promotional speaker; TG Therapeutics: Consultancy, Honoraria, Speakers Bureau; Karyopharm: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Gilead Sciences, Inc.: Consultancy, Honoraria, Speakers Bureau; Beigene: Consultancy, Honoraria, Speakers Bureau; Amgen Inc.: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau. Mahadevan: caris: Speakers Bureau; Guardanthealt: Speakers Bureau; PFIZER: Other: Clinical trial Adverse events committee; TG Therapeuticals: Other: Clinical trial Adverse events committee. Zhang: Aptose Biosciences, Inc.: Current Employment. Rastgoo: Aptose Biosciences, Inc.: Current Employment. Jin: Aptose Biosciences, Inc.: Current Employment. Marango: Aptose Biosciences, Inc.: Current Employment, Current equity holder in publicly-traded company. Howell: Aptose Biosciences, Inc.: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Research Funding. Rice: Aptose Biosciences, Inc.: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties; Oncolytics Biotech Inc.: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Bejar: Aptose Biosciences, Inc.: Current Employment, Current equity holder in publicly-traded company; Takeda: Research Funding; BMS: Consultancy, Research Funding; Gilead: Consultancy, Honoraria; Epizyme: Consultancy, Honoraria; Astex: Consultancy; Silence Therapeutics: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4341-4341
Author(s):  
Fengjuan Fan ◽  
Stefano Malvestiti ◽  
Yujia Shen ◽  
Eugenio Morelli ◽  
Yuji Mishima ◽  
...  

A significant increase in bone marrow (BM) angiogenesis represents a key event in early, microenvironment-dependent, multiple myeloma (MM). Angiogenic growth factor- and cytokine- production and secretion is a complex process regulated by a plethora of transcription factors (TFs). Over the past years, members of the AP-1 family of TFs have emerged as potential new therapeutic targets. Our recent work demonstrated for the first time a pivotal role for the AP-1 family member JunB in MM pathogenesis (Fan et al., 2017). Whether JunB also contributes to MM BM angiogenesis is currently unknown. In silico and immunohistochemical analyses revealed a correlative increase of JunB and angiogenic growth factors in samples isolated from healthy donors to MGUS and MM patients; and a decrease in samples isolated from patients with plasma cell leukemia. These data were supported by the utilization of an innovative in vivo MM model of clonal evolution. Specifically, JunB as well as selected angiogenic factors were significantly increased in tumor cell clones at primary sites (bone chips) versus tumor cell clones at metastatic (distant BM) sites, as evidenced by whole exome and RNA sequencing. Functionally, doxycyclin- induced inhibition of stroma cell: MM cell co-culture- as well as of IL-6- mediated JunB upregulation in TetR-shJunB/ MM.1S cells significantly reduced production and secretion of angiogenic factors; and consequently inhibited in vitro angiogenesis. Conversely, 4-hydroxytamoxifen (4-OHT)-mediated upregulation of JUNB activity in JUNB-ER/MM cells strongly increased the expression and secretion of angiogenic factors and in vitro angiogenesis. The interaction of JunB with angiogenic factor- encoding DNA in MM cells was further confirmed utilizing chromatin immunoprecipitation (ChIP)- sequencing. Finally, treatment with doxycycline effectively inhibited JunB levels and consistently reduced microvessel density in immunodeficient NSG mice inoculated with TetR-shJUNB/ MM.1S, but not TetR-SCR/ MM.1S. In conclusion, our findings demonstrate a pivotal role of JUNB in MM BM angiogenesis; they thereby provide further evidence that JUNB is a promising therapeutic target particularly in early MM. Disclosures Vallet: Pfizer: Honoraria; Roche Pharmaceuticals: Consultancy; MSD: Honoraria. Roccaro:Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; AstraZeneca: Research Funding; Transcan2-ERANET: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Transcan2-ERANET: Research Funding; AstraZeneca: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; European Hematology Association: Research Funding; European Hematology Association: Research Funding. Goldschmidt:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; John-Hopkins University: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; MSD: Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Research Funding; Dietmar-Hopp-Stiftung: Research Funding; John-Hopkins University: Research Funding; Chugai: Honoraria, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Research Funding; Molecular Partners: Research Funding. Podar:Takeda: Consultancy; Celgene: Consultancy, Honoraria; Amgen Inc.: Honoraria; Janssen Pharmaceuticals: Consultancy, Honoraria; Roche Pharmaceuticals: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-25 ◽  
Author(s):  
Sham Mailankody ◽  
Jeffrey V. Matous ◽  
Michaela Liedtke ◽  
Surbhi Sidana ◽  
Shahbaz Malik ◽  
...  

Background Allogeneic (off the shelf) chimeric antigen receptor (CAR) T cell therapy addresses the logistical challenges, availability and variable product quality of autologous CAR T therapy. ALLO-715 is a genetically modified anti-BCMA AlloCAR Ttm cell product in which the TCR alpha constant gene is disrupted to reduce the risk of graft-versus-host disease (GvHD) and the CD52 gene is disrupted with Talen® technology to permit the use of ALLO-647, an anti-CD52 mAb, for selective and prolonged host lymphodepletion (LD). Methods This is an open-label, Phase 1 trial (NCT04093596) in adults with R/R multiple myeloma who have received ≥3 prior lines of therapy including a proteasome inhibitor, immunomodulator, and anti-CD38 mAb. Patients (pts) must be refractory to their last treatment line. Patients receive LD followed by ALLO-715 at 1 of 4 dose levels (DL) in a 3+3 dose escalation design: 40, 160, 320, and 480 x 106 CAR+ T cells. Several LD regimens are being evaluated. These include: FCA (fludarabine (F) 90 mg/m2, cyclophosphamide (C) 900 mg/m2, and ALLO-647 (A) 39 mg divided over 3 days), FCA+ (same F and C but ALLO-647 (A+) dose of 90 mg divided over 3 days); as well as CA (same C and A divided over 3 days, but no F given). Results As of 08 July 2020, 19 pts had enrolled and 15 had received ALLO-715 at 3 DLs: 3 pts at DL1 (3 FCA and 0 CA); 7 pts at DL2 (4 FCA and 3 CA); 5 pts at DL3 (3 FCA and 2 CA). As of the data cutoff, no pts had received FCA+ or ALLO-715 DL4. Patients were heavily pre-treated and in advanced stage of disease with a median of 5 (range 3-11) prior lines of therapy and 31.6% ISS Stage III at screening. All but 1 had a prior autologous stem cell transplant. 52.6% (10/19) of patients had high risk cytogenetics, and 26.3% (5/19) had extramedullary disease. The most common Grade ≥3 adverse events were anemia (41.2%), neutropenia (41.2%), lymphopenia (29.4%), and thrombocytopenia (29.4%). Four episodes of Grade ≥3 infections occurred in 4 pts. Three of these were Grade 3 and included parvovirus B19, staphylococcal bacteremia, and pneumonia, which resolved with treatment. The fourth was a Grade 5 episode that occurred on day 8 post-ALLO-715 infusion in a rapidly progressing, refractory myeloma pt who, on day 1, developed a non-neutropenic fever and multifocal pneumonia with negative blood and sputum cultures. The patient progressed to respiratory failure and only comfort care was pursued. This death was considered related to conditioning (CA). No DLTs to ALLO-715 had been reported as of the data cutoff. In addition, no neurotoxicity (ICANS) or GvHD had been reported as of the data cutoff. Cytokine release syndrome was reported in 4 pts (24%). Three episodes were Grade 1 and 1 was Grade 2 (Lee Grading); all resolved without tocilizumab or corticosteroids. Fifteen pts were efficacy evaluable (defined as receiving ALLO-715, and undergoing at least one response assessment or discontinuing prior to the first response assessment), with a median follow-up of 2 months (range 0, 10 months). A higher dose of ALLO-715 (DL3) was associated with greater anti-cancer activity with 3/5 pts responding per IMWG (60%, 95% CI 14.7, 94.7). In pts who received DL3 FCA, 2/3 responded (1 sCR and 1 VGPR, Table 1). All DL3 pts who responded experienced at least a VGPR and achieved MRD negative status by local MRD testing. All responses were initially observed at day 14. Four (80%) out of the 5 responders were still in response at the time of the data cutoff. ALLO-715 cell expansion by qPCR was observed at all dose levels. Conclusions These early data suggest that ALLO-715 and ALLO-647 have a manageable safety profile. ALLO-715 shows evidence of clinical activity in the allogeneic setting in pts with R/R multiple myeloma and suggests that higher cell doses are associated with greater anti-cancer activity. Enrollment is ongoing in cohorts with higher ALLO-715 (480M CAR+ T-cells) and ALLO-647 (90mg). Updated safety, efficacy, PK/PD data will be presented. Clinical trial information: NCT04093596. Disclosures Mailankody: Physician Education Resource: Honoraria; PleXus Communications: Honoraria; Takeda Oncology: Research Funding; Janssen Oncology: Research Funding; Allogene Therapeutics: Research Funding; Juno Therapeutics, a Bristol-Myers Squibb Company: Research Funding. Matous:Bristol-Myers Squibb Company: Consultancy, Honoraria, Speakers Bureau. Liedtke:Janssen: Membership on an entity's Board of Directors or advisory committees; Adaptive: Membership on an entity's Board of Directors or advisory committees; Caelum: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria. Sidana:Janssen: Consultancy. Nath:Actinium: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; Daiichi Sankyo: Consultancy, Honoraria. Oluwole:Bayer: Consultancy; Spectrum Pharmaceuticals: Consultancy; Kite, a Gilead Company: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy. Karski:Crisper Therapeutics: Current equity holder in publicly-traded company; Allogene Therapeutics: Current Employment, Current equity holder in publicly-traded company; Nektar Therapeutics: Current equity holder in publicly-traded company, Ended employment in the past 24 months. Lovelace:Allogene Therapeutics: Current Employment, Current equity holder in publicly-traded company. Zhou:Allogene Therapeutics: Current Employment, Current equity holder in publicly-traded company. Nandakumar:Allogene Therapeutics: Current Employment, Current equity holder in publicly-traded company. Balakumaran:Allogene Therapeutics: Current Employment, Current equity holder in publicly-traded company; Merck: Ended employment in the past 24 months. Hari:BMS: Consultancy; Takeda: Consultancy; Janssen: Consultancy; Amgen: Consultancy; GSK: Consultancy; Incyte Corporation: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document