scholarly journals CD117 As an Immunotherapeutic Target in Advanced Forms of Mastocytosis

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2538-2538
Author(s):  
Anne Kaiser ◽  
Renier Myburgh ◽  
Laura Volta ◽  
Christian Edoardo Pellegrino ◽  
Markus G Manz

Abstract Mastocytosis is a malignant disease resulting from oncogenic transformed mast cells. Up to 80% of malignant cells harbor a D816V mutation in the KIT-receptor (CD117), leading to constitutive kinase activation and proliferation and survival of mast cells. Advanced forms of mastocytosis (aggressive systemic mastocytosis: ASM, systemic mastocytosis with associated hematological disease: SM-AHN, mast cell leukemia: MCL) present as a therapeutic challenge. Although the recently approved poly tyrosine kinase inhibitor Midostaurin provides some improvement, the median overall survival ranges from 3.5 years (ASM) to less than six months (MCL). The reduced life expectancy is frequently due to mast cell infiltration resulting in multi organ failure. Additionally, there are patients who do not benefit from the treatment with Midostaurin (overall response 60%) or suffer from side effects, which lead to reduction or termination of therapy. Currently, the only available curative approach is conditioning poly-chemotherapy followed by allogenic stem cell transplantation (allo-HSCT). However, allo-HSCT is associated with substantial side-effects and, also due to high rates of relapse, only leads to an overall survival of 43% for ASM and 17% for MCL after three years. Thus, better therapeutic options are needed. Recently, we demonstrated that CD117 (KIT-receptor) positive human AML can be efficiently eradicated by anti-CD117 CAR T-cells in vitro and in vivo (Myburgh et al., Leukemia 2020). As mast cells, and also transformed mast cells, highly express CD117, we here tested if anti-CD117 CAR T-cells would equally efficiently eliminate this malignant cell population. We thus co-cultured various established mast cell lines (partly harboring the oncogenic driver mutation KIT D816V) with anti-CD117-CAR T-cells in a 1:1 effector to target ratio in vitro. After 24 hours of co-culturing, the tumor cells were effectively killed, and this was still observed despite increasing the effector to target ratio to 1:4. Also, within 28 days of co-culture, the longest time followed in vitro, tumor cells were controlled and did not outgrow. Increased proliferation of anti-CD117-CAR T-cells in the presence of mast cells was observed and tracked throughout the 28-day experiment. In conclusion, we demonstrate that the human mast cell lines HMC-1.1 KIT V560G, HMC-1.2 KIT V560G, KIT D816V, ROSA KIT WT, ROSA KIT D816V, LAD2 and MCPV-1 can be efficiently targeted and killed in vitro by allogeneic anti-CD117-CAR T-cells. Given that CD117 is expressed on healthy hematopoietic stem and progenitor cells (HSPCs) on a substantially lower level, there might be a therapeutic window for anti-CD117 immunotherapy in advanced forms of mastocytosis. However, as CAR T-cells are highly efficient, collateral damage on healthy HSPCs will likely need to be compensated by subsequent HSC transplantation. We are currently translating these promising in vitro immunotherapeutic settings into surrogate xenogeneic in vivo models. Disclosures Myburgh: University of Zurich: Patents & Royalties: CD117xCD3 TEA. Manz: CDR-Life Inc: Consultancy, Current holder of stock options in a privately-held company; University of Zurich: Patents & Royalties: CD117xCD3 TEA.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


Leukemia ◽  
2021 ◽  
Author(s):  
Christos Georgiadis ◽  
Jane Rasaiyaah ◽  
Soragia Athina Gkazi ◽  
Roland Preece ◽  
Aniekan Etuk ◽  
...  

AbstractTargeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by ‘T v T’ fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in ‘self-enrichment’ yielding populations 99.6% TCR−/CD3−/CD7−. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic ‘off-target’ activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A121-A121
Author(s):  
Nina Chu ◽  
Michael Overstreet ◽  
Ryan Gilbreth ◽  
Lori Clarke ◽  
Christina Gesse ◽  
...  

BackgroundChimeric antigen receptors (CARs) are engineered synthetic receptors that reprogram T cell specificity and function against a given antigen. Autologous CAR-T cell therapy has demonstrated potent efficacy against various hematological malignancies, but has yielded limited success against solid cancers. MEDI7028 is a CAR that targets oncofetal antigen glypican-3 (GPC3), which is expressed in 70–90% of hepatocellular carcinoma (HCC), but not in normal liver tissue. Transforming growth factor β (TGFβ) secretion is increased in advanced HCC, which creates an immunosuppressive milieu and facilitates cancer progression and poor prognosis. We tested whether the anti-tumor efficacy of a GPC3 CAR-T can be enhanced with the co-expression of dominant-negative TGFβRII (TGFβRIIDN).MethodsPrimary human T cells were lentivirally transduced to express GPC3 CAR both with and without TGFβRIIDN. Western blot and flow cytometry were performed on purified CAR-T cells to assess modulation of pathways and immune phenotypes driven by TGFβ in vitro. A xenograft model of human HCC cell line overexpressing TGFβ in immunodeficient mice was used to investigate the in vivo efficacy of TGFβRIIDN armored and unarmored CAR-T. Tumor infiltrating lymphocyte populations were analyzed by flow cytometry while serum cytokine levels were quantified with ELISA.ResultsArmoring GPC3 CAR-T with TGFβRIIDN nearly abolished phospho-SMAD2/3 expression upon exposure to recombinant human TGFβ in vitro, indicating that the TGFβ signaling axis was successfully blocked by expression of the dominant-negative receptor. Additionally, expression of TGFβRIIDN suppressed TGFβ-driven CD103 upregulation, further demonstrating attenuation of the pathway by this armoring strategy. In vivo, the TGFβRIIDN armored CAR-T achieved superior tumor regression and delayed tumor regrowth compared to the unarmored CAR-T. The armored CAR-T cells infiltrated HCC tumors more abundantly than their unarmored counterparts, and were phenotypically less exhausted and less differentiated. In line with these observations, we detected significantly more interferon gamma (IFNγ) at peak response and decreased alpha-fetoprotein in the serum of mice treated with armored cells compared to mice receiving unarmored CAR-T, demonstrating in vivo functional superiority of TGFβRIIDN armored CAR-T therapy.ConclusionsArmoring GPC3 CAR-T with TGFβRIIDN abrogates the signaling of TGFβ in vitro and enhances the anti-tumor efficacy of GPC3 CAR-T against TGFβ-expressing HCC tumors in vivo, proving TGFβRIIDN to be an effective armoring strategy against TGFβ-expressing solid malignancies in preclinical models.Ethics ApprovalThe study was approved by AstraZeneca’s Ethics Board and Institutional Animal Care and Use Committee (IACUC).


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2205-2205 ◽  
Author(s):  
Elisa De Togni ◽  
Miriam Y Kim ◽  
Matt L Cooper ◽  
Julie Ritchey ◽  
Julie O'Neal ◽  
...  

Abstract Chimeric antigen receptor (CAR) T cells are a novel therapeutic approach which have shown good clinical outcomes in patients receiving CD19 CAR T cells for B cell acute lymphoblastic leukemia. CAR T cells are made to express a CAR that recognizes a specific surface antigen on a cell upon which they can then exert cytotoxic effects. We aim to extend the success of this therapy to acute myeloid leukemia (AML), a disease with generally poor clinical outcomes. However, due to the genetic heterogeneity characteristic of AML and the limited number of distinctive tumor markers, it has been difficult to find effective targets for CAR T cells on AML. C-type lectin like molecule-1 (CLL-1), also known as CD371, is a transmembrane glycoprotein that is expressed on about 90% of AML patient samples. CLL-1 may function as an inhibitory signaling receptor, as it contains an intracellular immunoreceptor tyrosine based inhibitory motif (ITIM). CLL-1 is primarily expressed on myeloid lineage cells in the bone marrow and in peripheral blood. While CLL-1 has been shown to be expressed on some granulocytes in the spleen, it is not reported to be expressed in non-hematopoietic tissues or on hematopoietic stem cells, which make CLL-1 a potential therapeutic target for AML. We generated two types of CLL-1 CARs, termed A and B, by using two different single chain variable fragments (scFvs) recognizing CLL-1. We used second generation CARs containing the scFvs, CD8 hinge and transmembrane domain, 4-1BB co-stimulatory domain, and CD3 zeta signaling domains. Using a lentiviral vector, we transferred the CAR gene into healthy donor human T cells and detected CAR expression by flow cytometry. We then tested the specific cytotoxic effects of CLL-1 CART-A and B on a CLL-1-expressing AML cell line, U937, by conducting a 4-hour chromium release assay. We found that both CAR T cells exhibited a dose-dependent killing of U937 (CLL-1 positive), while the untransduced (UTD) T cells had no cytotoxic effect (Figure 1A). We also found that U937 induces degranulation of CLL-1 CAR T cells as measured by CD107a expression by flow cytometry, while Ramos, a CLL-1 negative cell line, does not (Figure 1B). We then proceeded to investigate the in vivo efficacy of the CAR T cells. We injected NOD/SCID/IL2RG-null (NSG) mice with 1 x 106 THP-1 cells, a CLL-1 positive cell line. We confirmed engraftment by bioluminescent imaging (BLI) after 7 days and then injected 4 x 106 UTD, CLL-1 CART-A or CLL-1 CART-B. Surprisingly, only one of the CAR constructs, CLL-1 CART-A, showed significant activity in vivo, although both CARs had shown comparable activity in vitro. CLL-1 CART-A treated mice had delayed tumor progression and significantly increased length of survival (85 days vs. 63 days, p = 0.0021) compared to mice injected with UTD (Figure 1C and D). While CLL-1 CART-B treated mice also exhibited slower tumor growth and a trend towards better survival (72 days vs. 63 days, p=0.0547) this was not statistically significant. Post-mortem analysis showed that human T cells that continued to express CAR were present in the tumor, bone marrow and spleen of mice treated with CLL-1 CART-A only, while the UTD and CLL-1 CART-B treated mice showed tumor in all organs and no T cells. In summary, we show that CLL-1 CAR T cells can selectively eliminate CLL-1 positive target cells in vitro and in vivo, albeit with different degrees of efficacy modulated by the scFv. Studies are ongoing to investigate the mechanism behind the differential activity of these CAR constructs and to increase the long-term antitumor efficacy. Our results demonstrate that targeting CLL-1 using CAR T cell therapy holds promise for the treatment of AML. Disclosures Cooper: WUGEN: Consultancy, Equity Ownership.


2020 ◽  
Vol Volume 13 ◽  
pp. 5707-5708
Author(s):  
Hezhi Wang ◽  
Xueshuai Ye ◽  
Yi Ju ◽  
Ziqi Cai ◽  
Xiaoxiao Wang ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaojuan Shi ◽  
Daiqun Zhang ◽  
Feng Li ◽  
Zhen Zhang ◽  
Shumin Wang ◽  
...  

AbstractAsparagine-linked (N-linked) glycosylation is ubiquitous and can stabilize immune inhibitory PD-1 protein. Reducing N-linked glycosylation of PD-1 may decrease PD-1 expression and relieve its inhibitory effects on CAR-T cells. Considering that the codon of Asparagine is aac or aat, we wondered if the adenine base editor (ABE), which induces a·t to g·c conversion at specific site, could be used to reduce PD-1 suppression by changing the glycosylated residue in CAR-T cells. Our results showed ABE editing altered the coding sequence of N74 residue of PDCD1 and downregulated PD-1 expression in CAR-T cells. Further analysis showed ABE-edited CAR-T cells had enhanced cytotoxic functions in vitro and in vivo. Our study suggested that the single base editors can be used to augment CAR-T cell therapy.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Hao Zhang ◽  
Pu Zhao ◽  
He Huang

AbstractCD19-targeted CAR T cells therapy has shown remarkable efficacy in treatment of B cell malignancies. However, relapse of primary disease remains a major obstacle after CAR T cells therapy, and the majority of relapses present a tumor phenotype with retention of target antigen (antigen-positive relapse), which highly correlate with poor CAR T cells persistence. Therefore, study on factors and mechanisms that limit the in vivo persistence of CAR T cells is crucial for developing strategies to overcome these limitations. In this review, we summarize the rapidly developing knowledge regarding the factors that influence CAR T cells in vivo persistence and the underlying mechanisms. The factors involve the CAR constructs (extracellular structures, transmembrane and intracellular signaling domains, as well as the accessory structures), activation signaling (CAR signaling and TCR engagement), methods for in vitro culture (T cells collection, purification, activation, gene transduction and cells expansion), epigenetic regulations, tumor environment, CD4/CD8 subsets, CAR T cells differentiation and exhaustion. Of note, among these influence factors, CAR T cells differentiation and exhaustion are identified as the central part due to the fact that almost all factors eventually alter the state of cells differentiation and exhaustion. Moreover, we review the potential coping strategies aiming at these limitations throughout this study.


Sign in / Sign up

Export Citation Format

Share Document