scholarly journals Engineering better chimeric antigen receptor T cells

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Hao Zhang ◽  
Pu Zhao ◽  
He Huang

AbstractCD19-targeted CAR T cells therapy has shown remarkable efficacy in treatment of B cell malignancies. However, relapse of primary disease remains a major obstacle after CAR T cells therapy, and the majority of relapses present a tumor phenotype with retention of target antigen (antigen-positive relapse), which highly correlate with poor CAR T cells persistence. Therefore, study on factors and mechanisms that limit the in vivo persistence of CAR T cells is crucial for developing strategies to overcome these limitations. In this review, we summarize the rapidly developing knowledge regarding the factors that influence CAR T cells in vivo persistence and the underlying mechanisms. The factors involve the CAR constructs (extracellular structures, transmembrane and intracellular signaling domains, as well as the accessory structures), activation signaling (CAR signaling and TCR engagement), methods for in vitro culture (T cells collection, purification, activation, gene transduction and cells expansion), epigenetic regulations, tumor environment, CD4/CD8 subsets, CAR T cells differentiation and exhaustion. Of note, among these influence factors, CAR T cells differentiation and exhaustion are identified as the central part due to the fact that almost all factors eventually alter the state of cells differentiation and exhaustion. Moreover, we review the potential coping strategies aiming at these limitations throughout this study.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Derek P. Wong ◽  
Nand K. Roy ◽  
Keman Zhang ◽  
Anusha Anukanth ◽  
Abhishek Asthana ◽  
...  

AbstractB cell-activating factor (BAFF) binds the three receptors BAFF-R, BCMA, and TACI, predominantly expressed on mature B cells. Almost all B cell cancers are reported to express at least one of these receptors. Here we develop a BAFF ligand-based chimeric antigen receptor (CAR) and generate BAFF CAR-T cells using a non-viral gene delivery method. We show that BAFF CAR-T cells bind specifically to each of the three BAFF receptors and are effective at killing multiple B cell cancers, including mantle cell lymphoma (MCL), multiple myeloma (MM), and acute lymphoblastic leukemia (ALL), in vitro and in vivo using different xenograft models. Co-culture of BAFF CAR-T cells with these tumor cells results in induction of activation marker CD69, degranulation marker CD107a, and multiple proinflammatory cytokines. In summary, we report a ligand-based BAFF CAR-T capable of binding three different receptors, minimizing the potential for antigen escape in the treatment of B cell cancers.


2021 ◽  
Author(s):  
Yue Tan ◽  
Haodong Cai ◽  
Chuo Li ◽  
Biping Deng ◽  
Weiliang Song ◽  
...  

Abstract BackgroundCD19- and/or CD22-targeted chimeric antigen receptor (CAR) T cells efficiently induced remission in patients with B acute lymphoblastic leukemia (B-ALL), but a considerable proportion of patients relapsed after both CD19- and CD22-CAR therapies associated with the loss or downregulation of target antigen. Re-infusions of the prior used CAR T cells were usually ineffective. In contrast to the frequent loss of CD19, low level of CD22 is usually present on leukemia cells post CAR therapy, suggesting that newly designed CD22-CAR therapies may be effective in these patients.MethodsA yeast full-human single-chain variable fragment (scFv) library and a high-throughput NFAT reporter assay were utilized to screen several full-human CD22-CAR candidates; CD107 assay and in vitro cytotoxicity assay was used to evaluate the effector function of CAR T cells; membrane proteome assay was conducted to determine the specificity of the CAR toward the target antigen; a leukemia animal models was used to test the in vivo efficacy of CAR T cells. A phase I trial (ChiCTR2000028793) was conducted to assess the safety and effectiveness of CD22-CARFH80 therapy in 8 children with B-ALL resistant to or relapsed after prior CD19- and CD22-CAR treatment.ResultsWe identified a full-human CD22-CAR construct termed CD22CARFH80 which could mediate superior anti-leukemia activity in vitro and in a leukemia animal model and had good specificity to the target antigen. Data from the trial showed that with CD22-CARFH80 T-cell therapy, 6/8 (75%) patients including 2 who had CD22low blasts achieved complete remission; 1 patient had a partial response. CAR T cells efficiently expanded in vivo, while the toxic effect is low in most patients. At a median follow-up of 5 months, 4/6 (57%) patients remained in remission.ConclusionsTherapy with a newly invented CD22-CARFH80 overcomes the resistance to prior versions of CD19- and CD22-CAR formats and elicits potent anti-leukemia responses with an acceptable safety profile, representing a promising salvage regimen for B-ALL that fails in prior CD19- and CD22-CAR treatments.Trial registrationClinicalTrials.gov: ChiCTR2000028793; registered 4 January, 2020. http://www.chictr.org.cn/showproj.aspx?proj=47857


2021 ◽  
Author(s):  
Yibo Yin ◽  
Jesse Rodriguez ◽  
Nannan Li ◽  
Radhika Thokala ◽  
MacLean P Nasrallah ◽  
...  

Bispecific T-cell engagers (BiTEs) are bispecific antibodies that redirect T cells to target antigen-expressing tumors. BiTEs can be secreted by T cells through genetic engineering and perform anti-tumor activity. We hypothesized that BiTE-secreting T cells could be a valuable T cell-directed therapy in solid tumors, with distinct properties in mono- or multi-valent strategies incorporating chimeric antigen receptor (CAR) T cells. Glioblastomas represent a good model for solid tumor heterogeneity and represent a significant therapeutic challenge. We detected expression of tumor-associated epidermal growth factor receptor (EGFR), EGFR variant III (EGFRvIII), and interleukin-13 receptor alpha 2 (IL13Rα2) on glioma tissues and glioma cancer stem cells. These antigens formed the basis of a multivalent approach, using a conformation-specific tumor-related EGFR targeting antibody (806) and Hu08, an IL13Rα2-targeting antibody, as the scFvs to generate new BiTE molecules. Compared with 806CAR T cells and Hu08CAR T cells, BiTE T cells demonstrated prominent activation, cytokine production, and cytotoxicity in response to target-positive gliomas. Superior response activity was also demonstrated in BiTE secreting bivalent targeting T cells compared with bivalent targeting CAR T cells, which significantly delayed tumor growth in a glioma mouse model. In summary, BiTEs secreted by mono- or multi- valent targeting T cells have potent anti-tumor activity in vitro and in vivo with significant sensitivity and specificity, demonstrating a promising strategy in solid tumor therapy.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii2-ii2
Author(s):  
L Hänsch ◽  
M Peipp ◽  
R Myburgh ◽  
M Silginer ◽  
T Weiss ◽  
...  

Abstract BACKGROUND Due to the limited success of existing therapies for gliomas, innovative therapeutic options are urgently needed. Chimeric antigen receptor (CAR) T cell therapy has been successful in patients with hematological malignancies. However, using this treatment against solid tumors such as glioblastomas is more challenging. Here, we generated CAR T cells targeting the transmembrane protein CD317 (BST-2, HM1.24) which is overexpressed in glioma cells and may therefore serve as a novel target antigen for CAR T cell-based immunotherapy. MATERIAL AND METHODS CAR T cells targeting CD317 were generated by lentiviral transduction of human T cells from healthy donors. The anti-glioma activity of CD317-CAR T cells was determined in lysis assays using different glioma target cell lines with varying CD317 expression levels. The efficiency of CD317-CAR T cells to control tumor growth in vivo was evaluated in clinically relevant orthotopic xenograft glioma mouse models. RESULTS We created a second-generation CAR construct targeting CD317 and observed strong anti-glioma activity of CD317-CAR T cells in vitro. Glioma cells with a CRISPR/Cas9-mediated CD317 knockout were resistant to CD317-specific CAR T cells, demonstrating their target antigen-specificity. Since CD317 is also expressed by T cells, transduction with a CD317-directed CAR resulted in fratricide of the transduced T cells. Silencing of CD317 in CAR T cells by integrating a specific shRNA into the CAR vector significantly increased the viability, proliferation and cytotoxic function of the CAR T cells. Importantly, intratumoral treatment with CD317-CAR T cells prolonged the survival and cured a significant fraction of glioma-bearing nude mice. CONCLUSION We demonstrate strong CD317-specific anti-tumor activity of CD317-CAR T cells against various glioma cell lines in vitro and in xenograft glioma models in vivo. These data lay a scientific basis for the subsequent evaluation of this therapeutic strategy in clinical neuro-oncology.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 736-736
Author(s):  
Kole Degolier ◽  
Jennifer Cimons ◽  
Michael Yarnell ◽  
Mark Eric Kohler ◽  
Terry J. Fry

Abstract Chimeric antigen receptor (CAR) T cell therapy has emerged as a highly efficacious treatment for B-lineage acute lymphoblastic leukemias (B-ALL). However, downregulation of the CAR-targeted antigen on leukemia cells, predicted to reduce cellular avidity, is associated with post-CAR T cell leukemic relapse following CD22 CAR treatment (Fry et al., Nat. Med., 2017). We have observed reduced function of human CAR T cells against low target antigen site density (Ag Lo) human leukemia in immunodeficient mouse models, relative to CARs responding to high-antigen expressing leukemia. Thus, a better understanding of CAR responses to Ag Lo leukemia could help to increase the durability of remissions. We set out to develop a model system in which we could further interrogate the consequences of low-avidity interactions on CAR immunobiology, generating variants of a murine B-ALL driven by the E2A-PBX fusion protein (E2A) with different levels of target antigen to use in an immunocompetent syngeneic mouse model. We observed impaired expansion (p<0.0001) and tumor clearance (p<0.001) of CAR T cells responding to low-antigen variants of E2A (E2A-Ag Lo) as compared to wildtype E2A expressing high levels of antigen (E2A-WT). While CD8+ CAR T cell (CAR8) transcription factor (TF) expression in response to E2A-Ag Lo versus E2A-WT was largely similar early after CAR infusion, by day 9 post-CAR, CAR8s responding to E2A-Ag Lo exhibited decreased expression of multiple TFs, with Eomes (p<0.01), Irf4 (p<0.001) and Blimp1 (p<0.01) showing the largest magnitude change relative to CAR8s responding to E2A-WT. Additionally, CAR8s from mice bearing E2A-Ag Lo became enriched for cells of a "terminally exhausted" phenotype (Eomes+/PD1 Hi/TOX Hi) by day 11 post-CAR, and negatively-enriched for the "progenitor exhausted" (Tcf1+/PD1 Int) phenotype which can be functionally rescued by anti-PD1 therapy (p<0.0001, p<0.01). These data suggest that continual stimulation by low density antigen leads to a gradual reduction in the ability of CAR8s to mount an effector response, and eventually to T cell states with sub-optimal anti-tumor efficacy. Following in vitro stimulation of human CD22 CARs across a range of leukemic antigen densities, we saw that the percentage of CAR+ cells capable of producing IFNγ and IL2 corresponded to target antigen density (p<0.01, p<0.001). As human CARs are commonly manufactured from heterogenous bulk donor T cells, we hypothesized that antigen sensitivity is impacted by the prior antigen-experience of a given T cell. We predicted that T cells which had encountered cognate antigen through their TCR prior to CAR manufacturing (CAR8 AgEx) would have enhanced capacity to respond to low-avidity stimulation compared to CARs manufactured from naïve CD8+ T cells (CAR8 Naïve). We used a well-characterized ovalbumin vaccination model with OT-I TCR-transgenic T cells, allowing defined control of T cell antigen experience, to generate CAR8 AgEx. We found that CAR8 AgEx were highly antigen-sensitive relative to CAR8 Naïve, showing almost no reduction in numbers of cells capable of producing IFNγ and TNFα in vitro against E2A-Ag Lo as compared to E2A-WT. In vivo, CAR8 AgEx showed near complete depletion of E2A-Ag Lo in bone marrow by day 11 post-CAR, while mice treated with CAR8 Naïve maintained a substantial tumor burden (p<0.01). To test our hypothesis in human cells, we manufactured CD22 CAR T cells from naïve (CD45RO-) versus non-naïve (CD45RO+) starting T cell populations, and again found that CAR AgEx outperformed CAR Naïve against Ag Lo leukemia in production of IFNγ and IL2 in vitro (p<0.001, p<0.01) and in early leukemic clearance in vivo (p<0.0001, day 13). In conclusion, we have established a model to study the immunobiology of the CAR T cell response to Ag Lo B-ALL in an intact host. Preliminary findings indicate impaired expansion and tumor clearance of Ag Lo leukemia, associated with altered CAR T cell transcriptional profiles and features of T cell exhaustion. Furthermore, T cell history prior to CAR manufacturing has a drastic impact on the capacity to respond to Ag Lo leukemia. Future studies with this model will expand our characterization of CAR T cells responding to Ag Lo leukemia, with the goal of optimizing antigen sensitivity. We expect that advancing our understanding on the interplay of antigen density and CAR differentiation status will prove useful in developing more effective iterations of this therapy. Disclosures Fry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company.


2020 ◽  
Author(s):  
Christos Georgiadis ◽  
Jane Rasaiyaah ◽  
Soragia Athina Gkazi ◽  
Roland Preece ◽  
Aniekan Etuk ◽  
...  

AbstractTargeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by ‘T v T’ fratricide against shared antigens such as CD3 and CD7. Genome-editing can overcome such hurdles through targeted disruption of problematic shared antigens. Base editing offers the possibility of seamless disruption of gene expression through the creation of stop codons or elimination of splice donor or acceptor sites. We describe the generation of fratricide resistant, T cells by orderly removal of shared antigens such as TCR/CD3 and CD7 ahead of lentiviral mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base edited cells confirmed virtual elimination of chromosomal translocation events detected in conventional Cas9 treated cells. Interestingly, co-culture of 3CAR and 7CAR cells resulted in ‘self-enrichment’ yielding populations that were 99.6% TCR-/CD3/-CD7-. 3CAR or 7CAR cells were able to exert specific cytotoxicity against their relevant target antigen in leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited the highest level of cytotoxicity against T-ALL targets expressing both target in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no evidence of promiscuous base conversion activity affecting CAR antigen specific binding regions which may otherwise redirect T cell specificity. Combinational infusion of fratricide resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allogeneic haematopoietic stem cell transplantation for T cell malignancies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


Leukemia ◽  
2021 ◽  
Author(s):  
Christos Georgiadis ◽  
Jane Rasaiyaah ◽  
Soragia Athina Gkazi ◽  
Roland Preece ◽  
Aniekan Etuk ◽  
...  

AbstractTargeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by ‘T v T’ fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in ‘self-enrichment’ yielding populations 99.6% TCR−/CD3−/CD7−. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic ‘off-target’ activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A121-A121
Author(s):  
Nina Chu ◽  
Michael Overstreet ◽  
Ryan Gilbreth ◽  
Lori Clarke ◽  
Christina Gesse ◽  
...  

BackgroundChimeric antigen receptors (CARs) are engineered synthetic receptors that reprogram T cell specificity and function against a given antigen. Autologous CAR-T cell therapy has demonstrated potent efficacy against various hematological malignancies, but has yielded limited success against solid cancers. MEDI7028 is a CAR that targets oncofetal antigen glypican-3 (GPC3), which is expressed in 70–90% of hepatocellular carcinoma (HCC), but not in normal liver tissue. Transforming growth factor β (TGFβ) secretion is increased in advanced HCC, which creates an immunosuppressive milieu and facilitates cancer progression and poor prognosis. We tested whether the anti-tumor efficacy of a GPC3 CAR-T can be enhanced with the co-expression of dominant-negative TGFβRII (TGFβRIIDN).MethodsPrimary human T cells were lentivirally transduced to express GPC3 CAR both with and without TGFβRIIDN. Western blot and flow cytometry were performed on purified CAR-T cells to assess modulation of pathways and immune phenotypes driven by TGFβ in vitro. A xenograft model of human HCC cell line overexpressing TGFβ in immunodeficient mice was used to investigate the in vivo efficacy of TGFβRIIDN armored and unarmored CAR-T. Tumor infiltrating lymphocyte populations were analyzed by flow cytometry while serum cytokine levels were quantified with ELISA.ResultsArmoring GPC3 CAR-T with TGFβRIIDN nearly abolished phospho-SMAD2/3 expression upon exposure to recombinant human TGFβ in vitro, indicating that the TGFβ signaling axis was successfully blocked by expression of the dominant-negative receptor. Additionally, expression of TGFβRIIDN suppressed TGFβ-driven CD103 upregulation, further demonstrating attenuation of the pathway by this armoring strategy. In vivo, the TGFβRIIDN armored CAR-T achieved superior tumor regression and delayed tumor regrowth compared to the unarmored CAR-T. The armored CAR-T cells infiltrated HCC tumors more abundantly than their unarmored counterparts, and were phenotypically less exhausted and less differentiated. In line with these observations, we detected significantly more interferon gamma (IFNγ) at peak response and decreased alpha-fetoprotein in the serum of mice treated with armored cells compared to mice receiving unarmored CAR-T, demonstrating in vivo functional superiority of TGFβRIIDN armored CAR-T therapy.ConclusionsArmoring GPC3 CAR-T with TGFβRIIDN abrogates the signaling of TGFβ in vitro and enhances the anti-tumor efficacy of GPC3 CAR-T against TGFβ-expressing HCC tumors in vivo, proving TGFβRIIDN to be an effective armoring strategy against TGFβ-expressing solid malignancies in preclinical models.Ethics ApprovalThe study was approved by AstraZeneca’s Ethics Board and Institutional Animal Care and Use Committee (IACUC).


Sign in / Sign up

Export Citation Format

Share Document