scholarly journals S1P/S1PR1 Signalis Required for Optimal T-Cell Pathogenicity to Induce Gvhd By RegulatingDrp1/mTOR Axis

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 643-643
Author(s):  
Linlu Tian ◽  
Yongxia Wu ◽  
Hee-Jin Choi ◽  
Xiaohui Sui ◽  
Mohammed Hanief Sofi ◽  
...  

Abstract Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative option for the treatment of hematological malignancies, which is primarily mediated by donor immune cells. Acute graft-versus-host disease (aGVHD) mainly induced by transplanted donor T cells is a major and life-threating complication leading to severe "cytokines storm" and multiple organ damage, which contributes to high morbidity and mortality and thus limits the success of allo-HCT. Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, is synthesized from sphingosine by sphingosine kinase 1 (Sphk1) or Sphk2 and degraded by S1P lyase. S1P signal plays an important role in regulating biological functions and homeostasis of T lymphocytes, and thus has been considered as a therapeutic candidate against autoimmune disease. In current study, we demonstrated that Sphk1 but not Sphk2 is required for antigen-presenting cells (APC) to activate allogeneic T cells. Using murine allo-HCT models, we found that secretory S1P produced by Sphk1 in the recipients was required for the development of full-blown GVHD (Fig. 1 A-B). Consistently, S1PR1, a primary receptor for S1P, plays a critical role in the pathogenicity of donor T cells to induce GVHD (Fig. 1C). Using pharmacologic inhibitors, we demonstrated that specific inhibition of Sphk1 (PF543) or S1PR1 (W146) substantially attenuated GVHD while preserving graft-vs.-leukemia (GVL) effect (Fig. 1D). Mechanistically, S1P/S1PR1 signal facilitated T-cell activation and differentiation towards Th1/Th17 but away from Tregs (Fig. 1E) and also promoted T-cell migratory potential into GVHD target organs (Fig. 1F). S1P/S1PR1 signaling increased mitochondrial fission of pathogenic CD4 + T cells through PRKAA1 dependent Drp1 and phosphorylated S6 (pS6) activation (Fig. 1 G-H). Whereas CD8 + T cells were much less sensitive to S1P-S1PR1-PRKAA1-pS6/Drp1 axis, which likely contributed to the GVL maintenance when S1P/S1PR1 signaling is absent or inhibited (Fig. 1 D, G). Furthermore, clinical data demonstrated that patients with acute GVHD exhibited a comparable level of sphingosine but a significantly higher level of S1P, as compared to the patients without GVHD, suggesting a positive role of S1P in GVHD development in clinic (Fig. 1I). Finally, we validated the efficacy of inhibiting Sphk1/S1PR1 in GVHD prevention induced by human T cells in a xenograft model (Fig. 1J). Taken together, our results provide a rationale and novel mechanism of targeting Sphk1/S1PR1 in the prevention of GVHD and leukemia relapse after allo-HCT. This novel strategy may be translated in the clinic to benefit patients with hematologic malignancies. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

1986 ◽  
Vol 164 (3) ◽  
pp. 709-722 ◽  
Author(s):  
T R Malek ◽  
G Ortega ◽  
C Chan ◽  
R A Kroczek ◽  
E M Shevach

The Ly-6 locus controls the expression and/or encodes for alloantigenic specificities found primarily on subpopulations of murine T and B lymphocytes. We have recently identified and characterized a new rat mAb, D7, that recognizes a nonpolymorphic Ly-6 specificity. After crosslinking by anti-Ig reagents or by Fc receptor-bearing accessory cells, mAb D7 could induce IL-2 production from T cell hybridomas, and in the presence of PMA could trigger a vigorous proliferative response in resting peripheral T cells. The addition of mAb D7 to cultures of antigen- and alloantigen-, but not mitogen-stimulated T cells resulted in a marked augmentation of the proliferative response. A number of other well-characterized mAbs to Ly-6 locus products could also stimulate a T cell proliferative response after crosslinking by anti-Ig and in the presence of PMA. These results strongly suggest that Ly-6 molecules may play a critical role in the T cell activation cascade, either as receptors for an unidentified soluble or cell-associated ligand or as transducing molecules that modulate signals initiated by antigen stimulation of the T3-Ti complex.


2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 767-767
Author(s):  
Yoichiro Yoshida ◽  
Naoya Aisu ◽  
Hideki Nagano ◽  
Akira Komono ◽  
Daibo Kojima ◽  
...  

767 Background: The programmed death-1 (PD-1), an inhibitory receptor expressed on activated T cells, is demonstrated to induce an immune-mediated response and play a critical role in tumor initiation and development. T cell activation induces effective antitumor immune response in cancer patients. Adoptive immunotherapy of cancer is evolving with the development of novel technologies that generate proliferation of large number of T cells. We evaluated the safety and efficacy of the combination of adoptive immunotherapy using αβ T cells with chemotherapy for metastatic colorectal cancer (mCRC). Methods: Seventeen patients with mCRC received XELOX + bevacizumab + ex vivo expanded αβ T lymphocytes as a first-line chemoimmunotherapy. Results: Median age of the 17 patients (6 men, 11 women) was 64 years (range:38–80). The T cell number was more than 5.0×109 for each infusion. Median progression-free survival was 15.2 months. Response rate was 80% (complete response (CR) = 23.5%, partial response (PR) = 47.1%, stable disease (SD) = 29.4% and progressive disease (PD) = 0%). Most adverse events were mild to moderate in intensity and immunotherapy-associated toxicity was minimal. Conclusions: Combination of adoptive αβ T cell immunotherapy with chemotherapy for mCRC is safe and effective.


2019 ◽  
Vol 37 (7_suppl) ◽  
pp. 301-301 ◽  
Author(s):  
Julie Bailis ◽  
Petra Deegen ◽  
Oliver Thomas ◽  
Pamela Bogner ◽  
Joachim Wahl ◽  
...  

301 Background: mCRPC is a disease of high unmet medical need, especially for patients who fail novel hormonal therapies and chemotherapy. BiTE molecules provide an off the shelf therapy that activates a patient’s own immune system and redirects T cells to kill tumor cells. The BiTE mechanism of action is distinct from other immunotherapies and may unlock immune response in mCRPC. PSMA is a compelling BiTE target that is highly expressed on PCa compared to normal tissue and has increased expression in mCRPC. Methods: AMG 160 is a fully human, half-life extended (HLE) BiTE that targets PSMA on tumor cells and CD3 on T cells. AMG 160 comprises two tandem single chain variable fragments fused to an Fc domain. Results: AMG 160 binds human and non-human primate (NHP) PSMA and CD3, leading to T cell activation and proliferation and cytokine production. AMG 160 redirects T cells to kill PSMA-positive cancer cell lines in vitro, including those with low PSMA levels or androgen-independent signaling. Weekly dosing of AMG 160 induces significant antitumor activity in established PCa xenograft model. The pharmacokinetics (PK) and pharmacodynamics of AMG 160 were tested in NHP. AMG 160 treatment led to BiTE target engagement in vivo, including transient T cell activation and cytokine release in blood, and mixed cellular infiltrates in multiple organs known to express PSMA. AMG 160 treatment was well tolerated. Cytokine release associated with the first dose could be attenuated using a step dose regimen. The half-life of AMG 160 in NHP was about one week. Based on allometric scaling, the PK profile of AMG 160 may be projected to enable dosing every other week in humans. Conclusions: AMG 160 is a potent HLE BiTE with specificity for PSMA-positive tumor cells. A Phase 1 study is planned to evaluate the safety and efficacy of AMG 160 in patients with mCRPC.


Blood ◽  
2012 ◽  
Vol 119 (1) ◽  
pp. 127-136 ◽  
Author(s):  
Min Chen ◽  
Kumar Felix ◽  
Jin Wang

AbstractAfter stimulation of antigen-specific T cells, dendritic cell (DCs) are susceptible to killing by these activated T cells that involve perforin and Fas-dependent mechanisms. Fas-dependent DC apoptosis has been shown to limit DC accumulation and prevent the development of autoimmunity. However, a role for perforin in the maintenance of DC homeostasis for immune regulation remains to be determined. Here we show that perforin deficiency in mice, together with the deletion of Fas in DCs (perforin−/−DC-Fas−/−), led to DC accumulation, uncontrolled T-cell activation, and IFN-γ production by CD8+ T cells, resulting in the development of lethal hemophagocytic lymphohistiocytosis. Consistently, adoptive transfer of Fas−/− DCs induced over-activation and IFN-γ production in perforin−/− CD8+ T cells. Neutralization of IFN-γ prevented the spreading of inflammatory responses to different cell types and protected the survival of perforin−/−DC-Fas−/− mice. Our data suggest that perforin and Fas synergize in the maintenance of DC homeostasis to limit T cell activation, and prevent the initiation of an inflammatory cascade.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2808-2808 ◽  
Author(s):  
Andrea G.S. Buggins ◽  
Piers E.M. Patten ◽  
Julie Richards ◽  
Stephen J. Orr ◽  
Ghulam J. Mufti ◽  
...  

Abstract Immune dysfunction is a hallmark of B-cell chronic lymphocytic leukemia (B-CLL) which occurs through loss of normal cell function as the malignant clone expands, as a result of therapy or because of immunoregulatory properties of the tumor itself. It has previously been shown that B-CLL cells are poor stimulators of the allogeneic mixed lymphocyte reaction (MLR) and we first determined whether this is due to lack of stimulatory activity or active immunosuppression by examining the effect of B-CLL contact and tumor supernatant (TSN) on a 3rd party MLR. Incorporation of B-CLL cells in a 5 day MLR inhibited 3H proliferation by responders in 2/10 cases, whereas TSN inhibited in all 10 cases. Studies in which normal T cells were stimulated by CD3/28 beads for 72 hours in the absence or presence of TSN showed a reduction in cell cycle entry measured by PI and FITC staining with 26+/−4.6% and 13.7+/−4.3% of cells in S +G2M in the absence and presence of TSN respectively (p<0.0001). Studies performed using CFSE labelled normal T cells showed that TSN reduced the number of T cells undergoing one or more cell divisions from a mean of 81.8+/−1.65% to 58.2+/−4.4% (p=0.0072). It is known that T cells in B-CLL have an acquired defect in CD40L expression, which has been ascribed to downregulation by CD40 present on tumor cells. Our experiments confirm that this defect is reversible since purification of B-CLL T cells restores activation induced CD40L upregulation to normal. We further demonstrate that B-CLL TSN from all 17 patients tested inhibits CD40L upregulation by normal T cells in response to PMA and ionomycin or CD3/28 beads (to a mean of 51%+/−5.6%, p<0.0001, of those activated in the absence of TSN) and a parallel inhibition of IL-2 secretion (correlation with CD40L inhibition: p=0.006, r2 = 0.54). In addition to the effects of TSN on T proliferation and activation, B-CLL TSN also induced Th2 polarisation of normal T cells. When activated using CD3/28 beads in control medium, normal T cells show an increase in IL-2, γ-interferon and TNF-α secretion consistent with the expected Th1 response. When incubated in TSN however, 10 and 1000 fold increases in IL-4 and IL6 release were observed respectively consistent with a shift to a Th2 response. B-CLL cells are known to secrete a number of cytokines and in order to determine which might be responsible for the observed effects a number were assayed either by enzyme-linked or cytokine bead array assay. The effects of TSN were not due to TGF-β , IL-10 or soluble CD40 and depletion of soluble CD25 using bead conjugated anti-CD25 had no effect on the immunosuppressive activity. High levels of IL-6 were detected in TSN from all cases studied (n=5). When normal T cell were activated in TSN, a 100 fold further increase in IL-6 level was observed suggesting that this cytokine may be responsible for at least some of the observed effects of TSN. Antibody neutralization of the IL-6 in TSN demonstrated an increase in both Th1 cytokine production and CD40L expression. Furthermore, addition of recombinant IL-6 to T cells activated in media inhibited CD40L upregulation. In summary, B-CLL cells secrete factor(s) which inhibit T cell activation and proliferation and promote Th2 polarisation. These factors might contribute to the disease phenotype by impairing T cell responses to infection, predisposing to autoimmunity and promoting the growth of the malignant clone through the action of IL-6.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1900-1900
Author(s):  
Emanuela I Sega ◽  
Dennis B Leveson-Gower ◽  
Mareike Florek ◽  
Robert S Negrin

Abstract Abstract 1900 GVHD is a major complication of bone marrow transplantation (BMT) and results from donor T cells becoming activated and reacting to host antigens. Recently, lymphocyte activation gene-3 (LAG-3) has emerged as an important molecule, negatively regulating T cell activation and has been proposed to play an important role in CD4+CD25+Foxp3+ regulatory T cell (Treg) function. We investigated the functional in vivo role of LAG-3 in Treg and conventional T cells in murine GVHD with the hypothesis that LAG-3 engagement diminishes alloreactive T cell responses after BMT. Using murine models of acute GVHD in which allogeneic bone marrow cells are transplanted into lethally irradiated hosts, we and others have shown previously that donor Treg are able to suppress GVHD induced by donor allogeneic conventional T cells (Tcon). The role of LAG-3 in Treg function was evaluated both in vitro and in vivo by directly comparing Treg isolated from LAG-3−/− donor mice to Treg isolated from wild type donors (WT Treg). In vitro, in a mixed lymphocyte reaction assay, LAG-3−/− Treg efficiently suppressed the proliferation of alloreactive T cells in a manner similar to WT Treg. In vivo, a bioluminescent imaging assay (BLI) was utilized that allows for quantitative assessment of Tcon proliferation in addition to traditional metrics of GVHD severity including weight loss, survival and GVHD score. Both LAG-3−/− Treg and WT Treg were equally potent at suppressing Tcon proliferation as illustrated by BLI of luc+ T cells and demonstrated a significant increase in median survival time (MST) as compared to mice receiving Tcon only (35 days for Tcon vs. 58 and 68 days for WT and LAG-3−/− Treg, respectively, P=0.03), but there was no significant difference in MST between the groups receiving WT and LAG-3−/− Treg. Interestingly, when LAG-3−/− Tcon were used to induce GVHD in the absence of Treg, GVHD lethality was accelerated. Thus, all mice receiving LAG-3−/− Tcon showed decreased survival and significantly lower body weights than mice receiving WT Tcon (P=0.017). GVHD scores of LAG-3−/− Tcon recipients were also significantly higher than WT Tcon recipients at Day 20 post BMT (6.0 vs. 2.2, P=<0.0001). The addition of WT Treg induced only a modest yet statistically significant increase in median survival in mice receiving both LAG-3−/− Tcon and WT Treg as compared to mice receiving LAG-3−/− Tcon alone (45 days vs. 14.5 days, P=0.0075). In contrast, WT Treg more efficiently suppressed the proliferation of WT Tcon, increasing the MST to 70 days versus a MST of 26 days for mice receiving WT Tcon (P=0.0002). Re-isolation experiments using CFSE-labeled Tcon did not show differences in proliferation between WT and LAG-3−/− Tcon at five days following BMT. Since LAG-3 is upregulated as early as 2 days after T cell activation and gradually decreases over the next few days, is it possible that a difference in proliferation could be detected at an earlier timepoint thus explaining the difference in potency between the WT and LAG-3−/− Tcon. Together our results indicate, contrary to previous published results, that the absence of the LAG-3 molecule on Treg does not impair Treg function in our mouse model of acute GVHD. However, the absence of LAG-3 on Tcon induces a more severe GVHD suggesting that LAG-3 engagement on donor T cells diminishes alloreactive T cell response after BMT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-21-SCI-21
Author(s):  
Alain Fischer

Abstract Abstract SCI-21 There are a variety of primary T cell immunodeficiencies that can impair T cell differentiation or T cell activation. The latter include CD38δ deficiency, ZAP70 deficiency, Ca++ influx deficiency (ORAI1 and Stim1 deficiencies), and ITK deficiency as well. A new T cell activation deficiency as observed in a patient with defective T cell receptor triggered T cell activation and low CD4 T cell counts will be reported. A remarkable and quasi constant feature shared by all those T cell activation defects is the occurrence of autoimmune diseases, mostly related to autoantibodies, and inflammation such as colitis or panniculitis. Several mechanisms can account for these findings that include defective regulatory T cell development or function, defective negative selection impaired intrinsic feedback mechanism as well as non TCR-mediated T cell activation ultimately leading to proinflammatory cytokines release and autoantibody production by B cells. Another new form of primary T cell immunodeficiency with autosomal recessive inheritance observed in four patients from two families will be described. It is characterized by defective survival of naïve T cells. There again, autoimmunity appeared to be a significant component of the phenotype. Collectively, these results indicate that further insight into the role of key molecules in T cell activation/survival is provided by the analysis of new primary immunodeficiency phenotypes. In addition, the occurrence of autoimmunity in these settings stresses on one hand the role of T cells in the control of reactivity to self and, on the other hand, should be considered in the therapeutic strategy of these conditions. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4284-4284
Author(s):  
Pingping Zheng ◽  
Adrianne E Vasey ◽  
Jeanette Baker ◽  
Bettina Iliopoulou ◽  
Dennis B Leveson-Gower ◽  
...  

Abstract Graft-versus-host disease (GVHD) occurs when transplanted donors' T cells recognized the recipients' antigens and damaged host tissues and cells, particularly the skin, gut and liver in the acute setting. Although it is well known GVHD is more aggressive and manifests more quickly across major versus minor histocompatibility barrier, little is known comparatively about the donor T cell activation and T cell repertoire changes. To investigate temporal and spatial events of GHVD development, side-by-side transplants were conducted into major and minor-mismatched murine recipients (Balb.c and Balb.b) using hematopoietic cells from the same donor strain(B6). In both models, T cells home to nodal sites by day 3, proliferate, and exit to GVHD target tissues by day 6. Additionally, expression of homing and activation markers was equivalent for all markers examined on day 3. However, tissue migration and proliferation were reduced in the minor model. By day 6, minor-mismatched T cells had increased CD62L retention and reduced P-selectin and CD44 expression. We also found fewer MHC-matched T cells producing IFN-g and TNF-a. Our data show that early events of donor T cell activation are similar in both models, suggesting that the delayed onset and attenuated disease GVHD seen across minor barriers arise from temporal differences in the effector phase, rather than the initiation phase, of GVHD. To further understand the differences across major versus minor histocompatibility barriers on the T cell repertoire and patterns of T cell alloreactivity, we collected a sample of T cells from donor mice used for transplantation, and also sampled gut tissues from syngeneic, major and minor- mismatched transplanted mice on day 9, 9 and 30 respectively at times when the allogeneic groups of mice showed severe GVHD symptoms. To reduce the background of high percentage of TCR pseudogenes in mouse genome, 5'RACE starting from RNA samples and deep sequencing of TCRa and TCRb were applied to investigate whether TCR repertoire of the major and minor-mismatched mice were skewed with clonal expansion, and how among the major and minor-mismatched mice. While we hypothesized that the major MHC mismatched group would have lower diversity because of expanded clones associated with the GVHD, the shannon index of TCRa indicated gut TCR repertoire of major and minor mismatched mice have greater diversity than syngeneic group(P<0.05). We did not see differences in the shannon index of diversity on examination of the TCRb repertoire. Contrary to our expectation, that the TCR repertoire of major mismatch would be skewed towards representation of a few highly expanded clones in the gut, we in fact saw that the TCR repertoire in these mice appeared less skewed. The TCR repertoire of the gut was more highly related among individuals in the major mismatch groups than among or between the other groups. This strongly suggests a more reproducible repertoire structure. To examine if certain T cell clones were more likely to appear reproducibly in the major and/or minor mismatch setting, we compared the shared clones across the major-mismatched transplanted mice. Bhattacharyya coefficients showed that the major-mismatched mice shared more clones with the minor-mismatched group than the syngeneic groups(P<0.05). A total of eight shared TCRa clonotypes among major-mismatched mice are also detected. The common CDR3 clonotypes might be associated with GVHD. We found 7 of them are also in donor CD4 memory cells' repertoire; and one is present in both donor's CD4 and CD8 memory cells. One of the complementarity determining regions sequences is "AASYQGGRALI" which is also in common among minor-mismatched mice. We also measured the repertoire similarity between donor T cells and the gut TCR repertoires of three groups. Bhattacharyya coefficients of TCRa and TCRb between donor T cells and major-mismatched gut repertoire is greater than donor T cells with either syngeneic or minor-mismatched repertoire(P<0.05), which suggest that the major-mismatched mice has more T cells homing to gut which might be associated with GVHD. Our sequencing data showed that major and minor-mismatched transplantation might not cause the clonal expansion in the gut TCR repertoire, but their repertoire patterns are different from the syngeneic groups, which might be associated with T cell alloreactivity and GVHD. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3438-3438
Author(s):  
Jingxia Li ◽  
Reema Panjwani ◽  
Jian-Ming Li ◽  
Cynthia R. Giver ◽  
Maryellen Malone ◽  
...  

Abstract Introduction: Data from clinical allogeneic bone marrow transplant (allo-BMT) and pre-clinical murine models of allo-BMT have shown that donor plasmacytoid dendritic cells (pDC) have important roles in regulating graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) activities of donor T cells. Using murine models of allo-BMT we have previously shown that 1) donor pDCs induce Th1 polarization of donor T cells and augment the GvL activity of T cells; and 2) the addition of pDC to grafts composed of purified T cells and HSC limited the subsequent development of GvHD. VIP is an immunosuppressive neuropeptide that regulates adaptive immune responses. We reasoned that VIP signaling may regulate activation of allo-specific T-cells, and the VIP pathway may be target for regulating GvHD and GvL in allo-BMT. Methods: To explore the mechanisms by which pDC and VIP signaling regulate T cell activation we used: 1) transgenic mice expressing GFP under the control of the VIP promoter to measure VIP expression in vivo in allo-BMT recipients; 2) one-way mixed lymphocyte reaction (MLR) to measure the proliferative response of transgenic luciferase positive T cells in response to allo-antigens via bioluminescence imaging (BLI); and 3) a model system of indirect presentation of allo-peptides derived from a H2-Ab MHC class II molecule by pDC to transgenic T cells expressing the TEa TCR. The effect of blocking vasoactive intestinal polypeptide (VIP) signaling during activation of allo-reactive T cells was assessed by using VIP-KO cells and by the addition of VIP peptide or a peptide antagonist of VIP (VIPhyb) to the one-way MLR. T cell proliferation and activation was measured by flow cytometry. Results: Analysis of VIP expression in donor pDC in murine models of allo-BMT showed >100-fold induction of VIP promoter activity in donor pDC and donor T cells during the first two weeks post-transplant, indicating that VIP expression in donor pDC may regulate T cell activation.Addition of endogenous native VIP suppressed T cell proliferation in one-way MLR but was reversed by addition of a 10x concentration of the VIP antagonist peptide (Figure 1B). Furthermore, adding 3 uM of the VIP antagonist to the MLR cultured significantly enhanced T cell proliferation. TEa peptide-primed T cells cultures with peptide-primed pDC from VIP knock-out mice had increased proliferation and expressed more of the activation markers CD69 and CD71 compared with T cells cultured with VIP-WT pDCs. Comparing pDC purified from marrow versus spleen, we found significantly more proliferation in T cells cultured with bone marrow VIP-KO pDCs than splenic VIP-KO pDCs, indicating that the less mature marrow pDC have greater antigen presenting ability than the more mature splenic pDC. Conclusion: These data suggest that 1) VIP is produced by donor pDC early after allo-BMT; 2) VIP inhibits T cell allo-proliferation in one-way MLR's; and 3) blocking VIP signaling using donor cells that cannot produce VIP or through the use of pharmacological inhibitors of VIP can augment activation and proliferation of T cells in response to indirect antigen presentation.The present findings support studies of VIP antagonist in allo-BMT to augment the GvL activity of T cells through indirect antigen presentation. Future studies include using the BLI analysis of MLR to determine the effect of novel drugs on T cell proliferation. **Jingxia Li and Reema Panjwani were equal contributors to this abstract. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 513-513
Author(s):  
Pier Edoardo Rovatti ◽  
Laura Zito ◽  
Eleonora Draghi ◽  
Monika Herrmann ◽  
Anetta Marcinek ◽  
...  

Background Genomic loss of mismatched HLAs ("HLA loss") represents a frequent modality by which acute myeloid leukemia (AML) evades immune recognition from donor T cells after partially HLA-incompatible allogeneic hematopoietic cell transplantation (allo-HCT). One important consequence of this post-transplantation relapse mechanism is that infusions of lymphocytes from the original donor become ineffectual, prompting the search for alternative therapeutic options. Here, to circumvent the loss of physiological T cell receptor-HLA interactions in these patients, we tested the ability of an anti-CD3/CD33 bispecific antibody (BsAb) to re-target donor T cells towards HLA loss relapses. Methods For short-term in vitro experiments, T cells were co-cultured with the MOLM-13 AML cell line or with primary patient blasts for 96 hours in presence or absence of an anti-CD3/CD33 BsAb. As readouts, we measured T cell activation (as surface expression of CD25 and CD69) and the absolute counts and relative proportion of effectors and targets. For long-term in vitro experiments, we established mixed lymphocyte cultures (MLCs) of T cells purified from two patients after haploidentical HCT and primary AML blasts obtained from the same patients at the time of diagnosis. After sequential stimulations, the co-cultures were tested against targets of interest, with or without addition of the BsAb. Functional readouts were T cell degranulation (measured as CD107a expression), antigen-specific activation (as CD137/41-BB expression) and target-specific cytotoxicity (measured by time-lapse live cell imaging over a 48 hour time span). For in vivo experiments, human leukemic cells were infused intravenously into non-irradiated NSG mice, followed by intraperitoneal infusion of T cells and daily administration of the BiTE compound. Results First, we retrospectively analyzed immunophenotypic data of 36 AML patients who experienced HLA loss relapses at our Institution, documenting robust expression of CD33 on the surface of the relapsed leukemia in 35 of them (97%; Figure 1A). By short-term co-culture experiments we titrated the BsAb concentration to be used for subsequent in vitro assays to 100 ng/ml, and the most informative effector:target ratio to 1:3. Then, we established MLCs by stimulating T cells collected from two patients after partially HLA-incompatible allo-HCT with AML blasts collected from the same patients at the time of diagnosis. In both cases, donor-derived T cells robustly responded against the patient blasts both in term of degranulation (Figure 1B) and of antigen-specific activation (Figure 1C). As expected, when we tested the same T cells against the patient leukemia at time of HLA loss relapse, we detected no T cell-mediated responses. Noticeably, when the BsAb was added, in both cases we detected a strong response not only against the diagnosis but also against the HLA loss variants, indicating that T cells were effectively re-targeted towards leukemic cells. Similar results were obtained also by live cell imaging, measuring target cell apoptosis over 48 hours of recording: also in this assay, in fact, donor T cells recognized and killed leukemia at diagnosis (45% of detection area positive for apoptosis dye) and failed to recognize its HLA loss relapse counterpart (32% of area positive for apoptosis dye). Addition of the BsAb to the co-cultures had a minor effect on recognition of the original disease (45% of area positive for apoptosis dye) but drove dramatic cell death of HLA loss blasts (80% of area positive for apoptosis dye), demonstrating that the BsAb induced not only T cell activation but also and most importantly target cell killing (Figure 1D). Finally, we modeled the BsAb activity in vivo, showing that, whereas the sole infusion of human T cells is not able to prevent the outgrowth of leukemia in the bone marrow of NSG mice, addition of the bispecific antibody leads to effective disease clearance (Figure 1E). Conclusions Our results demonstrate that anti-CD3/CD33 BsAbs can effectively redirect donor T cells against HLA loss leukemia variants, resulting in their rapid and effective killing. Taken together, these promising findings strongly support translation of this approach to ad hoc designed early-phase clinical trials, to provide a rational therapy for this increasingly recognized but still treatment-orphan modality of post-transplantation relapse. Figure 1 Disclosures Subklewe: Janssen: Consultancy; Miltenyi: Research Funding; Pfizer: Consultancy, Honoraria; Oxford Biotherapeutics: Research Funding; Gilead: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Morphosys: Research Funding; Roche: Consultancy, Research Funding; AMGEN: Consultancy, Honoraria, Research Funding. Vago:Moderna Therapeutics: Research Funding; GenDx: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document