scholarly journals Isoform Selective HDAC8 Inhibitor (OCH3) Shows Potency in Selectively Targeting Primary AML Cells

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2944-2944
Author(s):  
Amal Mechaal ◽  
Amudha Ganapathy ◽  
Dolores Mahmud ◽  
Taha Y Taha ◽  
Rajeev Ranjan ◽  
...  

Abstract The treatment outcomes for patients diagnosed with acute myeloid leukemia (AML) are still dismal. Recent advances in understanding AML indicate that the lack of efficacy is primarily due to non-specificity of currently used chemotherapeutics targeting both leukemic stem/progenitor cells (LSC) and normal hematopoietic stem cells (HSC). Thus, a critical barrier is the identification of innovative therapies that selectively target LSC. Histone deacetylase 8 (HDAC8) has been shown to enhance p53 protein deacetylation, which results in inactivation of p53, promoting LSC survival. We hypothesize that enzymatic/non-enzymatic role of HDAC8 is critical for LSC survival but not for HSCs. Then, we characterized our two tetrahydroisoquinoline (TIQ)-based selective HDAC8 inhibitors (HDAC8i) BIP and OCH3 for growth inhibition, apoptosis, activation of caspase 3, integrity of mitochondrial membrane potential (MMP), and acetylation of histone H4 in human leukemia cell lines. The growth inhibitory effects observed in cell lines were validated using bone marrow (BM) or peripheral blood (PB) cells from AML patients. Colony forming cell (CFC) assays were performed using AML BM/PB cells treated with OCH3 or BIP. OCH3 and BIP were also tested for hematotoxicity using normal CB CD34+ cells. Furthermore, we compared class I HDAC isoform engagement in human normal cord blood (CB) CD34+ cells and in SET-2 leukemia cells using our novel photoreactive probe TH1143. In CD34+ cells, TH1143 had higher level of engagement for HDAC1 and 2, whereas engagement of HDAC3 and 8 was minimal. In SET-2 cells, HDAC3 and HDAC8 displayed relatively higher engagement with TH1143 indicating HDAC engagement is likely cell type specific. The biological efficacies of OCH3 at 50uM and BIP at 25uM were noted to exert >50% growth inhibition in KG1 and in K562 leukemia cells. Both OCH3 and BIP significantly increased the number of apoptotic cells and there was an enhanced active caspase-3 activity. Furthermore, OCH3 and BIP treated cells displayed lower red/green ratio in comparison to control, indicative of poor MMP and depolarization to induce apoptosis (Table 1.a). OCH3 and BIP were further validated by using BM/PB cells from AML patients showing growth inhibition. This was also accompanied by increase in apoptotic cells by OCH3 and BIP. In contrast to BIP, OCH3 spared CB CD34+ cells as demonstrated by notably lower growth inhibition, apoptotic cells vs control when compared with primary AML cells from patients. Both OCH3 and BIP displayed minimal inhibition of CFU growth in CD34+ cells. However, HDAC8i induced significant CFU growth inhibition in primary AML samples suggesting that HDAC8i spares normal CFU progenitors but not leukemia progenitors (Table 1.b). Notably, both BIP and OCH3 lack ability to exert acetylation of histone H4, unlike broad spectrum HDAC inhibitor TSA (MFI with OCH3=0.96±0.03, BIP=0.77±0, TSA =1.63±0.15) which is consistent with isoform selectivity of OCH3 and BIP. The leukemia growth inhibitory effects at LSC level was demonstrated using ex vivo OCH3 treated AML patient derived BM/PB cells transplantation in humanized immunodeficient NSGS mice. After 10 to 12 weeks of transplantation mice receiving untreated AML cells had 7.73±2.18% while with OCH3 treatment mice had 4.84±1.37% human CD34+ leukemia cells, a 38% reduction in CD34+ leukemia cells, despite only a single ex vivo exposure to OCH3. Furthermore, in a second model, NSGS humanized mice were transplanted (IV) with primary leukemia cells from AML patients and after 4 weeks injected (IP) with OCH3 or vehicle control. After 12 weeks of transplantation in this second model human primary AML cell burden was 5.74±1.31% (OCH3) and 18.13±12.76% (vehicle control), while mice transplanted with normal CD34+ cells treated similarly with OCH3 or vehicle control displayed no detectable inhibition of human myeloid cell chimerism (OCH3:12.28 ± 3.31% vs vehicle control: 17.92±11.96%). Taken together, our data indicate that HDAC8 isoform inhibitor, OCH3 displayed significant inhibition of primary AML patient derived leukemia cells growth in vitro and in vivo in contrast to normal CD34+ cells. Selective inhibition of HDAC8 is sufficient to cause growth inhibition in primary AML progenitors including LSCs in vivo while sparing normal HSCs thus offer opportunities for further development of HDAC8i as new experimental therapeutics in AML. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yan Zhu ◽  
Christian Klausen ◽  
Jieyun Zhou ◽  
Xiangjie Guo ◽  
Yu Zhang ◽  
...  

Abstract In the present study, a novel dimer, SM1044, selected from a series of dihydroartemisinin (DHA) derivatives containing nitrogen atoms comprising simple aliphatic amine linkers, showed strong growth inhibition in six types of human endometrial cancer (EC) cells, with half maximal inhibitory concentration (IC50) and 95% confidence interval (CI) < 3.6 (1.16~11.23) μM. SM1044 evoked apoptosis and activated caspase-3, −8 and −9 in a concentration- and time-dependent manner, and these effects were manifested early in RL95-2 compared to KLE cells, possibly correlated with the induction of intracellular ONOO−. Catalase and uric acid attenuated the growth inhibitory effects of SM1044 on EC cells, but sodium pyruvate did not. In vivo, the average xenograft tumour growth inhibition rates ranged from 35.8% to 49.9%, respectively, after 2.5 and 5.0 mg/kg SM1044 intraperitoneal treatment, and no obvious behavioural and histopathological abnormalities were observed in SM1044-treated mice in this context. SM1044 predominantly accumulated in the uteri of mice after a single injection. SM1044 displayed efficacy as a tumour suppressor with distinct mechanism of action and unique tissue distribution, properties that distinguish it from other artemisinin analogues. Our findings provide a new clue for artemisinin analogue against cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuting Meng ◽  
Xixi Qian ◽  
Li Zhao ◽  
Nan Li ◽  
Shengjie Wu ◽  
...  

Abstract Background The third-generation epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have shown significant therapeutic effects on patients with non-small cell lung carcinoma (NSCLC) who carry active EGFR mutations, as well as those who have developed acquired resistance to the first-generation of EGFR-TKIs due to the T790M mutation. However, most patients develop drug resistance after 8–10 months of treatment. Currently, the mechanism has not been well clarified, and new therapeutic strategies are urgently needed. Methods Osimertinib resistant cell lines were established by culturing sensitive cells in chronically increasing doses of osimertinib. The anticancer effect of reagents was examined both in vitro and in vivo using the sulforhodamine B assay and a xenograft mouse model. The molecular signals were detected by western blotting. The combination effect was analyzed using CompuSyn software. Results We found that bromodomain and extra-terminal proteins (BETs) were upregulated in osimertinib resistant (H1975-OR) cells compared with those in the paired parental cells (H1975-P), and that knockdown of BETs significantly inhibited the growth of H1975-OR cells. The BET inhibitor JQ1 also exhibited stronger growth-inhibitory effects on H1975-OR cells and a greater expression of BETs and the downstream effector c-Myc than were observed in H1975-P cells. The histone deacetylase (HDAC) inhibitor trichostatin A (TSA) showed stronger growth suppression in H1975-OR cells than in H1975-P cells, but vorinostat, another HDAC inhibitor, showed equal inhibitory efficacy in both cell types. Consistently, downregulation of BET and c-Myc expression was greater with TSA than with vorinostat. TSA restrained the growth of H1975-OR and H1975-P xenograft tumors. The combination of TSA and JQ1 showed synergistic growth-inhibitory effects in parallel with decreased BET and c-Myc expression in both H1975-OR and H1975-P cells and in xenograft nude mouse models. BETs were not upregulated in osimertinib resistant HCC827 cells compared with parental cells, while TSA and vorinostat exhibited equal inhibitory effects on both cell types. Conclusion Upregulation of BETs contributed to the osimertinib resistance of H1975 cells. TSA downregulated BET expression and enhanced the growth inhibitory effect of JQ1 both in vitro and in vivo. Our findings provided new strategies for the treatment of osimertinib resistance.


2013 ◽  
Vol 58 ◽  
pp. S130-S131
Author(s):  
T. Nakamura ◽  
T. Torimura ◽  
H. Masuda ◽  
H. Iwamoto ◽  
O. Hashimoto ◽  
...  

Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
Xingwei Sui ◽  
Kohichiro Tsuji ◽  
Yasuhiro Ebihara ◽  
Ryuhei Tanaka ◽  
Kenji Muraoka ◽  
...  

Abstract We have recently shown that stimulation of glycoprotein (gp) 130, the membrane-anchored signal transducing receptor component of IL-6, by a complex of human soluble interleukin-6 receptor (sIL-6R) and IL-6 (sIL-6R/IL-6), potently stimulates the ex vivo expansion as well as erythropoiesis of human stem/progenitor cells in the presence of stem cell factor (SCF). Here we show that sIL-6R dose-dependently enhanced the generation of megakaryocytes (Mks) (IIbIIIa-positive cells) from human CD34+ cells in serum-free suspension culture supplemented with IL-6 and SCF. The sIL-6R/IL-6 complex also synergistically acted with IL-3 and thrombopoietin (TPO) on the generation of Mks from CD34+ cells, whereas the synergy of IL-6 alone with TPO was barely detectable. Accordingly, the addition of sIL-6R to the combination of SCF + IL-6 also supported a substantial number of Mk colonies from CD34+ cells in serum-free methylcellulose culture, whereas SCF + IL-6 in the absence of sIL-6R rarely induced Mk colonies. The addition of monoclonal antibodies against gp130 to the suspension and clonal cultures completely abrogated the megakaryopoiesis induced by sIL-6R/IL-6 in the presence of SCF, whereas an anti-TPO antibody did not, indicating that the observed megakaryopoiesis by sIL-6R/IL-6 is a response to gp130 signaling and independent of TPO. Furthermore, human CD34+ cells were subfractionated into two populations of IL-6R–negative (CD34+ IL-6R−) and IL-6R–positive (CD34+ IL-6R+) cells by fluorescence-activated cell sorting. The CD34+IL-6R− cells produced a number of Mks as well as Mk colonies in cultures supplemented with sIL-6R/IL-6 or TPO in the presence of SCF. In contrast, CD34+ IL-6R+cells generated much less Mks and lacked Mk colony forming activity under the same conditions. Collectively, the present results indicate that most of the human Mk progenitors do not express IL-6R, and that sIL-6R confers the responsiveness of human Mk progenitors to IL-6. Together with the presence of functional sIL-6R in human serum and relative unresponsiveness of human Mk progenitors to IL-6 in vitro, current results suggest that the role of IL-6 may be mainly mediated by sIL-6R, and that the gp130 signaling initiated by the sIL-6R/ IL-6 complex is involved in human megakaryopoiesis in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3228-3228
Author(s):  
Hiroto Araki ◽  
Nadim Mahmud ◽  
Mohammed Milhem ◽  
Hetal S. Patel ◽  
Rafael Nunez ◽  
...  

Abstract We have previously shown that the sequential addition of a hypomethylating agent, 5-aza-2′-deoxyctidine (5azaD) and a histone deacetylase inhibitor, trichostatin A (TSA) is capable of changing the fate of adult bone marrow CD34+ cells (Milhem M et al Blood 2004). We have now studied whether these drugs could alter the behavior of dividing CD34+CD90+ cord blood (CB) cells. The 5azaD/TSA treated cultures yielded 10 times greater numbers of CD34+CD90+ cells as compared to the cultures containing cytokines alone after 9 days of culture. The 5azaD/TSA treated cultures contained 2 fold greater numbers of colony forming cells (CFC) and 14 fold greater numbers of long-term (5wk) cobblestone area forming cells (CAFC) in comparison to culture containing cytokines alone. Although the CFC/CAFC plating efficiency of cells in cultures exposed to cytokines alone declined during the time of incubation, the cloning efficiency of cells exposed to 5azaD/TSA was equivalent to that of primary CD34+ cells. In order to determine the effects of cell division on the behavior of CD34+CD90+ cells in the 5azaD/TSA treated cultures, we utilized the cytoplasmic dye, CFSE. All of the CD34+CD90+ cells within the 5azaD/TSA pre-treated cultures divided at least once after 9 days of culture. 60% of the 5azaD/TSA treated CD34+CD90+ cells divided 5 times or more while 40% divided 1–4 times. The CD34+CD90+ cells lacking 5azaD/TSA pre-treatment underwent more cell divisions (90%, 5 or more divisions). The CD34+CD90+ cells pre-treated with 5azaD/TSA which had undergone 1-2 cell divisions had 11 fold greater numbers of CFU-Mix and 9 fold greater number of CAFC as compared to CD34+CD90+ cell population cultured in presence of cytokines alone. Furthermore CD34+CD90+ cells having 5 and more divisions had 4 fold more CFU-mix and 6.5 fold more CAFC in comparison to cells lacking 5azaD/TSA exposure. The CD34+CD90+ cells experiencing 1–4 divisions had 60 fold greater number of CFU-mix and 54 fold more CAFC in contrast to culture treated with cytokines alone. The in vivo SCID repopulating potential of CD34+CD90+ cells generated in presence or absence of 5azaD/TSA was then evaluated. When 5x104 CD34+CD90+ cells having undergone 1-2 cell divisions were re-isolated from 5azaD/TSA pre-treated cultures, all mice contained human hematopoietic cells. In addition, 1 of 3 mice transplanted with CD34+CD90+ cells (5x104) having undergone 3 and more cell divisions isolated from cultures pre-treated with 5azaD/TSA also displayed human hematopoietic engraftment. Furthermore 1 of 3 mice transplanted with equal numbers of the 5azaD/TSA pre-treated CD34+CD90+ cells having undergone 5 and more cell divisions also had evidence of human multilineage hematopoietic engraftment. By contrast, an equivalent number of CD34+CD90+ cells which had undergone more than 3 or more than 5 cell divisions from the cultures containing cytokines alone were incapable of engrafting NOD/SCID mice. These data suggest that the sequential addition of 5azaD and TSA ex vivo is not only capable of expanding the numbers of CD34+CD90+ cells and assayable progenitor cells but also capable of preserving their SCID repopulating potential. We conclude that 5azaD/TSA treatment of CD34+CD90+ cells results in their retention of the cellular program required to maintain their marrow repopulating potential despite their undergoing multiple cell divisions.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2844-2844
Author(s):  
Ian K. McNiece ◽  
Jenny Harrington ◽  
Joshua Kellner ◽  
Jennifer Turney ◽  
Elizabeth J. Shpall

Abstract Ex vivo expansion of cord blood products (CB) has been proposed as an approach to increase the number of cells available from a single CB unit. We and others have reported the requirement of CD34 selection for optimal expansion of CB products, however, the selection of frozen CB products results in significant losses of CD34+ cells with a median recovery of 43% (range 6 to 203%, N=40) and low purities resulting in decreased expansion. Therefore we explored approaches to expand CB without prior selection and have described the use of co-culture of CB mononuclear cells (MNC) on mesenchymal stem cells (MSC). In the present study we have evaluated the expansion of clinical CB products (provided by Duke University CB Bank CB). MNC were obtained after ficol separation of RBCs and 10% of the CB product was cultured on preformed layers of MSC in T150 flasks containing 50ml of defined media (Sigma Aldrich) plus 100 ng/ml each of rhSCF, rhG-CSF and rhTpo. After 6 days of culture, the non adherent cells were transferred to a Teflon bag and a further 50 ml of media and GFs added to the flask. Again at day 10, non adherent cells were transferred to the Teflon bag and media and growth factors replaced. At day 12 to 13 of incubation the cells were harvested, washed and total nucleated cell (TNC) counts and progenitor assays performed. In three separate experiments we have achieved greater than 20 fold expansion of TNC with a median of 22, and a median expansion of GM-CFC of 37 fold. Morphologic analysis demonstrated the expanded cells contained high levels of mature neutrophils and neutrophil precursors. In vivo studies in NOD/SCID mice also demonstrated that the expanded cells maintained in vivo engraftment potential. Clinical studies are being designed to evaluate the in vivo potential of CB MNC products expanded on MSC.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3249-3249
Author(s):  
Barbara Cassani ◽  
Grazia Andolfi ◽  
Massimiliano Mirolo ◽  
Luca Biasco ◽  
Alessandra Recchia ◽  
...  

Abstract Gene transfer into hematopoietic stem/progenitor cells (HSC) by gammaretroviral vectors is an effective treatment for patients affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA)-deficiency. Recent studied have indicated that gammaretroviral vectors integrate in a non-random fashion in their host genome, but there is still limited information on the distribution of retroviral insertion sites (RIS) in human long-term reconstituting HSC following therapeutic gene transfer. We performed a genome-wide analysis of RIS in transduced bone marrow-derived CD34+ cells before transplantation (in vitro) and in hematopoietic cell subsets (ex vivo) from five ADA-SCID patients treated with gene therapy combined to low-dose busulfan. Vector-genome junctions were cloned by inverse or linker-mediated PCR, sequenced, mapped onto the human genome, and compared to a library of randomly cloned human genome fragments or to the expected distribution for the NCBI annotation. Both in vitro (n=212) and ex vivo (n=496) RIS showed a non-random distribution, with strong preference for a 5-kb window around transcription start sites (23.6% and 28.8%, respectively) and for gene-dense regions. Integrations occurring inside the transcribed portion of a RefSeq genes were more represented in vitro than ex vivo (50.9 vs 41.3%), while RIS <30kb upstream from the start site were more frequent in the ex vivo sample (25.6% vs 19.4%). Among recurrently hit loci (n=50), LMO2 was the most represented, with one integration cloned from pre-infusion CD34+ cells and five from post-gene therapy samples (2 in granulocytes, 3 in T cells). Clone-specific Q-PCR showed no in vivo expansion of LMO2-carrying clones while LMO2 gene overexpression at the bulk level was excluded by RT-PCR. Gene expression profiling revealed a preference for integration into genes transcriptionally active in CD34+ cells at the time of transduction as well as genes expressed in T cells. Functional clustering analysis of genes hit by retroviral vectors in pre- and post-transplant cells showed no in vivo skewing towards genes controlling self-renewal or survival of HSC (i.e. cell cycle, transcription, signal transduction). Clonal analysis of long-term repopulating cells (>=6 months) revealed a high number of distinct RIS (range 42–121) in the T-cell compartment, in agreement with the complexity of the T-cell repertoire, while fewer RIS were retrieved from granulocytes. The presence of shared integrants among multiple lineages confirmed that the gene transfer protocol was adequate to allow stable engraftment of multipotent HSC. Taken together, our data show that transplantation of ADA-transduced HSC does not result in skewing or expansion of malignant clones in vivo, despite the occurrence of insertions near potentially oncogenic genomic sites. These results, combined to the relatively long-term follow-up of patients, indicate that retroviral-mediated gene transfer for ADA-SCID has a favorable safety profile.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2506-2506
Author(s):  
Eri Kawata ◽  
Eishi Ashihara ◽  
Ruriko Tanaka ◽  
Asumi Yokota ◽  
Yoshihide Murotani ◽  
...  

Abstract ß-catenin is the downstream effector of the Wnt signaling pathway and has cyclin D1 and c-myc as its target genes. Activation of Wnt signaling is greatly involved in the process of carcinogenesis, and its overexpression has reported to be positively correlated with prognosis in many types of malignant tumors, as colorectal cancer and hepatocellular carcinoma, or hematological malignancy, as acute myeloid leukemia and chronic myeloid leukemia. Multiple myeloma (MM) is a relatively common hematological malignancy and remains incurable with conventional treatments. Here, we assessed the expression of ß-catenin in MM and growth inhibitory effect of ß-catenin siRNA on MM. We first examined the expression of ß-catenin on human MM cell lines: AMO-1, EJM, IM-9, KMS-12-BM, LP-1, NCIH929, OPM-2, RPMI8226, and U266. All cell lines examined expressed a significantly higher level of ß-catenin than normal human mononuclear cells. Moreover, ß-catenin was also overexpressed in myeloma cells from patients. We then assessed the in vivo growth inhibitory effects of ß-catenin siRNA in mouse model. Six -week-old male Balb/c nu/nu mice were subcutaneously inoculated in the right flank with 5 × 106 RPMI8226 myeloma cells in 100μl PBS. Three to four weeks later, when palpable tumors (100 mm3 in diameter) developed, mice (n = 5 for all groups) were treated with either subcutaneous (around tumors) injections of group A: ß-catenin siRNA (2.5μM) / atelocollagen complex (final atelocollagen concentration 0.5%), group B: control siRNA (2.5μM) /atelocollagen complex, group C: ß-catenin siRNA (2.5μM)/PBS, group D: PBS/atelocollagen twice a week for a total of eight injections. Tumor size was measured in two dimensions using a caliper, and tumor volume (mm3) was calculated as a2 × b /2 mm3 (a;minor axis,b;major axis). The mean tumor volume of each group after two weeks treatment was 412.2 mm3 in groupA, 1317.9 mm3 in group B, 2075.9 mm3 in group C, and 1802.3 mm3 in group D, respectively, and the treatment with ß-catenin siRNA (2.5μM) / atelocollagen complex significantly reduced tumor burdens and retarded tumor growth, measured as tumor volumes (p&lt;0.05) (Figure 1). Therefore, ß-catenin siRNA revealed growth inhibitory effects on MM in in vivo mouse model, which strongly indicates that ß-catenin is the attractive novel target in treating MM. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document