scholarly journals Adenylate Kinase 2 Is a Selective Multiple Myeloma Cell Dependency That Is Preferentially Essential in NSD2-Overexpressing Cells

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1586-1586
Author(s):  
Amin Sobh ◽  
Charlotte L Kaestner ◽  
Jianping Li ◽  
Alberto Riva ◽  
Richard Lynn Bennett ◽  
...  

Abstract Background: Multiple myeloma (MM) is the second most common hematologic malignancy and remains incurable. Advances in MM therapy have come about due to therapies that target vulnerabilities of the plasma cell such as high protein load (proteasome inhibitors; PIs), dependence on specific transcription factors such as IKZF1 and IKZF3 which are degraded by immunomodulatory drugs (IMiDs), the susceptibility of B cells to glucocorticoids and the presence of specific B cell markers that can serve as targets for monoclonal antibodies and CAR-T cells. Gene editing screens offer a way to identify novel MM therapeutic targets. Objectives: The molecular heterogeneity of MM imposes challenges to discovering generalized therapeutic targets. Therefore, identification of selective dependencies associated with a particular recurrent genetic lesion is a promising strategy to personalize therapy. Here, we aim to identify vulnerabilities linked to the chromosomal translocation t(4;14), a recurrent rearrangement in MM characterized by overexpression of the histone methyltransferase NSD2. Methods: Genome-wide CRISPR-based loss-of-function screens were performed in NSD2-high and low isogenic cells derived from the t(4;14) MM cell line KMS11 to define selective dependencies associated with NSD2 overexpression. High-confidence hits were corroborated by in vitro competitive growth assays where individual candidates are genetically knocked out or suppressed or chemically inhibited. Detailed investigation was performed for selected candidates using various molecular and biochemical assays to elucidate mechanisms by which these genes contribute to MM cell fitness. Results: A fitness screen in NSD2-high and low isogenic MM cells identified 1118 essential genes which are common between the cell pair. We further revealed 282 genes whose loss is more detrimental to cells overexpressing NSD2 and 139 genes that are preferentially essential when NSD2 levels are low. Pathway analysis of NSD2-high selectively essential genes indicated that these cells are more dependent on mitochondrial processes including oxidative phosphorylation. Although proteasomal degradation is essential for all MM cells, our screens indicated that NSD2-high cells are more dependent on the proteasome, which was validated by increased sensitivity to the PI bortezomib. One of the high-confidence selective NSD2-high hits was the mitochondrial adenine nucleotide regulator adenylate kinase 2 (AK2). Analyzing the dependence of hundreds of human cell lines on AK2 using the cancer dependency map portal (depmap.org/portal/), we found that AK2 is not a common essential gene. The top enriched linages with AK2 dependency included MM with notable representation of t(4;14)-positive cell lines. Analysis of the multiple myeloma research foundation (MMRF)-CoMMPass data demonstrated that MM patients with high NSD2 expression, despite poor prognosis, display enhanced overall survival when AK2 levels are low. In vitro competitive growth assays in NSD2-high and low MM cells confirmed the increased dependence of NSD2-overexpressing cells on AK2. In addition, NSD2-high MM cells displayed elevated sensitivity to AK2 inhibitors. Moreover, AK2 knockdown in t(4;14) MM cell lines increased sensitivity to the PI bortezomib. Mechanistically, we showed that AK2 disruption activates apoptotic unfolded protein response (UPR) signaling in MM cells. Metabolomic profiling in NSD2-high and low MM cells revealed accumulation of purine metabolites and reduction of pyrimidine metabolites upon NSD2 overexpression. Intriguingly, purine supplementation rescued MM cell depletion due to AK2 loss. These observations suggested that MM cells, especially those with NSD2 overexpression, are addicted to elevated purine levels and that lethality of MM cells upon AK2 loss is due to perturbed purine metabolism. How impaired purine metabolism activates UPR signaling is currently under investigation. Conclusions: Our work indicated that NSD2 overexpression resulting from chromosomal translocation t(4;14), despite its oncogenic role, generates metabolic dependencies in MM cells. Our findings further suggest that inhibition of AK2, a mitochondrial enzyme involved in purine metabolism, can induce UPR-mediated apoptosis in MM cells and could be used in combination with PI therapy to treat MM patients with t(4;14) translocations. Disclosures Licht: Epizyme: Research Funding.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Amin Sobh ◽  
Charlotte Kaestner ◽  
Jianping Li ◽  
Alberto Riva ◽  
Richard Lynn Bennett ◽  
...  

Background: Multiple myeloma (MM)-associated t (4;14) chromosomal translocation leads to overexpression of NSD2, the histone H3 lysine 36 specific methyltransferase. t(4;14) MM patients have a high risk of relapse and NSD2 overexpression drives an oncogenic epigenetic and transcriptional program promoting clonogenicity, proliferation, altered adhesion and chemoresistance in MM cells. The lack of a specific and potent NSD2 inhibitors mandates finding alternative strategies for treating NSD2-high MM. Aim: This study aims to test the hypothesis that NSD2 overexpression in MM cells generates cellular vulnerabilities that can be therapeutically exploited for treatment of t (4;14) MM. Methods: We conducted a genome wide CRISPR-based loss-of-function genetic screen using the human Brunello library in isogenic NSD2-high (NTKO) and NSD2-low (TKO) KMS-11 derived MM cells to define genes whose loss is selectively detrimental to cells with NSD2 overexpression. The cellular dependency of each identified candidate was then investigated across hundreds of human cell lines using the Cancer Dependency Map portal (www.Depmap.org). Candidate genes were validated using CRISPR-Cas9 gene knockout and shRNA knockdown of individual target genes followed by in vitro competitive growth assays and cell viability assays. Results: Our study revealed multiple candidate genes with increased dependency in NSD2-high cells including the adenine nucleotide regulator Adenylate Kinase 2 (AK2). AK2 catalyzes the reversible conversion of ADP to AMP and ATP and can thus modulates energy balance within the cell. Dependency map analysis showed that AK2 is not a commonly essential gene. The top enriched lineages with AK2 dependency included MM with notable representation of t(4;14)-positive MM cell lines. The increased dependency of NTKO and other t (4;14) MM cells on AK2 was confirmed by in vitro competition assays. Disruption of AK2 in TKO cells had a minimal effect on cellular fitness but the dependency on AK2 was restored upon engineered overexpression of NSD2 in these cells. In addition, NSD2-high cells displayed higher sensitivity to the proteasome inhibitor bortezomib than NSD2-low cells suggesting elevated levels of endoplasmic reticulum (ER) stress in cells overexpressing NSD2. Elevated ER stress necessitates increased levels of ATP to refold proteins and could underlie the increased dependency of NSD2-high cells on AK2. Notably, suppression of AK2 increased bortezomib sensitivity in t (4;14) MM cell lines. Conclusions: Our findings indicate that NSD2 high t(4;14) MM may have a vulnerability due to increased proteostatic stress. Accordingly, AK2 inhibition could be used in combination with proteasome inhibitors to treat MM patients with t (4;14) translocations by inducing the accumulation of lethal levels of unfolded proteins. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 19 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Mariana B. de Oliveira ◽  
Luiz F.G. Sanson ◽  
Angela I.P. Eugenio ◽  
Rebecca S.S. Barbosa-Dantas ◽  
Gisele W.B. Colleoni

Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2341
Author(s):  
Normann Steiner ◽  
Karin Jöhrer ◽  
Selina Plewan ◽  
Andrea Brunner-Véber ◽  
Georg Göbel ◽  
...  

Therapy resistance remains a major challenge in the management of multiple myeloma (MM). We evaluated the expression of FLT3 tyrosine kinase receptor (FLT3, CD135) in myeloma cells as a possible clonal driver. FLT3 expression was analyzed in bone marrow biopsies of patients with monoclonal gammopathy of undetermined significance or smoldering myeloma (MGUS, SMM), newly diagnosed MM (NDMM), and relapsed/refractory MM (RRMM) by immunohistochemistry (IHC). FLT3 gene expression was analyzed by RNA sequencing (RNAseq) and real-time PCR (rt-PCR). Anti-myeloma activity of FLT3 inhibitors (midostaurin, gilteritinib) was tested in vitro on MM cell lines and primary MM cells by 3H-tymidine incorporation assays or flow cytometry. Semi-quantitative expression analysis applying a staining score (FLT3 expression IHC-score, FES, range 1–6) revealed that a high FES (>3) was associated with a significantly shorter progression-free survival (PFS) in NDMM and RRMM patients (p = 0.04). RNAseq and real-time PCR confirmed the expression of FLT3 in CD138-purified MM samples. The functional relevance of FLT3 expression was corroborated by demonstrating the in vitro anti-myeloma activity of FLT3 inhibitors on FLT3-positive MM cell lines and primary MM cells. FLT3 inhibitors might offer a new targeted therapy approach in a subgroup of MM patients displaying aberrant FLT3 signaling.


2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


2006 ◽  
Vol 47 (9) ◽  
pp. 1921-1931 ◽  
Author(s):  
Franco Silvestris ◽  
Paola Cafforio ◽  
Nicola Calvani ◽  
Monica De Matteo ◽  
Lucia Lombardi ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4462-4462
Author(s):  
Xiu Ly Song ◽  
Raphaël Szalat ◽  
Alexis Talbot ◽  
HaiVu Nguyen ◽  
Mehmet K. Samur ◽  
...  

Abstract In Multiple Myeloma (MM), the t(4;14) translocation is associated with a poor outcome. However, beside this translocation, the genetic events which determine the adverse evolution of the disease and the resistance to treatments remain elusive. In this study we performed whole exome or RNA sequencing analysis of samples from 65 newly diagnosed t(4;14) MM. We found that NRAS, KRAS, MAPK and FGFR3 are frequently mutated (12%, 9%, 13.8%, and 20% respectively). Overall, the FGFR3/RAS/BRAF/MAPK genes were mutated in 36 cases (54%). There was a negative correlation between mutations in FGFR3 and those occurring in NRAS, KRAS and BRAF as expected from the mutually exclusive occurrence of mutations in these genes. In addition to alterations in TP53 and DIS3, we found marked elevated frequency of mutations in PRKD2 (10.7%), ATM/ATR (10.7%) and MYCBP2 (7.6%), reduced frequency in FAM46C (1.5%) and no mutation in TRAF3 and CCND1. Mutations in ATM/ATR were strongly associated with the MB4-2 breakpoint (Bp) (p = 1.62 10-4) and significantly correlated with mutations affecting genes coding for members of the MAPK family. We observed a positive correlation between non-silent mutations in PRKD2 and the MB4-1 or MB4-3 Bp (p = 1.3 10-2). Of note, PRKD2 mutations are exclusively found in 3 t(4;14) MM cell lines and among the 84 MM sequenced by Bolli et al. (1), none of the non t(4;14) patient were mutated in PRKD2, indicating that this genetic lesion is associated with t(4;14) MM. In the NCI-H929 t(4;14) MM cell line, which is mutated for PRKD2, encoding the PKD2 serine/threonine kinase, we observed elevated levels of phosphorylated PKD2. Furthermore, inhibition of PKD, decreased PKD2 phosphorylation and triggered reduced proliferation and apoptosis of MM cell lines and fresh plasma cells from patients in vitro. These results define a specific mutational landscape for t(4;14) MM and identify PKD2 as a potential therapeutic target in MM patients. Altogether, these results define a specific mutational landscape for t(4;14) MM and identify PKD2 as a potential therapeutic target in MM patients. Reference 1. Bolli, N., Avet-Loiseau, H., Wedge, D.C., Van Loo, P., Alexandrov, L.B., Martincorena, I., Dawson, K.J., Iorio, F., Nik-Zainal, S., Bignell, G.R., et al. (2014). Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5, 2997. Disclosures Munshi: Janssen: Consultancy; Takeda: Consultancy; Celgene: Consultancy; Amgen: Consultancy; Merck: Consultancy; Pfizer: Consultancy; Oncopep: Patents & Royalties.


2019 ◽  
Vol 98 (11) ◽  
pp. 2569-2578
Author(s):  
Ella Willenbacher ◽  
Karin Jöhrer ◽  
Wolfgang Willenbacher ◽  
Brigitte Flögel ◽  
Richard Greil ◽  
...  

Abstract Treatment results for multiple myeloma and plasma cell leukemia have considerably improved, but cure remains elusive and establishing new therapeutic approaches constitutes a major unmet clinical need. We analyzed the anti-myeloma properties of the aza-anthracenedione pixantrone which has been successfully used in a phase III study for the treatment of patients with aggressive non-Hodgkin’s lymphoma as monotherapy as well as in combination regimes in vitro and in an adapted in vivo model (ex ovo chicken chorioallantoic membrane (CAM) assay). Pixantrone significantly inhibited proliferation and metabolic activity of all investigated myeloma cell lines. Importantly, anti-myeloma effects were more pronounced in tumor cell lines than in stromal cells, mesenchymal stem cells, and peripheral blood mononuclear cells of healthy controls. Apoptosis of myeloma cell lines was observed only after a 7-day incubation period, indicating a fast cytostatic and a slower cytotoxic effect of this drug. Pixantrone reduced the viability of primary plasma cells of patients and induced downregulation of myeloma-cell growth in the CAM assay. Additionally, we demonstrate in vitro synergism between pixantrone and the histone deacetylase inhibitor panobinostat with respect to its anti-proliferative features. From these data, we conclude that systematic investigations of the clinical usefulness of pixantrone in the framework of controlled clinical trials are clearly indicated (e.g., in penta-refractory patients).


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 724-732 ◽  
Author(s):  
Palma Finelli ◽  
Sonia Fabris ◽  
Savina Zagano ◽  
Luca Baldini ◽  
Daniela Intini ◽  
...  

Abstract Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus at chromosome 14q32 represent a common mechanism of oncogene activation in lymphoid malignancies. In multiple myeloma (MM), variable chromosome partners have been identified by conventional cytogenetics, including the 11q13, 8q24, 18q21, and 6p21 loci. We and others have recently reported a novel, karyotypically undetectable chromosomal translocation t(4;14)(p16.3;q32) in MM-derived cell lines, as well as in primary tumors. The 4p16.3 breakpoints are relatively scattered and located less than 100 kb centromeric of the fibroblast growth factor receptor 3 (FGFR3) gene or within the recently identified WHSC1 gene, both of which are apparently deregulated by the translocation. To assess the frequency of the t(4;14)(p16.3;q32) translocation in MM, we performed a double-color fluorescent in situ hybridization (FISH) analysis of interphase nuclei with differently labeled probes specific for the IGH locus (a pool of plasmid clones specific for the IGH constant regions) or 4p16.3 (yeast artificial chromosome (YAC) 764-H1 spanning the region involved in breakpoints). Thirty MM patients, the MM-derived cell lines KMS-11 and OPM2, and six normal controls were examined. The identification of a t(4;14) translocation, evaluated as the presence of a der(14) chromosome, was based on the colocalization of signals specific for the two probes; a cutoff value of 15% (mean + 3 standard deviation [SD]) derived from the interphase FISH of the normal controls (range, 5% to 11%; mean ± SD, 8.16 ± 2.2) was used for the quantification analysis. In interphase FISH, five patients (one in clinical stage I, two in stage II, one in stage III, and a plasma cell leukemia) were found to be positive (≈15%). FISH metaphases with split or colocalized signals were detected in only two of the translocated cases and confirmed the pattern found in the interphase nuclei. Furthermore, in three of the five cases with the translocation, FISH analysis with the IGH joining probe (JH) showed the presence of the reciprocal product of the translocation [der(4) chromosome]. Overall, our study indicates that the t(4;14)(p16.3;q32) chromosomal translocation is a recurrent event in MM tumors and may contribute towards the detection of this lesion and our understanding of its pathogenetic and clinical implications in MM.


Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1330-1337 ◽  
Author(s):  
Domenica Ronchetti ◽  
Palma Finelli ◽  
Raffaella Richelda ◽  
Luca Baldini ◽  
Mariano Rocchi ◽  
...  

Abstract The t(11;14)(q13;q32) chromosomal translocation, which is the hallmark of mantle cell lymphoma (MCL), is found in approximately 30% of multiple myeloma (MM) tumors with a 14q32 translocation. Although the overexpression of cyclin D1 has been found to be correlated with MM cell lines carrying the t(11;14), rearrangements of theBCL-1/cyclin D1 regions frequently involved in MCL rarely occur in MM cell lines or primary tumors. To test whether specific 11q13 breakpoint clusters may occur in MM, we investigated a representative panel of primary tumors by means of Southern blot analysis using probes derived from MM-associated 11q13 breakpoints. To this end, we first cloned the breakpoints and respective germ-line regions from a primary tumor and the U266 cell line, as well as the germ-line region from the KMS-12 cell line. DNA from 50 primary tumors was tested using a large panel of probes, but a rearrangement was detected in only one case using the KMS-12 breakpoint probe. Our results confirm previous findings that the 11q13 breakpoints in MM are scattered throughout the 11q13 region encompassing the cyclinD1 gene, thus suggesting the absence of 11q13 breakpoint clusters in MM.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 970 ◽  
Author(s):  
Jessica Bordini ◽  
Federica Morisi ◽  
Fulvia Cerruti ◽  
Paolo Cascio ◽  
Clara Camaschella ◽  
...  

Adaptation to import iron for proliferation makes cancer cells potentially sensitive to iron toxicity. Iron loading impairs multiple myeloma (MM) cell proliferation and increases the efficacy of the proteasome inhibitor bortezomib. Here, we defined the mechanisms of iron toxicity in MM.1S, U266, H929, and OPM-2 MM cell lines, and validated this strategy in preclinical studies using Vk*MYC mice as MM model. High-dose ferric ammonium citrate triggered cell death in all cell lines tested, increasing malondialdehyde levels, the by-product of lipid peroxidation and index of ferroptosis. In addition, iron exposure caused dose-dependent accumulation of polyubiquitinated proteins in highly iron-sensitive MM.1S and H929 cells, suggesting that proteasome workload contributes to iron sensitivity. Accordingly, high iron concentrations inhibited the proteasomal chymotrypsin-like activity of 26S particles and of MM cellular extracts in vitro. In all MM cells, bortezomib-iron combination induced persistent lipid damage, exacerbated bortezomib-induced polyubiquitinated proteins accumulation, and triggered cell death more efficiently than individual treatments. In Vk*MYC mice, addition of iron dextran or ferric carboxymaltose to the bortezomib-melphalan-prednisone (VMP) regimen increased the therapeutic response and prolonged remission without causing evident toxicity. We conclude that iron loading interferes both with redox and protein homeostasis, a property that can be exploited to design novel combination strategies including iron supplementation, to increase the efficacy of current MM therapies.


Sign in / Sign up

Export Citation Format

Share Document