Molecular Analysis of 11q13 Breakpoints in Multiple Myeloma

Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1330-1337 ◽  
Author(s):  
Domenica Ronchetti ◽  
Palma Finelli ◽  
Raffaella Richelda ◽  
Luca Baldini ◽  
Mariano Rocchi ◽  
...  

Abstract The t(11;14)(q13;q32) chromosomal translocation, which is the hallmark of mantle cell lymphoma (MCL), is found in approximately 30% of multiple myeloma (MM) tumors with a 14q32 translocation. Although the overexpression of cyclin D1 has been found to be correlated with MM cell lines carrying the t(11;14), rearrangements of theBCL-1/cyclin D1 regions frequently involved in MCL rarely occur in MM cell lines or primary tumors. To test whether specific 11q13 breakpoint clusters may occur in MM, we investigated a representative panel of primary tumors by means of Southern blot analysis using probes derived from MM-associated 11q13 breakpoints. To this end, we first cloned the breakpoints and respective germ-line regions from a primary tumor and the U266 cell line, as well as the germ-line region from the KMS-12 cell line. DNA from 50 primary tumors was tested using a large panel of probes, but a rearrangement was detected in only one case using the KMS-12 breakpoint probe. Our results confirm previous findings that the 11q13 breakpoints in MM are scattered throughout the 11q13 region encompassing the cyclinD1 gene, thus suggesting the absence of 11q13 breakpoint clusters in MM.

Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1330-1337 ◽  
Author(s):  
Domenica Ronchetti ◽  
Palma Finelli ◽  
Raffaella Richelda ◽  
Luca Baldini ◽  
Mariano Rocchi ◽  
...  

The t(11;14)(q13;q32) chromosomal translocation, which is the hallmark of mantle cell lymphoma (MCL), is found in approximately 30% of multiple myeloma (MM) tumors with a 14q32 translocation. Although the overexpression of cyclin D1 has been found to be correlated with MM cell lines carrying the t(11;14), rearrangements of theBCL-1/cyclin D1 regions frequently involved in MCL rarely occur in MM cell lines or primary tumors. To test whether specific 11q13 breakpoint clusters may occur in MM, we investigated a representative panel of primary tumors by means of Southern blot analysis using probes derived from MM-associated 11q13 breakpoints. To this end, we first cloned the breakpoints and respective germ-line regions from a primary tumor and the U266 cell line, as well as the germ-line region from the KMS-12 cell line. DNA from 50 primary tumors was tested using a large panel of probes, but a rearrangement was detected in only one case using the KMS-12 breakpoint probe. Our results confirm previous findings that the 11q13 breakpoints in MM are scattered throughout the 11q13 region encompassing the cyclinD1 gene, thus suggesting the absence of 11q13 breakpoint clusters in MM.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3154-3159 ◽  
Author(s):  
M. Michaela Ott ◽  
Jirina Bartkova ◽  
Jiri Bartek ◽  
Alexander Dürr ◽  
Lars Fischer ◽  
...  

Abstract The cell cycle regulatory protein cyclin D1 is essential for G1-S phase transition in several epithelial and mesenchymal tissues but is apparently not essential in normal mature B cells. An overexpression of cyclin D1 is induced by the chromosomal translocation t(11; 14)(q13; q32), which characterizes non-Hodgkin's lymphomas (NHLs) of mantle cell type. We studied 26 cases of mantle cell lymphoma (MCL) for the expression of cyclins D1 and D3. A total of 23 lymphomas showed a nuclear staining for cyclin D1, whereas reactive B cells of residual germinal centers were constantly negative. When compared with cyclin D3, an inverse staining pattern emerged. Whereas the B cells of residual germinal centers reacted strongly positive for cyclin D3, there was low or missing expression of cyclin D3 in MCL cells. In other B-cell lymphomas (n = 55), including chronic lymphocytic leukemia, low-grade lymphomas of mucosa-associated lymphatic tissue, follicular lymphomas, and diffuse large B-cell lymphomas, no cyclin D1 expression could be detected and 89% of these cases displayed cyclin D3 positivity. Lymphoma cell lines harboring the t(11; 14) showed cyclin D1 protein but no or very low levels of cyclin D3; three other B-cell lines, a T-cell line, and peripheral blood lymphocytes strongly expressed cyclin D3 and reacted negatively for cyclin D1. We conclude that the chromosomal translocation t(11; 14) leads to an abnormal protein expression of cyclin D1 in the tumor cells of MCL and induces a consecutive downregulation of cyclin D3. In contrast to other B-NHLs, cyclin D1 and D3 expression in MCL is not related to the growth fraction.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Youngil Koh ◽  
Woo-June Jung ◽  
Kwang-Sung Ahn ◽  
Sung-Soo Yoon

Purpose.We tried to establish clinically relevant human myeloma cell lines that can contribute to the understanding of multiple myeloma (MM).Materials and Methods.Mononuclear cells obtained from MM patient’s bone marrow were injected via tail vein in an NRG/SCID mouse. Fourteen weeks after the injection, tumor developed at subcutis of the mouse. The engraftment of MM cells into mouse bone marrow (BM) was also observed. We separated and cultured cells from subcutis and BM.Results.After the separation and culture of cells from subcutis and BM, we established two cell lines originating from a single patient (SNU_MM1393_BM and SNU_MM1393_SC). Karyotype of the two newly established MM cell lines showed tetraploidy which is different from the karyotype of the patient (diploidy) indicating clonal evolution. In contrast to SNU_MM1393_BM, cell proliferation of SNU_MM1393_SC was IL-6 independent. SNU_MM1393_BM and SNU_MM1393_SC showed high degree of resistance against bortezomib compared to U266 cell line. SNU_MM1393_BM had the greater lethality compared to SNU_MM1393_SC.Conclusion.Two cell lines harboring different site tropisms established from a single patient showed differences in cytokine response and lethality. Our newly established cell lines could be used as a tool to understand the biology of multiple myeloma.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1151-1160 ◽  
Author(s):  
E Paietta ◽  
RJ Stockert ◽  
T Calvelli ◽  
P Papenhausen ◽  
SV Seremetis ◽  
...  

A cell line with immature blast cell morphology was isolated from HL-60 promyelocytic leukemia cell cultures and designated HL-T. This new cell type is biphenotypic, expressing terminal transferase (TdT) together with myelomonocytoid immunologic features. TdT enzymatic activity, undetectable in HL-60, was determined to be 140 to 180 units/10(8) HL-T cells by the dGTP-assay, approximately 20% of the activity found in lymphoblastoid cell lines. HL-T predominantly synthesize the known 58- kDa TdT-protein plus a minor 54/56-kDa doublet. The 58-kDa steady state form is nonglycosylated and is phosphorylated. Precursor antigens S3.13 and MY-10, absent on HL-60, are expressed by HL-T; however, the cells are negative for HLA-Dr. Southern blot analysis by hybridization with immunoglobulin heavy chain (JH) and T cell-receptor chain gene (T beta) probes shows JH to be in the germ-line configuration in both cell lines and the T beta gene to be in germ-line in HL-60 but to be rearranged in HL-T. Truncation of the gene encoding the granulocyte-macrophage-colony- stimulating factor (GM-CSF), as found in HL-60, is not observed in HL- T. HL-T are resistant to differentiation-induction by retinoic acid and 1,25-dihydroxyvitamin D3. Cytogenetically HL-T share with HL-60 a deletion of the short arm of chromosome 9 at breakpoint p13, an aberration frequently found in patients with T cell leukemia. In addition, HL-T display t(8;9)(p11;p24) and trisomy 20. Tetraploidy is observed in 80% of HL-T metaphases with aberrations identical to those in the diploid karyotype. Like HL-60, the new line shows some surface- antigenic-T cell characteristics. Despite an antigenic pattern most consistent with that of helper-inducer T cells (T4+, D44+/-, 4B4+, 2H4- , TQ1+/-), HL-T cells and their conditioned culture medium suppress antigen, mitogen, and mixed-leukocyte-culture-mediated lymphocyte proliferation.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 724-732 ◽  
Author(s):  
Palma Finelli ◽  
Sonia Fabris ◽  
Savina Zagano ◽  
Luca Baldini ◽  
Daniela Intini ◽  
...  

Abstract Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus at chromosome 14q32 represent a common mechanism of oncogene activation in lymphoid malignancies. In multiple myeloma (MM), variable chromosome partners have been identified by conventional cytogenetics, including the 11q13, 8q24, 18q21, and 6p21 loci. We and others have recently reported a novel, karyotypically undetectable chromosomal translocation t(4;14)(p16.3;q32) in MM-derived cell lines, as well as in primary tumors. The 4p16.3 breakpoints are relatively scattered and located less than 100 kb centromeric of the fibroblast growth factor receptor 3 (FGFR3) gene or within the recently identified WHSC1 gene, both of which are apparently deregulated by the translocation. To assess the frequency of the t(4;14)(p16.3;q32) translocation in MM, we performed a double-color fluorescent in situ hybridization (FISH) analysis of interphase nuclei with differently labeled probes specific for the IGH locus (a pool of plasmid clones specific for the IGH constant regions) or 4p16.3 (yeast artificial chromosome (YAC) 764-H1 spanning the region involved in breakpoints). Thirty MM patients, the MM-derived cell lines KMS-11 and OPM2, and six normal controls were examined. The identification of a t(4;14) translocation, evaluated as the presence of a der(14) chromosome, was based on the colocalization of signals specific for the two probes; a cutoff value of 15% (mean + 3 standard deviation [SD]) derived from the interphase FISH of the normal controls (range, 5% to 11%; mean ± SD, 8.16 ± 2.2) was used for the quantification analysis. In interphase FISH, five patients (one in clinical stage I, two in stage II, one in stage III, and a plasma cell leukemia) were found to be positive (≈15%). FISH metaphases with split or colocalized signals were detected in only two of the translocated cases and confirmed the pattern found in the interphase nuclei. Furthermore, in three of the five cases with the translocation, FISH analysis with the IGH joining probe (JH) showed the presence of the reciprocal product of the translocation [der(4) chromosome]. Overall, our study indicates that the t(4;14)(p16.3;q32) chromosomal translocation is a recurrent event in MM tumors and may contribute towards the detection of this lesion and our understanding of its pathogenetic and clinical implications in MM.


Blood ◽  
1996 ◽  
Vol 88 (2) ◽  
pp. 674-681 ◽  
Author(s):  
M Chesi ◽  
PL Bergsagel ◽  
LA Brents ◽  
CM Smith ◽  
DS Gerhard ◽  
...  

Translocations involving the IgH locus at chromosomal locus 14q32.3 are a common event in many B-cell malignancies. The translocations, which generally occur into JH and switch regions, are mediated by errors in the two developmentally regulated, lymphocyte-specific pathways: VDJ- and switch-mediated recombination. Dysregulation of cyclin D1 by a t(11;14)(q13;q32) translocation occurs in most cases of mantle-cell lymphoma and in approximately 30% of multiple myeloma (MM) tumors in which a 14q32 translocation can be detected. We show here that in two of three myeloma lines that overexpress cyclin D1, there is an 11;14 translocation into a gamma switch region, suggesting an error in switch recombination. By contrast, 11;14 translocations in mantlecell lymphoma are invariably into or near a JH segment, suggesting an error in VDJ recombination. This is consistent with the fact that myeloma cells have undergone lgH switch recombination, whereas mantle-cell lymphoma cells generally have not.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 294-304 ◽  
Author(s):  
CC Wilhide ◽  
C Van Dang ◽  
J Dipersio ◽  
AA Kenedy ◽  
PF Bray

The maturation of megakaryocytes in vivo requires polyploidization or repeated duplication of DNA without cytokinesis. As DNA replication and cytokinesis are tightly regulated in somatic cells by cyclins and cyclin-dependent kinases, we sought to determine the pattern of cyclin gene expression in cells that undergo megakaryocytic differentiation and polyploidization. The Dami megakaryocytic cell line differentiates and increases ploidy in response to phorbol 12-myristate 13-acetate (PMA) stimulation in vitro. We used Northern blotting to analyze mRNA levels of cyclins A, B, C, D1, and E in PMA-induced Dami cells and found that cyclin D1 mRNA levels increased dramatically (18-fold). Similar increases in cyclin D1 mRNA were obtained for other cell lines (HEL and K562) with megakaryocytic properties, but not in HeLa cells. The increase in cyclin D1 was confirmed by Western immunoblotting of PMA-treated Dami cells. This finding suggested that cyclin D1 might participate in megakaryocyte differentiation by promoting endomitosis and/or inhibiting cell division. To address these possibilities, we constructed two stable Zn+2-inducible, cyclin D1-overexpressing Dami cell lines. Cyclin D1 expression alone was not sufficient to induce polyploidy, but in conjunction with PMA-induced differentiation, polyploidization was slightly enhanced. However, unlike other cell systems, cyclin D1 overexpression caused cessation of cell growth. Although the mechanism by which cyclin D1 may affect megakaryocyte differentiation is not clear, these data demonstrate that cyclin D1 is upregulated in differentiating megakaryocytic cells and may contribute to differentiation by arresting cell proliferation.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1151-1160 ◽  
Author(s):  
E Paietta ◽  
RJ Stockert ◽  
T Calvelli ◽  
P Papenhausen ◽  
SV Seremetis ◽  
...  

Abstract A cell line with immature blast cell morphology was isolated from HL-60 promyelocytic leukemia cell cultures and designated HL-T. This new cell type is biphenotypic, expressing terminal transferase (TdT) together with myelomonocytoid immunologic features. TdT enzymatic activity, undetectable in HL-60, was determined to be 140 to 180 units/10(8) HL-T cells by the dGTP-assay, approximately 20% of the activity found in lymphoblastoid cell lines. HL-T predominantly synthesize the known 58- kDa TdT-protein plus a minor 54/56-kDa doublet. The 58-kDa steady state form is nonglycosylated and is phosphorylated. Precursor antigens S3.13 and MY-10, absent on HL-60, are expressed by HL-T; however, the cells are negative for HLA-Dr. Southern blot analysis by hybridization with immunoglobulin heavy chain (JH) and T cell-receptor chain gene (T beta) probes shows JH to be in the germ-line configuration in both cell lines and the T beta gene to be in germ-line in HL-60 but to be rearranged in HL-T. Truncation of the gene encoding the granulocyte-macrophage-colony- stimulating factor (GM-CSF), as found in HL-60, is not observed in HL- T. HL-T are resistant to differentiation-induction by retinoic acid and 1,25-dihydroxyvitamin D3. Cytogenetically HL-T share with HL-60 a deletion of the short arm of chromosome 9 at breakpoint p13, an aberration frequently found in patients with T cell leukemia. In addition, HL-T display t(8;9)(p11;p24) and trisomy 20. Tetraploidy is observed in 80% of HL-T metaphases with aberrations identical to those in the diploid karyotype. Like HL-60, the new line shows some surface- antigenic-T cell characteristics. Despite an antigenic pattern most consistent with that of helper-inducer T cells (T4+, D44+/-, 4B4+, 2H4- , TQ1+/-), HL-T cells and their conditioned culture medium suppress antigen, mitogen, and mixed-leukocyte-culture-mediated lymphocyte proliferation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 785-785 ◽  
Author(s):  
Ruben Carrasco ◽  
Giovanni Tonon ◽  
Cameron Brennan ◽  
Alexei Protopopov ◽  
Raktim Sinha ◽  
...  

Abstract Multiple Myeloma (MM) is characterized by a clonal proliferation of abnormal plasma cells in the bone marrow and is among the most frequent and lethal hematological diseases. In spite of significant effort towards the identification of the molecular events leading to this malignancy, the genetic alterations responsible for the pathogenesis of this disease remain poorly understood. Regional copy number alterations (CNAs) in cancer genomes have been among the most informative structural changes in cancer and have led to the discovery of many oncogenes and tumor supressor genes. Using array comparative genomic hybridization (array-CGH) and expression microarray technologies we have analyzed a large collection of cell lines and clinically annotated primary tumors. This high-resolution genomic analysis has identified all previously reported regional gains and losses as well as many novel highly recurrent genetic loci with potential biological and clinical relevance. In particular, we have identified an amplification at chromosome 1q21 as one of the most recurrent genetic changes in cell lines and in a subgroup of primary tumors. This chromosomal change has been previously implicated with disease progression. Analysis across several cell lines has allowed the identification of a Minimal Common Region (MCRs) of amplification at 1q21. Correlation between DNA copy number changes and expression profiling data has identified a limited set of candidate genes within this MCR that are amplified and overexpressed. Using shRNAi technology we have identified BCL-9 as a candidate gene residing at the 1q21 MCR. In vitro and in vivo functional data about the role of BL-9 will be presented. These data will provide critical understanding on the diverse pathways leading to Multiple Myeloma progression.


Sign in / Sign up

Export Citation Format

Share Document