scholarly journals Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58

Blood ◽  
2020 ◽  
Vol 136 (21) ◽  
pp. 2437-2441 ◽  
Author(s):  
Johanna Veldman ◽  
Lydia Visser ◽  
Magdalena Huberts-Kregel ◽  
Natasja Muller ◽  
Bouke Hepkema ◽  
...  

Abstract A unique feature of Hodgkin lymphoma (HL) is the presence of CD4+ T cells that surround, protect, and promote survival of tumor cells. The adhesion molecules involved in this so-called T-cell rosetting are important components of the immunological synapse (IS). However, it is unknown whether this synapse is fully assembled and leads to T-cell activation by enabling interaction between the T-cell receptor (TCR) and human leukocyte antigen class II (HLA-II). We established a novel rosetting model by coculturing HLA-II–matched peripheral blood mononuclear cells with HL cell lines and showed IS formation with activation of rosetting T cells. HLA-II downregulation by class II transactivator knockout did not affect the extent of rosetting, but almost completely abrogated T-cell activation. Intriguingly, the level of CD58 expression correlated with the extent of rosette formation, and CD58 knockout or CD2 blockade reduced both rosette formation and T-cell activation. The extension of our findings to primary HL tissue by immunohistochemistry and proximity ligation assays showed interaction of CD2 with CD58 and of TCR-associated CD4 with HLA-II. In conclusion, T-cell rosetting in HL is established by formation of the IS, and activation of rosetting T cells critically depends on the interaction of both TCR-HLA-II and CD2-CD58.

Author(s):  
M E Jacobs ◽  
J N Pouw ◽  
M A Olde Nordkamp ◽  
T R D J Radstake ◽  
E F A Leijten ◽  
...  

Abstract Background Signals at the contact site of antigen-presenting cells (APCs) and T cells help orchestrate the adaptive immune response. CD155 on APCs can interact with the stimulatory receptor DNAM1 or inhibitory receptor TIGIT on T cells. The CD155/DNAM1/TIGIT axis is under extensive investigation as immunotherapy target in inflammatory diseases including cancer, chronic infection and autoimmune diseases. We investigated a possible role for CD155/DNAM1/TIGIT signaling in psoriatic disease. Methods By flow cytometry we analyzed peripheral blood mononuclear cells of patients with psoriasis (n=20) or psoriatic arthritis (n=21), and healthy individuals (n=7). We measured CD155, TIGIT and DNAM1 expression on leukocyte subsets and compared activation-induced cytokine production between CD155-positive and -negative APCs. We assessed the effects of TIGIT and DNAM1 blockade on T cell activation, and related the expression of CD155/DNAM1/TIGIT axis molecules to measures of disease activity. Results High CD155 expression associates with TNF production in myeloid and plasmacytoid dendritic cells (DC). In CD1c+ myeloid DC, activation-induced CD155 expression associates with increased HLA-DR expression. CD8 T cells - but not CD4 T cells - express high levels of TIGIT. DNAM1 blockade decreases T cell pro-inflammatory cytokine production, while TIGIT blockade increased T cell proliferation. Finally, T cell TIGIT expression shows an inverse correlation with inflammation biomarkers in psoriatic disease. Conclusion CD155 is increased on pro-inflammatory APCs, while the receptors DNAM1 and TIGIT expressed on T cells balance the inflammatory response by T cells. In psoriatic disease, low TIGIT expression on T cells is associated with systemic inflammation.


Blood ◽  
2006 ◽  
Vol 109 (9) ◽  
pp. 3873-3880 ◽  
Author(s):  
Lesley White ◽  
Subramaniam Krishnan ◽  
Natasa Strbo ◽  
Huanliang Liu ◽  
Michael A. Kolber ◽  
...  

Abstract An urgent need exists to devise strategies to augment antiviral immune responses in patients with HIV who are virologically well controlled and immunologically stable on highly active antiretroviral therapy (HAART). The objective of this study was to compare the immunomodulatory effects of the cytokines interleukin (IL)–21 with IL-15 on CD8 T cells in patients with HIV RNA of less than 50 copies/mL and CD4 counts greater than 200 cells/mm.3 Patient CD8 T cells displayed skewed maturation and decreased perforin expression compared with healthy controls. Culture of freshly isolated patient peripheral-blood mononuclear cells (PBMCs) for 5 hours to 5 days with IL-21 resulted in up-regulation of perforin in CD8 T cells, including memory and effector subsets and virus-specific T cells. IL-21 did not induce T-cell activation or proliferation, nor did it augment T-cell receptor (TCR)–induced degranulation. Treatment of patient PBMCs with IL-15 resulted in induction of perforin in association with lymphocyte proliferation and augmentation of TCR-induced degranulation. Patient CD8 T cells were more responsive to cytokine effects than the cells of healthy volunteers. We conclude that CD8 T cells of patients with HIV can be modulated by IL-21 to increase perforin expression without undergoing overt cellular activation. IL-21 could potentially be useful for its perforin-enhancing properties in anti-HIV immunotherapy.


2004 ◽  
Vol 11 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Lazaros I. Sakkas ◽  
George Koussidis ◽  
Efthimios Avgerinos ◽  
John Gaughan ◽  
Chris D. Platsoucas

ABSTRACT Osteoarthritis (OA) is a heterogeneous disease which rheumatologists consider to be noninflammatory. However, recent studies suggest that, at least in certain patients, OA is an inflammatory disease and that patients often exhibit inflammatory infiltrates in the synovial membranes (SMs) of macrophages and activated T cells expressing proinflammatory cytokines. We report here that the expression of CD3ζ is significantly decreased in T cells infiltrating the SMs of patients with OA. The CD3ζ chain is involved in the T-cell signal transduction cascade, which is initiated by the engagement of the T-cell antigen receptor and which culminates in T-cell activation. Double immunofluorescence of single-cell suspensions derived from the SMs from nine patients with OA revealed significantly increased proportions of CD3ε-positive (CD3ε+) cells compared with the proportions of CD3ζ-positive (CD3ζ+) T cells (means ± standard errors of the means, 80.48% ± 3.92% and 69.02% ± 6.51%, respectively; P = 0.0096), whereas there were no differences in the proportions of these cells in peripheral blood mononuclear cells (PBMCs) from healthy donors (94.73% ± 1.39% and 93.79% ± 1.08%, respectively; not significant). The CD3ζ+ cell/CD3ε+ cell ratio was also significantly decreased for T cells from the SMs of patients with OA compared with that for T cells from the PBMCs of healthy donors (0.84 ± 0.17 and 0.99 ± 0.01, respectively; P = 0.0302). The proportions of CD3ε+ CD3ζ+ cells were lower in the SMs of patients with OA than in the PBMCs of healthy donors (65.04% ± 6.7% and 90.81% ± 1.99%, respectively; P = 0.0047). Substantial proportions (about 15%) of CD3ε+ CD3ζ-negative (CD3ζ−) and CD3ε-negative (CD3ε−) CD3ζ− cells were found in the SMs of patients with OA. Amplification of the CD3ζ and CD3δ transcripts from the SMs of patients with OA by reverse transcriptase PCR consistently exhibited stronger bands for CD3δ cDNA than for CD3ζ cDNA The CD3ζ/CD3δ transcript ratio in the SMs of patients with OA was significantly lower than that in PBMCs from healthy controls (P < 0.0001). These results were confirmed by competitive MIMIC PCR. Immunoreactivities for the CD3ζ protein were detected in the SMs of 10 of 19 patients with OA, and they were of various intensities, whereas SMs from all patients were CD3ε+ (P = 0.0023). The decreased expression of the CD3ζ transcript and protein in T cells from the SMs of patients with OA relative to that of the CD3ε transcript is suggestive of chronic T-cell stimulation and supports the concept of T-cell involvement in OA.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2135-2141 ◽  
Author(s):  
Kari L. Murad ◽  
Edmund J. Gosselin ◽  
John W. Eaton ◽  
Mark D. Scott

Abstract Transfusion or transplantation of T lymphocytes into an allogeneic recipient can evoke potent immune responses including, in immunocompromised patients, graft-versus-host disease (GVHD). As our previous studies demonstrated attenuated immunorecognition of red blood cells covalently modified with methoxy(polyethylene glycol) (mPEG), we hypothesized that T-cell activation by foreign antigens might similarly be prevented by mPEG modification. Mixed lymphocyte reactions (MLR) using peripheral blood mononuclear cells (PBMC) from HLA class II disparate donors demonstrate that mPEG modification of PBMC effectively inhibits T-cell proliferation (measured by 3H-thymidine incorporation) in a dose-dependent manner. Even slight derivatization (0.4 mmol/L mPEG per 4 × 106 cells) resulted in a ≥75% decrease, while higher concentrations caused ≥96% decrease in proliferation. Loss of PBMC proliferation was not due to either mPEG-induced cytotoxicity, as viability was normal, or cellular anergy, as phytohemagglutinin (PHA)-stimulated mPEG-PBMC demonstrated normal proliferative responses. Addition of exogenous interleukin (IL)-2 also had no proliferative effect, suggesting that the mPEG-modified T cells were not antigen primed. Flow cytometric analysis demonstrates that mPEG-modification dramatically decreases antibody recognition of multiple molecules involved in essential cell:cell interactions, including both T-cell molecules (CD2, CD3, CD4, CD8, CD28, CD11a, CD62L) and antigen-presenting cell (APC) molecules (CD80, CD58, CD62L) likely preventing the initial adhesion and costimulatory events necessary for immune recognition and response.


2022 ◽  
Vol 103 (1) ◽  
Author(s):  
Katarzyna Piadel ◽  
Amin Haybatollahi ◽  
Angus George Dalgleish ◽  
Peter Lawrence Smith

The pandemic caused by SARS-CoV-2 has led to the successful development of effective vaccines however the prospect of variants of SARS-CoV-2 and future coronavirus outbreaks necessitates the investigation of other vaccine strategies capable of broadening vaccine mediated T-cell responses and potentially providing cross-immunity. In this study the SARS-CoV-2 proteome was assessed for clusters of immunogenic epitopes restricted to diverse human leucocyte antigen. These regions were then assessed for their conservation amongst other coronaviruses representative of different alpha and beta coronavirus genera. Sixteen highly conserved peptides containing numerous HLA class I and II restricted epitopes were synthesized from these regions and assessed in vitro for their antigenicity against T-cells from individuals with previous SARS-CoV-2 infection. Monocyte derived dendritic cells were generated from these peripheral blood mononuclear cells (PBMC), loaded with SARS-CoV-2 peptides, and used to induce autologous CD4+ and CD8+ T cell activation. The SARS-CoV-2 peptides demonstrated antigenicity against the T-cells from individuals with previous SARS-CoV-2 infection indicating that this approach holds promise as a method to activate anti-SAR-CoV-2 T-cell responses from conserved regions of the virus which are not included in vaccines utilising the Spike protein.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2135-2141 ◽  
Author(s):  
Kari L. Murad ◽  
Edmund J. Gosselin ◽  
John W. Eaton ◽  
Mark D. Scott

Transfusion or transplantation of T lymphocytes into an allogeneic recipient can evoke potent immune responses including, in immunocompromised patients, graft-versus-host disease (GVHD). As our previous studies demonstrated attenuated immunorecognition of red blood cells covalently modified with methoxy(polyethylene glycol) (mPEG), we hypothesized that T-cell activation by foreign antigens might similarly be prevented by mPEG modification. Mixed lymphocyte reactions (MLR) using peripheral blood mononuclear cells (PBMC) from HLA class II disparate donors demonstrate that mPEG modification of PBMC effectively inhibits T-cell proliferation (measured by 3H-thymidine incorporation) in a dose-dependent manner. Even slight derivatization (0.4 mmol/L mPEG per 4 × 106 cells) resulted in a ≥75% decrease, while higher concentrations caused ≥96% decrease in proliferation. Loss of PBMC proliferation was not due to either mPEG-induced cytotoxicity, as viability was normal, or cellular anergy, as phytohemagglutinin (PHA)-stimulated mPEG-PBMC demonstrated normal proliferative responses. Addition of exogenous interleukin (IL)-2 also had no proliferative effect, suggesting that the mPEG-modified T cells were not antigen primed. Flow cytometric analysis demonstrates that mPEG-modification dramatically decreases antibody recognition of multiple molecules involved in essential cell:cell interactions, including both T-cell molecules (CD2, CD3, CD4, CD8, CD28, CD11a, CD62L) and antigen-presenting cell (APC) molecules (CD80, CD58, CD62L) likely preventing the initial adhesion and costimulatory events necessary for immune recognition and response.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 644 ◽  
Author(s):  
Vatzia ◽  
Pierron ◽  
Saalmüller ◽  
Mayer ◽  
Gerner

The Fusarium mycotoxin deoxynivalenol (DON) contaminates animal feed worldwide. In vivo, DON modifies the cellular protein synthesis, thereby also affecting the immune system. However, the functional consequences of this are still ill-defined. In this study, peripheral blood mononuclear cells from healthy pigs were incubated with different DON concentrations in the presence of Concanavalin A (ConA), a plant-derived polyclonal T-cell stimulant. T-cell subsets were investigated for proliferation and expression of CD8α, CD27, and CD28, which are involved in activation and costimulation of porcine T cells. A clear decrease in proliferation of all ConA-stimulated major T-cell subsets (CD4+, CD8+, and γδ T cells) was observed in DON concentrations higher than 0.4 µM. This applied in particular to naïve CD4+ and CD8+ T cells. From 0.8 μM onwards, DON induced a reduction of CD8α (CD4+) and CD27 expression (CD4+ and CD8+ T cells). CD28 expression was diminished in CD4+ and CD8+ T cells at a concentration of 1.6 µM DON. None of these effects were observed with the DON-derivative deepoxy-deoxynivalenol (DOM-1) at 16 µM. These results indicate that DON reduces T-cell proliferation and the expression of molecules involved in T-cell activation, providing a molecular basis for some of the described immunosuppressive effects of DON.


Author(s):  
Adjimon G Lokossou ◽  
Caroline Toudic ◽  
Phuong Trang Nguyen ◽  
Xavier Elisseeff ◽  
Amandine Vargas ◽  
...  

Abstract Modulation of the activation status of immune cell populations during pregnancy depends on placental villous cytotrophoblast (VCT) cells and the syncytiotrophoblast (STB). Failure in the establishment of this immunoregulatory function leads to pregnancy complications. Our laboratory has been studying Syncytin-2 (Syn-2), an endogenous retroviral protein expressed in placenta and on the surface of placental exosomes. This protein plays an important role not only in STB formation through its fusogenic properties, but also through its immunosuppressive domain (ISD). Considering that Syn-2 expression is importantly reduced in preeclamptic placentas, we were interested in addressing its possible immunoregulatory effects on T cells. Activated Jurkat T cells and peripheral blood mononuclear cells (PBMCs) were treated with monomeric or dimerized version of a control or a Syn-2 ISD peptide. Change in phosphorylation levels of ERK1/2 MAP kinases was selectively noted in Jurkat cells treated with the dimerized ISD peptide. Upon incubation with the dimerized Syn-2 ISD peptide, significant reduction in Th1 cytokine production was further demonstrated by ELISA and Human Th1/Th2 Panel Multi-Analyte Flow Assay. To determine if exosome-associated Syn-2 could also be immunosuppressive placental exosomes were incubated with activated Jurkat and PBMCs. Quantification of Th1 cytokines in the supernatants revealed severe reduction in T cell activation. Interestingly, exosomes from Syn-2-silenced VCT incubated with PBMCs were less suppressive when compared with exosome derived from VCT transfected with control small interfering RNA (siRNA). Our results suggest that Syn-2 is an important immune regulator both locally and systemically, via its association with placental exosomes.


2021 ◽  
Author(s):  
Alessia Furgiuele ◽  
Massimilano Legnaro ◽  
Alessandra Luini ◽  
Marco Ferrari ◽  
Emanuela Rasini ◽  
...  

This protocol was designed to activate the lymphocytes T of a population of peripheral blood mononuclear cells (PBMCs), simulating their physiological response to antigen/MHC complex acting on T Cell Receptors-TCR , in order to test their functional responses including cell proliferation and cytokine production. The co-stimulation protocol include: i)anti-CD3 antibody a polyclonal activator specific for invariant framework epitopes on TCR complex (in particular, we use UCHT1 clone an anti-human CD3 antibody that recognizes the ε-chain of CD3 which is used for immobilized option of activation) (http://static.bdbiosciences.com/documents/BD_Tcell_Human_CD3_Activation_Protocol.pdf) ii) anti-CD28 antibody used to cooperate with TCR signals promoting activation of T cells The procedure has been reproduced following the indications contained in the protocol of "EBiooscience" (https://tools.thermofisher.com/content/sfs/manuals/t-cell-activation-in-vitro.pdf). Pilot experiments on PBMC were carried out to determine the best concentrations of anti-CD3 and anti-CD28 to induce optimal proliferation of PBMC and production of cytokines TNF-α and IFN-γ. We found a dose dependent correlation between immobilized anti-CD3 and cells functional responses. The selected amount was 2 µg/mL for both anti-CD3 and anti-CD28 that was the concentration below the maximum response which allows also to test possible modulations by therapeutic agents. References http://static.bdbiosciences.com/documents/BD_Tcell_Human_CD3_Activation_Protocol.pdf https://tools.thermofisher.com/content/sfs/manuals/t-cell-activation-in-vitro.pdf https://www.bdbiosciences.com/ds/pm/tds/555330.pdf https://www.bdbiosciences.com/ds/pm/tds/555726.pdf BEFORE STARTING with this procedure Moreover, work under laminar flow hood when you are processing samples from the beginning to the end of the culture. Make sure you are using,sterile culture mediumand sterile plastic disposable as well.


2020 ◽  
Vol 21 (5) ◽  
pp. 1568 ◽  
Author(s):  
Ferenc Papp ◽  
Peter Hajdu ◽  
Gabor Tajti ◽  
Agnes Toth ◽  
Eva Nagy ◽  
...  

The immunological synapse (IS) is a specialized contact area formed between a T cell and an antigen presenting cell (APC). Besides molecules directly involved in antigen recognition such as the TCR/CD3 complex, ion channels important in the membrane potential and intracellular free Ca2+ concentration control of T cells are also recruited into the IS. These are the voltage-gated Kv1.3 and Ca2+-activated KCa3.1 K+ channels and the calcium release-activated Ca2+ channel (CRAC). However, the consequence of this recruitment on membrane potential and Ca2+ level control is not known. Here we demonstrate that the membrane potential (MP) of murine T cells conjugated with APCs in an IS shows characteristic oscillations. We found that depolarization of the membrane by current injection or by increased extracellular K+ concentration produced membrane potential oscillations (MPO) significantly more frequently in conjugated T cells than in lone T cells. Furthermore, oscillation of the free intracellular Ca2+ concentration could also be observed more frequently in cells forming an IS than in lone cells. We suggest that in the IS the special arrangement of channels and the constrained space between the interacting cells creates a favorable environment for these oscillations, which may enhance the signaling process leading to T cell activation.


Sign in / Sign up

Export Citation Format

Share Document