Fluorogenic Assays for Functional Factor VIIa and Tissue Factor.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1740-1740
Author(s):  
Sara J. Ethier ◽  
Saulius Butenas ◽  
Richard J. Jenny

Abstract Blood coagulation is initiated when cryptic tissue factor (TF) becomes exposed on the surface of vascular cells where it can bind circulating factor VIIa (fVIIa). The resulting fVIIa/TF enzyme complex catalyzes the activation of certain blood zymogens that propagate the coagulation event. As a key enzyme for the initiation of coagulation, circulating fVIIa levels have been viewed as an indicator of hemostatic potential and may also be an indicator for the risk of developing cardiovascular disease. The formation of the fVIIa/TF complex is also the basis of specific coagulation assays. Natural or synthetic TF is employed in the prothrombin time (PT assay) where it is used to initiate coagulation in vitro. Therefore, fVIIa and TF play important roles both in vivo and in vitro. Despite such important roles, there have been no simple methods described for measuring the active forms of either protein. This report describes the initial development of an assay for fVIIa and TF that employs the use of an Aminonaphthalenesulfonamide-based (ANSN) fluorogenic substrate. The ANSN substrate is hydrolyzed by fVIIa in a TF-dependent manner, and by titrating fVIIa into a system containing excess TF, the assay becomes sensitive to the fVIIa concentration. Inversely, by titrating TF into a system containing excess fVIIa, the assay becomes sensitive to the TF concentration. This approach has led to the development of both a rapid kinetic and an end-point assay method for each analyte providing detection ranges down to 156 and 1.56 pM respectively. The utility of these assays is displayed by the following applications. Thromboplastin reagents are generally qualified against a W.H.O. standard and are assigned a numerical value known as the International Sensitivity Index (ISI). Theoretically the ISI value should be affected by the quantity and quality of TF in each preparation. An inverse relationship between ISI value and the amount of functional TF would support this theory. To prove this relationship the TF assay was employed to examine two thromboplastin reagents with ISI values of 1.84 and 1.01. The concentration of functional TF measured by this assay was 10.8 nM and 14.6 nM respectively. Because most commercial thromboplastin reagents are prepared by adding TF on a mass basis (as opposed to a functional basis), target ISI values are often missed, leading to an excessive number of failed lots. The TF functional assay provides a method for assigning a specific activity to each TF preparation. By adding TF on a functional basis, lot-to-lot variability would be minimized and target ISI values would be easily achieved. To substantiate this claim, we have determined the functional activity of seven different lots of purified recombinant human TF. With each lot analyzed at a fixed concentration, we observed a broad range of specific activity (range: 8,250 U/sec/mg -14,500 U/sec/mg). These data support the need for a functional TF assay to be incorporated in the manufacturing process of thromboplastin reagents. Lastly, the utility of the fVIIa assay was demonstrated in an experiment using factor VII-deficient plasma samples that were spiked with known quantities of fVIIa. Plasma samples spiked with fVIIa in the range of 0.5-2nM returned mean assay values within 71–100% of the expected values. These data demonstrate the feasibility of using the fVIIa assay to monitor fVIIa levels in hemophilia patients receiving recombinant fVIIa therapy. Further studies will address the circulating concentrations of fVIIa and TF in “normal” and disease state plasma samples.

Blood ◽  
1990 ◽  
Vol 75 (7) ◽  
pp. 1481-1489 ◽  
Author(s):  
TA Warr ◽  
LV Rao ◽  
SI Rapaport

Abstract Rabbits were given polyclonal anti-tissue factor (TF) immunoglobulin G (IgG) before an injection of endotoxin to test the hypothesis that TF triggers disseminated intravascular coagulation (DIC) after endotoxin. The rabbits had been prepared with cortisone to develop DIC after one injection of endotoxin. Anti-TF IgG substantially reduced the falls in fibrinogen, factors V and VIII, and platelets noted in control rabbits given preimmune IgG before endotoxin. At autopsy 24 hours later, fibrin was present in glomerular capillaries of 4 of 5 control rabbits, but in none of 11 rabbits given anti-TF IgG. DIC was also induced in a second group of rabbits by the infusion, over 4 hours, of 1 microgram/kg of purified, reconstituted rabbit brain TF. This resulted in striking falls in plasma fibrinogen, factors V, and VIII that were diminished, but not prevented by prior treatment with anti-TF IgG. Circulating activated factor VII, induced by either TF infusion or endotoxin, could not be detected after DIC. Mean plasma extrinsic pathway inhibitor (EPI) activity did not fall significantly after endotoxin, and only to about 65% of the preinfusion after infusion of TF. Thus, DIC induced by both agents proceeded despite nearly normal plasma EPI levels. Because EPI neutralizes factor VIIa/TF in vitro only after a short lag period, the DIC that persisted for up to 6 hours after injection of endotoxin suggests that TF activity continued to be generated during this period on cells to which the circulating blood was exposed. All animals given endotoxin became ill with cyanosis, tachypnea, cold ears, and diarrhea, regardless of whether they had received anti-TF IgG to attenuate DIC. Infusion of TF caused some animals to die acutely with pulmonary arterial thromboses, but surviving animals did not appear ill. The findings support the hypothesis that exposure of blood to TF triggers DIC after endotoxin, but is not important for the pathogenesis of endotoxin-induced shock.


Blood ◽  
1987 ◽  
Vol 69 (1) ◽  
pp. 150-155 ◽  
Author(s):  
GJ Jr Broze ◽  
JP Miletich

Tissue factor (TF) is a lipoprotein cofactor that markedly enhances the proteolytic activation of factors IX and X by factor VIIa. The functional activity of TF is inhibited by serum in a time- and temperature-dependent fashion. The inhibitory effect is also dependent on the presence of calcium ions and can be reversed by calcium chelation (EDTA) and dilution, thus excluding direct proteolytic destruction of TF as the mechanism for inhibition. Using crude TF, serum immunodepleted of factor VII, and serum depleted of the vitamin K- dependent coagulation factors by BaSO4 absorption, it is shown that TF factor inhibition requires the presence of VII(a), X(a), and an additional moiety contained in barium-absorbed serum. When each of the other required components were at saturating concentrations, half- maximal inhibition of TF occurred in reaction mixtures containing 2% (vol/vol) of TF at a factor VII(a) concentration of 4 ng/mL (80 pmol/L), a factor X concentration of 50 ng/mL (850 pmol/L), and a concentration of barium-absorbed serum of 2.5% (vol/vol). Catalytically active factor Xa appeared to be required for the generation of optimal TF inhibition. The results are consistent with the conclusions of Hjort that barium-absorbed serum contains a moiety that inhibits the VIIa- Ca2+-TF complex. The role of factor X(a) in the generation of the inhibitory phenomenon remains to be elucidated. The inhibitor present in serum (plasma) may in part be produced by the liver in vivo since cultured human hepatoma cells (HepG2) secrete this inhibitory activity in vitro.


Blood ◽  
1990 ◽  
Vol 75 (7) ◽  
pp. 1481-1489
Author(s):  
TA Warr ◽  
LV Rao ◽  
SI Rapaport

Rabbits were given polyclonal anti-tissue factor (TF) immunoglobulin G (IgG) before an injection of endotoxin to test the hypothesis that TF triggers disseminated intravascular coagulation (DIC) after endotoxin. The rabbits had been prepared with cortisone to develop DIC after one injection of endotoxin. Anti-TF IgG substantially reduced the falls in fibrinogen, factors V and VIII, and platelets noted in control rabbits given preimmune IgG before endotoxin. At autopsy 24 hours later, fibrin was present in glomerular capillaries of 4 of 5 control rabbits, but in none of 11 rabbits given anti-TF IgG. DIC was also induced in a second group of rabbits by the infusion, over 4 hours, of 1 microgram/kg of purified, reconstituted rabbit brain TF. This resulted in striking falls in plasma fibrinogen, factors V, and VIII that were diminished, but not prevented by prior treatment with anti-TF IgG. Circulating activated factor VII, induced by either TF infusion or endotoxin, could not be detected after DIC. Mean plasma extrinsic pathway inhibitor (EPI) activity did not fall significantly after endotoxin, and only to about 65% of the preinfusion after infusion of TF. Thus, DIC induced by both agents proceeded despite nearly normal plasma EPI levels. Because EPI neutralizes factor VIIa/TF in vitro only after a short lag period, the DIC that persisted for up to 6 hours after injection of endotoxin suggests that TF activity continued to be generated during this period on cells to which the circulating blood was exposed. All animals given endotoxin became ill with cyanosis, tachypnea, cold ears, and diarrhea, regardless of whether they had received anti-TF IgG to attenuate DIC. Infusion of TF caused some animals to die acutely with pulmonary arterial thromboses, but surviving animals did not appear ill. The findings support the hypothesis that exposure of blood to TF triggers DIC after endotoxin, but is not important for the pathogenesis of endotoxin-induced shock.


Blood ◽  
1987 ◽  
Vol 69 (1) ◽  
pp. 150-155 ◽  
Author(s):  
GJ Jr Broze ◽  
JP Miletich

Abstract Tissue factor (TF) is a lipoprotein cofactor that markedly enhances the proteolytic activation of factors IX and X by factor VIIa. The functional activity of TF is inhibited by serum in a time- and temperature-dependent fashion. The inhibitory effect is also dependent on the presence of calcium ions and can be reversed by calcium chelation (EDTA) and dilution, thus excluding direct proteolytic destruction of TF as the mechanism for inhibition. Using crude TF, serum immunodepleted of factor VII, and serum depleted of the vitamin K- dependent coagulation factors by BaSO4 absorption, it is shown that TF factor inhibition requires the presence of VII(a), X(a), and an additional moiety contained in barium-absorbed serum. When each of the other required components were at saturating concentrations, half- maximal inhibition of TF occurred in reaction mixtures containing 2% (vol/vol) of TF at a factor VII(a) concentration of 4 ng/mL (80 pmol/L), a factor X concentration of 50 ng/mL (850 pmol/L), and a concentration of barium-absorbed serum of 2.5% (vol/vol). Catalytically active factor Xa appeared to be required for the generation of optimal TF inhibition. The results are consistent with the conclusions of Hjort that barium-absorbed serum contains a moiety that inhibits the VIIa- Ca2+-TF complex. The role of factor X(a) in the generation of the inhibitory phenomenon remains to be elucidated. The inhibitor present in serum (plasma) may in part be produced by the liver in vivo since cultured human hepatoma cells (HepG2) secrete this inhibitory activity in vitro.


2000 ◽  
Vol 84 (11) ◽  
pp. 841-848 ◽  
Author(s):  
H. Lyerly ◽  
Jeffrey Lawson ◽  
Christopher Rusconi ◽  
Alice Yeh ◽  
Bruce Sullenger

SummaryThe tissue factor/factor VIIa complex is thought to be the primary initiator of most physiologic blood coagulation events. Because of its proximal role in this process, we sought to generate new inhibitors of tissue factor/factor VIIa activity by targeting factor VIIa. We employed a combinatorial RNA library and in vitro selection methods to isolate a high affinity, nuclease-resistant RNA ligand that binds specifically to coagulation factor VII/VIIa. This RNA inhibits the tissue factordependent activation of factor X by factor VIIa. Kinetic analyses of the mechanism of action of this RNA suggest that it antagonizes factor VIIa activity by preventing formation of a functional factor VII/tissue factor complex. Furthermore, this RNA significantly prolongs the prothrombin time of human plasma in a dose dependent manner, and has an in vitro half-life of ∼15 h in human plasma. Thus, this RNA ligand represents a novel class of anticoagulant agents directed against factor VIIa.


2002 ◽  
Vol 88 (11) ◽  
pp. 750-755
Author(s):  
Raimondo De Cristofaro ◽  
Sepideh Akhavan ◽  
Josephine Carew ◽  
Raffaele Landolfi ◽  
Kenneth Bauer ◽  
...  

SummaryFactor VII (FVII) requires the cleavage of an internal peptide bond and the association with tissue factor (TF) to attain its fully active FVIIa conformation. This event alone leaves FVIIa in a zymogen-like state of relatively low specific activity. The TF-induced allosteric enhancement of FVIIa’s activity contributes to the procoagulant activity of the complex. We have characterized two naturally occurring mutations (S363I W364C) on FVII gene. Both homozygous patients for each mutation have a normal FVII:Ag level associated to an undetectable FVII coagulant activity. The patient carrying the allele 364C had a more severe hemorrhagic diathesis than the S363I mutant. To understand the mechanism of these deficiency, in vitro expression analysis with further biochemical characterization of recombinant proteins of both mutants FVII-363I, FVII-364C and wild type (WTFVII) FVII constructs were done. The results recapitulated the patients’ plasma data with normal Ag level and no detectable coagulant activity. The D-F-Pip-R-pNA and CH3SO2-D-CHA-A-But-R chromogenic substrates were used to evaluate the amidolytic activity of WT and mutant FVII in presence and absence of recombinant tissue factor (rTF). Binding of FVII to rTF by a solid phase binding assay was done using recombinant human rTF. The results of amidolytic assays showed that rTF enhances 28 fold the value of the specificity of constant (kcat/Km) in WT but no activity was detectable in either mutant constructs under any condition. The equilibrium dissociation constant of rTF-FVIIa interaction showed Kd equal to 4.4 ± 0.2nM, 4.9 ± 0.5nM and 6 ± 0.9 of WT, 363I and 364C FVII forms, respectively. The Kd values of the non activated forms were equal to 24.7 ± 3.3, 24.4 ± 3.1 and 20.6 ± 4nM, respectively. These data demonstrate that, compared to the WT form, FVII-363I and FVII-364C have no significant affinity change for TF and that the detrimental effect of these two mutations is attributable to the loss of an efficient catalytic machinery in the FVII molecule causing a severe deficiency of coagulant activities.


1991 ◽  
Vol 65 (02) ◽  
pp. 139-143 ◽  
Author(s):  
Cynthia H Gemmell ◽  
Vincet T Turitto ◽  
Yale Nemerson

SummaryA novel reactor recently described for studying phospholipiddependent blood coagulation reactions under flow conditions similar to those occurring in the vasculature has been further charactenzed. The reactor is a capitlary whose inner wall is coated with a stable phospholipid bilayer (or two bilayers) containing tissue factor, a transmembrane protein that is required for the enzymatic activation of factor X by factor VIIa. Perfusion of the capillary at wall shear rates ranging from 25 s−1 to 1,200 s−1 with purified bovine factors X and VIIa led to steady state factor Xa levels at the outlet. Assay were performed using a chromogenic substrate, SpectrozymeTMFXa, or by using a radiometric technique. In the absence of Ca2+ or factor VIIa there was no product formation. No difference was noted in the levels of factor Xa achieved when non-activated factor VII was perfused. Once steady state was achieved further factor Xa production continued in the absence of factor VIIa implying a very strong association of factor VIIa with the tissue factor in the phospholipid membrane. In agreement with static vesicle-type studies the reactor was sensitive to wall tissue factor concentration, temperature and the presence of phosphatidylserine in the bilayer.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2516-2525 ◽  
Author(s):  
K Meszaros ◽  
S Aberle ◽  
R Dedrick ◽  
R Machovich ◽  
A Horwitz ◽  
...  

Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (> or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3524-3535 ◽  
Author(s):  
S Chaing ◽  
B Clarke ◽  
S Sridhara ◽  
K Chu ◽  
P Friedman ◽  
...  

Abstract Factor VII (F.VII) is a vitamin-K-dependent serine protease required in the early stages of blood coagulation. We describe here a patient with severe F.VII deficiency, with a normal plasma F.VII antigen level (452 ng/mL) and F.VII activity less than 1%, who is homozygous for two defects: a G-->A transition at nucleotide 6055 in exon 4, which results in an Arg-->Gln change at amino acid 79 (R79Q); and a G-->A transition at nucleotide 8961 in exon 6, which results in an Arg-->Gln substitution at amino acid 152 (R152Q). The R79Q mutation occurs in the first epidermal growth factor (EGF)-like domain, which has previously been implicated in binding to tissue factor. The R152Q mutation occurs at a site (Arg 152-Ile 153) that is normally cleaved to generate activated F.VII (F.VIIa). Analysis of purified F.VII from patient plasma shows that the material cannot be activated by F.Xa and cofactors. In addition, in an in vitro binding assay using relipidated recombinant tissue factor, patient plasma showed markedly reduced binding to tissue factor at all concentrations tested. In an effort to separate the contributions of the two mutations, three recombinant variants, wild-type, R79Q, and R152Q, were prepared and analyzed. The R152Q variant had markedly reduced activity in a clotting assay, whereas R79Q showed a milder, concentration-dependent reduction. The R152Q variant exhibited nearly normal binding in the tissue factor binding assay, whereas the R79Q variant had markedly reduced binding. The time course of activation of the R79Q variant was slowed compared with wild-type. Our results suggest that the first EGF-like domain is required for binding to tissue factor and that the F.VII zymogen lacks activity and requires activation for expression of biologic activity.


Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 204-212
Author(s):  
NL Sanders ◽  
SP Bajaj ◽  
A Zivelin ◽  
SI Rapaport

A study was carried out to explore requirements for the inhibition of tissue factor-factor VIIa enzymatic activity in plasma. Reaction mixtures contained plasma, 3H-factor IX or 3H-factor X, tissue factor (vol/vol 2.4% to 24%), and calcium. Tissue factor-factor VIIa activity was evaluated from progress curves of activation of factor IX or factor X, plotted from tritiated activation peptide release data. With normal plasma, progress curves exhibited initial limited activation followed by a plateau indicative of loss of tissue factor-factor VIIa activity. With hereditary factor X-deficient plasma treated with factor X antibodies, progress curves revealed full factor IX activation. Adding only 0.4 micrograms/mL factor X (final concentration) could restore inhibition. Inhibition was not observed in purified systems containing 6% to 24% tissue factor, factor VII, 0.5 micrograms/mL, factor IX, 13 micrograms/mL, and factor X up to 0.8 micrograms/mL, but could be induced by adding barium-absorbed plasma to the reaction mixture. Thus, both factor X and an additional material in plasma were required for inhibition. The amount of factor X needed appeared related to the concentration of tissue factor; adding more tissue factor at the plateau of a progress curve induced further activation. These results also indicate that inhibited reaction mixtures contained active free factor VII(a). Preliminary data suggest that inhibition may stem from loss of activity of the tissue factor component of the tissue factor- factor VII(a) complex.


Sign in / Sign up

Export Citation Format

Share Document