Fibroblast Activation Protein (FAP) Is a Critical Microenvironmental Survival Factor for Myeloma Plasma Cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 634-634
Author(s):  
Yun Ge ◽  
Fenghuang Zhan ◽  
John Shaughnessy ◽  
Bart Barlogie ◽  
Guido Tricot ◽  
...  

Abstract FAP is one of 32 consistently and significantly upregulated genes in osteoclasts after co-culture with CD138-immunomagnetic bead-selected myeloma plasma cells (MM PCs) from 19 patients and with 3 myeloma cell lines. FAP is a cell surface serine protease with both dipeptidyl peptidase and collagenase activity. This enzyme has been shown to be selectively expressed by tumor stromal fibroblasts in epithelial carcinomas, but not by epithelial carcinoma cells, and to promote tumor metastasis. The aim of the study was to investigate the possible involvement of FAP in myeloma using an ex vivo co-culture system and our established SCID-hu model for primary myeloma (Yaccoby et al., Blood, 1998; 1999). Myeloma-osteoclasts co-cultures were prepared as previously described (Yaccoby et al., Cancer Res., 2004). Mesenchymal stem cells (MSCs) isolated from patient’s bone marrow were cultured on the backside of 1 μM pore-size transwell inserts’ membranes while MM PCs were incubated in the upper chamber of the inserts. Histologic examination demonstrated that the MSC’s cytoplasmic villi pass through the membrane pores, allowing contact with tumor cells. To study the role of FAP in myeloma we initially demonstrated by quantitive real time RT-PCR (qRT-PCR) that FAP was upregulated 3.0 fold (p<0.01, n=5) in osteoclasts and 2.2 fold (p<0.05, n=3) in MSCs after co-culture with MM PCs. In the SCID-hu model, expression of FAP was increased >120 fold in myelomatous vs. nonmyelomatous human bone as determined by a whole bone marrow qRT-PCR. Immunohistochemical staining of myelomatous bone sections from SCID-hu mice revealed expression of FAP by osteoclasts, vascular endothelial cells, osteogenic cells and other stroma elements, but not by myeloma cells. To further study the involvement of FAP in myeloma cell survival we applied the siRNA approach in our myeloma-osteoclasts and myeloma-MSCs co-culture systems. Following preliminary testing of 4 probes, we have chosen a siRNA probe with >75% inhibition of FAP expression in osteoclasts and MSCs as determined by qRT-PCR. Addition of FAP siRNA to co-cultures of CD138-selected MM PCs with osteoclasts (n=5) and MSCs (n=3) for 48 hours, significantly (p<0.05) reduced the number of viable myeloma cells, as determined by trypan blue exclusion and annexin V flow cytometry. To test whether FAP activity is associated with resistance of myeloma cells to drug-induced apoptosis, MM PCs were co-cultured with osteoclasts in the absences and presences of dexamethasone (DEX, 10−6 M) and FAP siRNA. Percent apoptotic MM PCs was significantly higher in co-cultures treated with DEX+siRNA compared with DEX and siRNA alone (p<0.05, n=4). Our results indicate that FAP is critical for the interaction of myeloma cells with the bone marrow microenvironment and promotion of myeloma cell survival. It is therefore a potential therapeutic target in myeloma.

Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3375-3383 ◽  
Author(s):  
T Tsujimoto ◽  
IA Lisukov ◽  
N Huang ◽  
MS Mahmoud ◽  
MM Kawano

By using two-color phenotypic analysis with fluorescein isothiocyanate- anti-CD38 and phycoerythrin-anti-CD19 antibodies, we found that pre-B cells (CD38+CD19+) signifcantly decreased depending on the number of plasma cells (CD38++CD19+) in the bone marrow (BM) in the cases with BM plasmacytosis, such as myelomas and even polyclonal gammopathy. To clarify how plasma cells suppress survival of pre-B cells, we examined the effect of plasma cells on the survival of pre-B cells with or without BM-derived stromal cells in vitro. Pre-B cells alone rapidly entered apoptosis, but interleukin-7 (IL-7), a BM stromal cell line (KM- 102), or culture supernatants of KM-102 cells could support pre-B cell survival. On the other hand, inhibitory factors such as transforming growth factor-beta1 (TGF-beta1) and macrophage inflammatory protein- 1beta (MIP-1beta) could suppress survival of pre-B cells even in the presence of IL-7. Plasma cells alone could not suppress survival of pre- B cells in the presence of IL-7, but coculture of plasma cells with KM- 102 cells or primary BM stromal cells induced apoptosis of pre-B cells. Supernatants of coculture with KM-102 and myeloma cell lines (KMS-5) also could suppress survival of pre-B cells. Furthermore, we examined the expression of IL-7, TGF-beta1, and MIP-1beta mRNA in KM-102 cells and primary stromal cells cocultured with myeloma cell lines (KMS-5). In these cells, IL-7 mRNA was downregulated, but the expression of TGF- beta1 and MIP-1beta mRNA was augmented. Therefore, these results suggest that BM-derived stromal cells attached to plasma (myeloma) cells were modulated to secrete lesser levels of supporting factor (IL- 7) and higher levels of inhibitory factors (TGF-beta1 and MIP-1beta) for pre-B cell survival, which could explain why the increased number of plasma (myeloma) cells induced suppression of pre-B cells in the BM. This phenomenon may represent a feedback loop between pre-B cells and plasma cells via BM stromal cells in the BM.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1008-1008
Author(s):  
Tyler Moser-Katz ◽  
Catherine M. Gavile ◽  
Benjamin G Barwick ◽  
Sagar Lonial ◽  
Lawrence H. Boise

Abstract Multiple myeloma is the second most common hematological malignancy in the U.S. with an estimated 30,700 new diagnoses in 2018. It is a clonal disease of plasma cells that, despite recent therapeutic advances, remains incurable. Myeloma cells retain numerous characteristics of normal plasma cells including reliance on survival signals in the bone marrow for long term viability. However, malignant transformation of plasma cells imparts the ability to proliferate, causing harmful bone lesions in patients, and in advanced stages independence of the bone-marrow microenvironment. Therefore, we are investigating the molecular mechanisms of myeloma cell survival that allow them to become extramedullary. We identified syntenin-1 (SDCBP) as a protein involved in myeloma cell survival and a potential therapeutic target. Syntenin-1 is an adapter protein that has been shown to regulate surface expression of several transmembrane proteins by binding with membrane phospholipids and mediating vesicular trafficking of proteins throughout the cell. Syntenin-1 regulates the surface expression of CD138, a plasma/myeloma cell marker. Syntenin-1 has been shown to regulate apoptosis in numerous cancer cell lines including breast cancer, glioma, and pancreatic cancer but its role in multiple myeloma survival has not been studied. To determine if syntenin-1 expression has an effect on myeloma cell survival, we utilized the CoMMpass dataset (IA12), a longitudinal study of myeloma patients that includes transcriptomic analysis throughout treatment. We found that patients with the highest expression of syntenin-1 mRNA (top quartile) had significantly worse overall survival, progression-free survival, and a shorter response duration than those in the bottom quartile of expression. To determine if syntenin-1 has a role in myeloma cell survival, we used short hairpin RNA to knock down syntenin-1 (shsyn) in RPMI 8226 and MM1.s myeloma cell lines. We then determined the amount of cell death using Annexin-V staining flow cytometry four days following lentiviral infection. We found increased cell death in syntenin-1-silenced cells compared to our empty vector control in both RPMI 8226 (control=42.17%, shsyn=71.53%, p=0.04) and MM1.s cell lines (control=8.57%, shsyn=29.9%, p=0.04) suggesting that syntenin-1 is important for myeloma cell survival. Syntenin-1 contains two PDZ domains that allow it to bind to receptor proteins via their corresponding PDZ-binding motifs. We therefore wanted to look at correlation of syntenin-1 expression with CD138 and CD86, two PDZ-binding domain containing proteins expressed on the surface of myeloma cells. Using the CoMMpass dataset, we found patients with high expression of syntenin-1 had a median expression of CD86 that was twice as high as the total population (P<0.0001) while syntenin-1-low patients expressed CD86 at levels that were half as much as the population (P<0.0001). In contrast, there was no clear relationship between syntenin-1 and CD138 mRNA expression. Indeed if one takes into account all patients, there is a positive correlation between CD86 and syntenin-1 expression (r=0.228, P<0.0001) while there is a negative correlation between CD138 and syntenin-1 (r=-0.1923, P<0.0001). The correlation with CD86 but not CD138 suggests a previously undescribed role for syntenin-1 in myeloma cells. Our lab has previously shown that expression of CD86 is necessary for myeloma cell survival, and signals via its cytoplasmic domain to confer drug resistance. Silencing syntenin-1 results in a decrease in CD86 surface expression. However, there is no change in CD86 transcript or total cellular CD86 protein levels in our shsyn treated cells. Moreover, knockdown of CD86 resulted in increased protein expression and transcript levels of syntenin-1. Taken together, these data suggest that syntenin-1 may regulate CD86 expression on the cell surface. Our data supports a novel role for syntenin-1 in myeloma cell viability and as a potential regulator of CD86 surface expression. The role of syntenin-1 has not previously been explored in multiple myeloma and determining its molecular function is warranted as it may be an attractive target for therapeutic treatment of the disease. Disclosures Lonial: Amgen: Research Funding. Boise:AstraZeneca: Honoraria; Abbvie: Consultancy.


2004 ◽  
Vol 280 (16) ◽  
pp. 15666-15672 ◽  
Author(s):  
Larry Yin

There is a symbiotic relationship between continued growth and proliferation of myeloma cells and the bone destructive process. It has been shown in animal models that blocking bone destruction can result in decreased myeloma tumor burden. Osteoclasts are bone destroying cells found in the bone marrow, and their significance in myeloma is supported by recent findings that osteoclasts alone can support sustained survival and proliferation of purified primary myeloma cells inex vivoco-cultures. However, molecular mechanisms associated with interactions between myeloma cells and osteoclasts remain unclear. Here, we show that when myeloma plasma cells are co-cultured with osteoclasts, chondroitin synthase 1 (CHSY1) is the most significantly altered soluble, secreted protein present in the conditioned medium. RNA interference experiments with CHSY1 small interfering RNA (siRNA) reduced the amount of CHSY1 in the co-culture conditioned medium, and this was associated with a 6.25-fold increase in apoptotic myeloma cells over control co-cultures. CHSY1 contains a Fringe domain, and Fringe is well known for its regulation of Notch signaling via its DDD motif. And interestingly, Fringe domain in CHSY1 has this DDD motif. Shortly after co-culture with osteoclasts, we found that the Notch2 receptor was activated in myeloma cells but Notch1 was not. Activation of Notch2 was down-regulated by CHSY1 siRNA treatment. Modulating Notch signaling by CHSY1 via its DDD motif provides new insight into mechanisms of the interactions between myeloma cells and their bone marrow microenvironment. Targeting this interaction could shed light on treatment of myeloma, which is currently incurable.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3721-3729 ◽  
Author(s):  
N Huang ◽  
MM Kawano ◽  
H Harada ◽  
Y Harada ◽  
A Sakai ◽  
...  

Abstract Recent immunophenotypic analysis has shown that the heterogeneous expression of the adhesion molecule VLA-5 classifies myeloma cells into VLA-5+ mature and VLA-5- immature subpopulations. To further clarify the two myeloma subpopulations, we generated a monoclonal antibody, MPC- 1, by immunizing mice with an adherent human myeloma cell line, KMS-5. The MPC-1 antibody recognized a 48-Kd surface antigen on KMS-5 but not on U-266, a nonadherent human myeloma cell line. Specificity characterization showed that MPC-1 antigen was expressed on mature myeloma cells, normal plasma cells, and mature B cells, whereas pre-B cells and germinal center B cells lacked its expression. Monocytes and a human bone marrow stromal cell line, KM102, also expressed this antigen. Two subclones of MPC-1+ VLA-5+ (KMS-5Ad) and MPC-1-VLA-5+ (KMS- 5NAd) were separated from the KMS-5 cell line. The KMS-5NAd adhered to KM102 more tightly than did the KMS-5NAd, and the U-266 (MPC-1-VLA-5-) displayed almost no adherence to the KM102. The adhesion of the KMS-5Ad was partially inhibited by the MPC-1 antibody. These results, taken together, suggest that the MPC-1 antigen serves as a differentiation marker for B-lineage cells, including plasma cells, and may function as an adhesion molecule involved in the interaction of mature myeloma cells with bone marrow stromal cells.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 610-618 ◽  
Author(s):  
Inge Tinhofer ◽  
Ingrid Marschitz ◽  
Traudl Henn ◽  
Alexander Egle ◽  
Richard Greil

Interleukin-15 (IL-15) induces proliferation and promotes cell survival of human T and B lymphocytes, natural killer cells, and neutrophils. Here we report the constitutive expression of a functional IL-15 receptor (IL-15R) in 6 of 6 myeloma cell lines and in CD38high/CD45low plasma cells belonging to 14 of 14 patients with multiple myeloma. Furthermore, we detected IL-15 transcripts in all 6 myeloma cell lines, and IL-15 protein in 4/6 cell lines and also in the primary plasma cells of 8/14 multiple myeloma patients. Our observations confirm the existence of an autocrine IL-15 loop and point to the potential paracrine stimulation of myeloma cells by IL-15 released from the cellular microenvironment. Blocking autocrine IL-15 in cell lines increased the rate of spontaneous apoptosis, and the degree of this effect was comparable to the pro-apoptotic effect of depleting autocrine IL-6 by antibody targeting. IL-15 was also capable of substituting for autocrine IL-6 in order to promote cell survival and vice versa. In short-term cultures of primary myeloma cells, the addition of IL-15 reduced the percentage of tumor cells spontaneously undergoing apoptosis. Furthermore, IL-15 lowered the responsiveness to Fas-induced apoptosis and to cytotoxic treatment with vincristine and doxorubicin but not with dexamethasone. These data add IL-15 to the list of important factors promoting survival of multiple myeloma cells and demonstrate that it can be produced and be functionally active in an autocrine manner.


Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 5002-5010 ◽  
Author(s):  
Nizar J. Bahlis ◽  
Anne M. King ◽  
Despina Kolonias ◽  
Louise M. Carlson ◽  
Hong Yu Liu ◽  
...  

Abstract Although interactions with bone marrow stromal cells are essential for multiple myeloma (MM) cell survival, the specific molecular and cellular elements involved are largely unknown, due in large part to the complexity of the bone marrow microenvironment itself. The T-cell costimulatory receptor CD28 is also expressed on normal and malignant plasma cells, and CD28 expression in MM correlates significantly with poor prognosis and disease progression. In contrast to T cells, activation and function of CD28 in myeloma cells is largely undefined. We have found that direct activation of myeloma cell CD28 by anti-CD28 mAb alone induces activation of PI3K and NFκB, suppresses MM cell proliferation, and protects against serum starvation and dexamethasone (dex)–induced cell death. Coculture with dendritic cells (DCs) expressing the CD28 ligands CD80 and CD86 also elicits CD28-mediated effects on MM survival and proliferation, and DCs appear to preferentially localize within myeloma infiltrates in primary patient samples. Our findings suggest a previously undescribed myeloma/DC cell-cell interaction involving CD28 that may play an important role in myeloma cell survival within the bone marrow stroma. These data also point to CD28 as a potential therapeutic target in the treatment of MM.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4306-4306
Author(s):  
Karène Mahtouk ◽  
Dirk Hose ◽  
Thierry Reme ◽  
John De Vos ◽  
Michel Jourdan ◽  
...  

Abstract Multiple myeloma (MM) is characterized by the accumulation of clonal malignant plasma cells in the bone marrow. One of the hallmarks of plasma cells is the expression of the heparan-sulfate proteoglycan syndecan-1. In epithelial cells, syndecan-1 plays a major role as a coreceptor for heparin-binding growth factors and chemokines. This stresses that heparin-binding growth factors may play a major role in the biology of MM cells. Recently we have demonstrated that heparin-binding EGF-like growth factor (HB-EGF), one of the ten members of the Epidermal Growth Factor (EGF) family, is produced by the tumor microenvironment and is able to trigger myeloma cell growth. As amphiregulin (AREG) is another member of the EGF family that also binds heparan-sulphate chains, we investigated its role in MM. We looked for AREG expression on a panel of 7 normal plasmablastic cells (PPCs), 7 normal bone marrow plasma cells (BMPCs), purified MM cells from 65 patients and 20 myeloma cell lines (HMCLs), with Affymetrix U133A+B microarrays. We showed that primary MM cells overexpress AREG compared to normal BMPCs and PPCs. We then investigated the expression of the ErbB receptors with real-time RT-PCR. Myeloma cells variably expressed the 4 ErbB receptors. Normal BMPCs also expressed ErbB1 and ErbB2 unlike PPCs that did not express any ErbB receptors. We demonstrated that the high AREG expression by primary myeloma cells may have a dual effect. On the one hand, AREG stimulated IL-6 production and growth of bone-marrow stromal cells that highly express the AREG ErbB1 receptor. On the other hand, AREG could promote HMCL proliferation, suggesting that a functional autocrine loop involving AREG and ErbB receptors is involved in MM cell growth. Finally, we looked for the effect of ErbB inhibitors on MM cells of 14 patients cultured for 6 days together with their bone marrow environment. A pan-ErbB inhibitor (PD-169540, Pfizer) and an ErbB1-inhibitor (IRESSA, Astrazeneca) induced strong MM cell apoptosis in respectively 71% of patients (10 of 14) and 29% of patients (4 of 14). Of major interest, when PD169540 or IRESSA were combined with dexamethasone, they induced a dramatic myeloma cell death (respectively 92% and 69% inhibition of MM cell survival), while non-myeloma cells were unaffected. Thus ErbB activation is critical to trigger MM-cell survival in short-term culture. In conclusion, our findings provide evidence for a major role of AREG and HB-EGF in the biology of multiple myeloma and identify ErbB receptors as putative therapeutic targets. These data emphasize the interest of clinical evaluation of specific-ErbB-inhibitors in patients with MM, either used alone or in combination with dexamethasone.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 355-355
Author(s):  
Kelvin P. Lee ◽  
Nizar J. Bahlis ◽  
Anne M. King ◽  
Despina Kolonias ◽  
Louise M. Carlson ◽  
...  

Abstract Although interactions with bone marrow stromal cells are essential for multiple myeloma (MM) cell survival, the specific molecular and cellular elements involved are largely unknown due to the complexity of the bone marrow microenvironment. The CD28 receptor, which costimulates survival signals in T cells, is also expressed on normal plasma cells and myeloma cells. In MM, CD28 expression correlates significantly with disease progression, also suggesting a pro-survival function. In contrast to T cells however, activation and function of CD28 in myeloma and plasma cells is almost entirely undefined. We found that direct activation of myeloma cell CD28 by anti-CD28 mAb alone induced activation of NFkappaB, suppressed MM cell proliferation and protected against serum starvation and dexamethasone-induced cell death. We hypothesized that the specific CD80/CD86 expressing stromal cell partner of this interaction is a professional antigen presenting cells, in particular dendritic cells. Histological studies demonstrated DC were extensively interdigitated throughout the myeloma infiltrates in patient bone marrow biopsies. In vitro coculture with DC also elicited CD28-mediated effects on MM survival and proliferation, and could be blocked by CD28Ig. Our findings suggest a previously undescribed myeloma:DC cell-cell interaction involving CD28 that may play an important role in myeloma cell survival within the bone marrow stroma. These data also suggest that CD28 may represent a therapeutic target in the treatment of multiple myeloma.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1846-1846
Author(s):  
Mae Wong ◽  
Parisa Asvadi ◽  
Rosanne Dunn ◽  
Darren Jones ◽  
Douglas Campbell ◽  
...  

Abstract Abstract 1846 Poster Board I-872 Previous studies have described a murine monoclonal antibody, mKap, that specifically recognizes a cell surface antigen expressed on kappa myeloma cells and not on normal lymphoid cells. This antigen has been identified and designated kappa myeloma antigen (KMA). KMA consists of free kappa light chains (kFLC) not associated with heavy chain and is present on plasma cells isolated from kappa myeloma (MMk) patient bone marrow aspirates, kappa myeloma cell lines and kappa macroglobulinemia. In vitro data demonstrated that mKap was able to inhibit cell growth and induce apoptosis in myeloma cell lines. In addition, pre-clinical studies demonstrated that mKap was well tolerated and showed significant efficacy in a SCID xenograft model of MM. MDX-1097 is a chimeric version of mKap that is currently in development for the treatment of kappa restricted multiple myeloma. The antibody retains the binding affinity and specificity of mKap. Specific binding of MDX-1097 to malignant plasma cells isolated from MMk patient bone marrow aspirates has recently been demonstrated by flow cytometry. In addition a human tissue cross-reactivity study was performed using immunohistochemistry to assess the potential binding of MDX-1097-FITC to cryosections taken from a human tissue panel of three normal donors. The results demonstrated that MDX-1097 bound to bone marrow plasma cells from two patients with kappa cell dyscrasia but did not bind to normal human tissue samples or to plasma cells from a patient with lambda plasmacytoma. The ability of serum kFLC to inhibit MDX-1097 binding to the myeloma cell line, JJN3, was assessed by flow cytometry using serum derived from 32 MMk patients. The results indicated that MDX-1097 at a concentration of 100μg/mL (equivalent to an estimated serum concentration of 5mg/kg dose) is capable of binding to myeloma cells in the presence of 0–250μg/mL of serum kFLC. In vitro functional studies have demonstrated that MDX-1097 engages Fc receptor bearing effector cells and induces antibody dependent cellular cytotoxicity (ADCC) in kappa myeloma cell lines in the presence of healthy donor peripheral blood mononuclear cells. Further investigations have verified that purified natural killer cells (NK) play a major role in MDX-1097 anti-tumour activity. Importantly, recent studies have demonstrated that antibody dependent cellular phagocytosis by macrophages contributes to the anti-tumour activity of several therapeutic monoclonal antibodies. Preliminary data indicates that MDX-1097 may be capable of inducing enhanced uptake by macrophages. In conclusion MDX-1097 showed specific binding to KMA on myeloma cells isolated from patient's bone marrow samples and antibody binding is observed in the presence of kFLC in patient serum. In addition MDX-1097 anti-tumour activity is probably mediated by multiple Fc receptor bearing effector cells. Disclosures: Wong: Immune System Therapeutics: Employment. Asvadi:Immune System Therapeutics: Employment. Dunn:Immune System Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Jones:Immune System Therapeutics: Employment. Campbell:Immune System Therapeutics: Employment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2946-2946
Author(s):  
Catherine M Gavile ◽  
Jayakumar R Nair ◽  
Kelvin P Lee ◽  
Sagar Lonial ◽  
Lawrence H. Boise

Abstract Abstract 2946 Multiple myeloma (MM) is a hematologic malignancy characterized by the aberrant proliferation of plasma cells. Myeloma cells retain most of the physiological characteristics of their normal counterpart – the long-lived plasma cell. Myeloma cells secrete immunoglobulin and reside in the bone marrow, where they rely heavily on interactions with the stroma for survival signals. While recent advances in therapeutics have led to an increase in median survival post-diagnosis, the disease remains incurable. Understanding the pathways which mediate growth and survival of these cells will help in identifying new targets that can potentially further improve patient outcomes. CD28 is a receptor better known for its role in T-cell signaling through interaction with its ligands, CD80 or CD86. Interaction between CD28 on T-cells and CD80/86 on antigen-presenting cells leads to survival and proliferation of T-cells. Recent work has shown that the CD80/86-CD28 pathway also plays an important role in normal plasma cell generation and survival. Interestingly, high expression of CD28 and CD86 are poor prognostic markers for myeloma patients. Previous work has shown that CD28 activation provides survival signals for myeloma cells in growth-factor deficient conditions. It has also been shown that CD28 on the myeloma cell interacts with CD80/86 on the dendritic cell, which induces secretion of IL-6 (by the DC), an important myeloma growth factor. However, it is not known if CD28 or CD86 play a role in steady state growth and survival of myeloma cells. In order to determine the role of each of these 2 molecules in myeloma physiology, we knocked-down either CD28 or CD86 on the myeloma cell via lentivirus-mediated shRNAs. We found that knockdown of CD86 leads to apoptosis in 3 myeloma cell lines (RPMI8226, MM1.s, and KMS18). Four days after infection with the lentivirus containing shCD86, 45.7±4.9 and 60.3±4.6 percent control apoptosis was observed in RPMI8226 and MM1.s respectively, while less death was observed in KMS18 (17.6±1.6). CD28-knockdown resulted in apoptosis as well (24.9±4.3 for RPMI8226, 26.8±4.1 for MM1s, 21.8±3.8 for KMS18, percent control apoptosis). Consistent with these findings, we were unable to establish a myeloma cell line with stable knockdown of either CD28 or CD86. Additionally, RPMI8226 cells stably transfected to over-express either Bcl-2, Bcl-xL, or Mcl-1 are protected from cell death induced by CD86 or CD28 silencing. These data suggest that CD28 and CD86 are essential to prevent apoptosis of myeloma cells in vitro. To confirm these findings we determined the effects of CTLA4-Ig on myeloma survival. CTLA4-Ig inhibits CD86-CD28 signaling by binding to CD86, blocking its interaction with CD28. We found that treatment of RPMI8226 and MM1.s cells with CTLA4-Ig caused apoptosis in the myeloma cells after 2 days (23.9±3.9 for RPMI8226 and 20.4±6.2 for MM1.s, percent control apoptosis). Thus like normal plasma cells, CD28 and CD86 are required for the survival of myeloma cells. To determine why silencing of CD86 has a more potent effect than CD28 silencing on myeloma cell survival in 2 out of 3 cell lines, we investigated the effects of silencing on cell surface expression of each of these proteins. CD28 and CD86 mRNA and protein levels were silenced to similar levels by their cognate hairpins. However, in MM.1s and RPMI8226 we found that silencing of CD28 resulted in an increase in CD86 surface expression. This increase was also observed at the mRNA level and in the cells over-expressing Bcl-2 family members, indicating that this is not simply due to the selection of the highest expressing cells. These data suggest a feedback loop exists to regulate CD28-CD86 signaling in myeloma cells. Surprisingly, in the KMS18 cell line, we observe the converse effect, where silencing of CD86 resulted in upregulation of CD28. This provides a likely explanation for why these cells are less susceptible to CD86 silencing than the other two lines. Interestingly, blocking CD86 with CTLA4-Ig treatment also resulted in a modest upregulation in CD28 surface expression of MM.1s and RPMI8226, which suggests that silencing CD86 and binding of CD86 with a soluble receptor are not equivalent, and that multiple signaling feedback pathways exist to regulate the expression of this receptor-ligand pair that is necessary for myeloma cell survival. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document