Junctional Adhesion Molecule-1 Is Involved in bFGF-Induced Angiogenesis In Vivo.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 840-840
Author(s):  
Vesselina G. Cooke ◽  
Meghna U. Naik ◽  
William Skarnes ◽  
Ulhas P. Naik

Abstract Neovascularization is a multistep process that occurs in the body in both physiological and pathological conditions. We have recently shown that Junctional Adhesion Molecule-1 (JAM-1), a member of the Ig superfamily of molecules, is involved in endothelial cell adhesion and migration, leading to angiogenesis. In quiescent endothelial cells, JAM-1 is located at the cell-cell junctions where it forms a complex with integrin αvβ3. Upon treatment of the cells with growth factors, such as bFGF, JAM-1 dissociates from its complex with αvβ3 and redistributes to the cell surface. Blockage of the extracellular domain of JAM-1 inhibits bFGF-induced endothelial cell morphology, proliferation and angiogenesis. Additionally, functional knock-down of JAM-1 using the RNAi technique in endothelial cells showed decreased adhesion and migration of these cells, indicating a possible role for JAM-1 in angiogenesis. In this report, we show that JAM-1 has an important role in bFGF-induced angiogenesis in vivo. Here we present for the first time the generation JAM-1 knock-out mice, using the gene trap strategy. We have successfully confirmed the JAM-1 −/− genotype via Southern, Northern, and Western blot analyses. JAM-1 −/− mice are viable and do not seem to have any external abnormalities, except that they appear to be smaller in size. Retinal fluorescein angiogram revealed no evidence for morphological defects in the vasculature of JAM-1 −/− mice. To evaluate the role of JAM-1 in angiogenesis, we performed an aortic ring assay with both wild type and JAM-1−/− mice. Mouse thoracic aortas were harvested, cross-sectioned into rings of 1-mm thickness, and cultured in a three-dimensional Matrigel supplied with 50 ng/ml bFGF. Vascular sproutings were counted every other day for a period of 7 days at which time they were stained with crystal violet and photographed. Aortic rings from WT mice treated with bFGF showed a 2.8-fold increase in microvessel growth, compared to WT controls with no supplementation of bFGF. In contrast, microvessel sproutings in bFGF treated aortic rings from JAM-1 −/− mice were no more than the vessels in the WT control mice. These results suggest that JAM-1 may be important for bFGF induced angiogenesis. To further confirm the role of JAM-1 in angiogenesis, WT and JAM-1 −/− mice were injected in their flank region with Matrigel containing 80 ng/ml bFGF and 60 U/ml heparin. Two weeks after injection, Matrigel plugs were excised, embedded in paraffin, and the presence of blood vessels was visualized by H&E staining. Matrigel plugs from control WT mice that were not treated with bFGF showed no vascularization, while bFGF supplied Matrigel plugs from WT mice showed a robust vessel growth. Interestingly, bFGF-treated Matrigel plugs form JAM-1−/− mice failed to produce any blood vessels. These ex vivo and in vivo studies using JAM-1−/− mice suggest that JAM-1 has a unique and essential role in bFGF-induced angiogenesis.

2020 ◽  
pp. jcs.248237
Author(s):  
Zhenguo Yang ◽  
Shuilong Wu ◽  
Federica Fontana ◽  
Yanyu Li ◽  
Wei Xiao ◽  
...  

Steinberg's differential adhesion hypothesis suggests that adhesive mechanisms are important for sorting of cells and tissues during morphogenesis (Steinberg, 2007). During zebrafish vasculogenesis, endothelial cells sort into arterial and venous vessel beds but it is unknown whether this involves adhesive mechanisms. Claudins are tight junction proteins regulating the permeability of epithelial and endothelial tissue barriers. Previously, the roles of Claudins during organ development have exclusively been related to their canonical functions in determining paracellular permeability. Here, we use atomic force microscopy to quantify Claudin-5-dependent adhesion and find that this strongly contributes to the adhesive forces between arterial endothelial cells. Based on genetic manipulations, we reveal a non-canonical role of Claudin-5a during zebrafish vasculogenesis, which involves the regulation of adhesive forces between adjacent dorsal aortic endothelial cells. In vitro and in vivo studies demonstrate that loss of Claudin-5 results in increased motility of dorsal aorta endothelial cells and in a failure of the dorsal aorta to lumenize. Our findings uncover a novel role of Claudin-5 in limiting arterial endothelial cell motility, which goes beyond its traditional sealing function during embryonic development.


2021 ◽  
Vol 8 ◽  
Author(s):  
Crystal C. Kennedy ◽  
Erin E. Brown ◽  
Nadia O. Abutaleb ◽  
George A. Truskey

The vascular endothelium is present in all organs and blood vessels, facilitates the exchange of nutrients and waste throughout different organ systems in the body, and sets the tone for healthy vessel function. Mechanosensitive in nature, the endothelium responds to the magnitude and temporal waveform of shear stress in the vessels. Endothelial dysfunction can lead to atherosclerosis and other diseases. Modeling endothelial function and dysfunction in organ systems in vitro, such as the blood–brain barrier and tissue-engineered blood vessels, requires sourcing endothelial cells (ECs) for these biomedical engineering applications. It can be difficult to source primary, easily renewable ECs that possess the function or dysfunction in question. In contrast, human pluripotent stem cells (hPSCs) can be sourced from donors of interest and renewed almost indefinitely. In this review, we highlight how knowledge of vascular EC development in vivo is used to differentiate induced pluripotent stem cells (iPSC) into ECs. We then describe how iPSC-derived ECs are being used currently in in vitro models of organ function and disease and in vivo applications.


Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4096-4105 ◽  
Author(s):  
Marc Tjwa ◽  
Lola Bellido-Martin ◽  
Yuan Lin ◽  
Esther Lutgens ◽  
Stéphane Plaisance ◽  
...  

AbstractThe role of Gas6 in endothelial cell (EC) function remains incompletely characterized. Here we report that Gas6 amplifies EC activation in response to inflammatory stimuli in vitro. In vivo, Gas6 promotes and accelerates the sequestration of circulating platelets and leukocytes on activated endothelium as well as the formation and endothelial sequestration of circulating platelet-leukocyte conjugates. In addition, Gas6 promotes leukocyte extravasation, inflammation, and thrombosis in mouse models of inflammation (endotoxinemia, vasculitis, heart transplantation). Thus, Gas6 amplifies EC activation, thereby playing a key role in enhancing the interactions between ECs, platelets, and leukocytes during inflammation.


2000 ◽  
Vol 118 (4) ◽  
pp. A827 ◽  
Author(s):  
Shigeyuki Kawachi ◽  
David J. Leffer ◽  
Henri C. Van Der Heyde ◽  
Stephen Laroux ◽  
Laura Gray ◽  
...  

1999 ◽  
Vol 80 (9) ◽  
pp. 2393-2397 ◽  
Author(s):  
J. Lindsay Oaks ◽  
Catherine Ulibarri ◽  
Timothy B. Crawford

Equine infectious anaemia virus (EIAV) infection of horses is characterized clinically by recurrent episodes of fever, thrombocytopenia and anaemia. In vivo, the only site of virus replication that has been previously demonstrated for EIAV is the tissue macrophage. In this study, in situ hybridization for EIAV was combined with immunohistochemistry for cell-type-specific markers to identify infected endothelial cells. EIAV-infected endothelial cells and macrophages were detected in horses infected with either virulent wild-type or with weakly virulent tissue culture-adapted strains of EIAV. The role of endothelial cell infection in the pathogenesis of EIAV remains undefined, but could contribute to the development of thrombocytopenia. However, endothelial cell infection does not appear to be a determinant of virulence for EIAV.


1925 ◽  
Vol 42 (2) ◽  
pp. 231-252 ◽  
Author(s):  
E. V. Cowdry

A Gram-negative, intracellular, coccus-like microorganism was found in cases of heartwater in the three species which are susceptible to the disease; namely, goats, sheep, and cattle. It was absent in the case of control animals, both normal ones and those dying of some. other diseases. The presence of this microorganism was definitely related to the febrile reaction. It was most easily detected in the renal glomeruli and in the small capillaries of the cerebral cortex but probably occurred throughout the body. The microorganism was a typical endothelial parasite, being restricted in distribution to the endothelial cells of the smaller blood vessels and to portions of such elements which had broken off into the blood stream. It was never observed to cause injury to the cells other than those incident to mechanical distention through accumulation within them of many individuals in large densely packed masses which were characteristically spherical. A typical attribute was the presence of several of these masses within the cytoplasm of a single endothelial cell. In view of the association of this microorganism with heartwater, a disease of ruminants, and thus far the only one in which microorganisms resembling Rickettsiœ have been reported, the designation Rickettsia ruminantium is proposed.


1997 ◽  
Vol 186 (4) ◽  
pp. 517-527 ◽  
Author(s):  
Jennifer R. Allport ◽  
Han Ding ◽  
Tucker Collins ◽  
Mary E. Gerritsen ◽  
Francis W. Luscinskas

Although several adhesion molecules expressed on leukocytes (β1 and β2 integrins, platelet endothelial cell adhesion molecule 1 [PECAM-1], and CD47) and on endothelium (intercellular adhesion molecule 1, PECAM-1) have been implicated in leukocyte transendothelial migration, less is known about the role of endothelial lateral junctions during this process. We have shown previously (Read, M.A., A.S. Neish, F.W. Luscinskas, V.J. Palambella, T. Maniatis, and T. Collins. 1995. Immunity. 2:493–506) that inhibitors of the proteasome reduce lymphocyte and neutrophil adhesion and transmigration across TNF-α–activated human umbilical vein endothelial cell (EC) monolayers in an in vitro flow model. The current study examined EC lateral junction proteins, principally the vascular endothelial (VE)–cadherin complex and the effects of proteasome inhibitors (MG132 and lactacystin) on lateral junctions during leukocyte adhesion, to gain a better understanding of the role of EC junctions in leukocyte transmigration. Both biochemical and indirect immunofluorescence analyses of the adherens junction zone of EC monolayers revealed that neutrophil adhesion, not transmigration, induced disruption of the VE–cadherin complex and loss of its lateral junction localization. In contrast, PECAM-1, which is located at lateral junctions and is implicated in neutrophil transmigration, was not altered. These findings identify new and interrelated endothelial-dependent mechanisms for leukocyte transmigration that involve alterations in lateral junction structure and a proteasome-dependent event(s).


2020 ◽  
Vol 22 (2) ◽  
pp. 231-248
Author(s):  
A. R. Kozyreva ◽  
T. Yu. Lvova ◽  
K. L. Markova ◽  
A. S. Simbirtsev ◽  
A. M. Ischenko ◽  
...  

Development of angiogenesis depends on the functional state of endothelial cells, as well as on the balanced secretion of cytokines, growth factors and chemokines by endothelial cells and cells of microenvironment. Macrophages represent an essential component of the microenvironment and take part in the formation of blood vessels both due to the production of cytokines and due to contact interactions with endothelial cells. VEGF is among the most important cytokines that control angiogenesis at all its stages. Currently, the role of VEGF in the intercellular interactions of endothelial cells and macrophages is not well described. The aim of our study was to investigate the effect of VEGF deprivation using monoclonal antibodies on angiogenesis under conditions of co-cultivation of endothelium and macrophages. Materials and methods: monoclonal antibodies to VEGF-A were used for VEGF deprivation in monoculture of endothelial cells and in co-culture of endothelial cells with macrophages. The IL-1β, IL-6 and TNFα cytokines were used as inducers. When VEGF-A was removed from the medium, endothelial cells show plasticity and form longer vessels, they modify the expression of VEGF receptors. Macrophages regulate endothelial cell activity through the secretion of cytokines, including VEGF, and through contact interactions with endothelial cells. THP-1 cells increase the sensitivity of endothelial cells to VEGF by stimulating the VEGFR1 and VEGFR3 expression, this effect is VEGF-A-independent. The IL-1β, IL-6, TNFa cytokines independently stimulate non-branching angiogenesis, increasing the length of the vessels. At the same time, IL-ip increases the VEGFR1 expression on the surface of endothelial cells. In contrast, IL-6 and TNFα decrease it, thereby regulating the sensitivity of endothelial cells to VEGF. The effects of these cytokines are not dependent on VEGF-A. The IL-1β, IL-6, TNFα cytokines promote acquisition of anti-angiogenic properties by THP-1 cells that is independent on VEGF-A, as well as on expression of its receptors by endothelial cells. Thus, VEGF is an important, but not the sole factor controlling angiogenesis. Under conditions of VEGF-A deficiency, either endothelial cells or microenvironment cells are able to compensate for its functional load due to the production of other growth factors.


2021 ◽  
Vol 11 ◽  
Author(s):  
Romain Sigaud ◽  
Nadège Dussault ◽  
Caroline Berenguer-Daizé ◽  
Christine Vellutini ◽  
Zohra Benyahia ◽  
...  

VE-cadherin is an essential adhesion molecule in endothelial adherens junctions, and the integrity of these complexes is thought to be regulated by VE-cadherin tyrosine phosphorylation. We have previously shown that adrenomedullin (AM) blockade correlates with elevated levels of phosphorylated VE-cadherin (pVE-cadherinY731) in endothelial cells, associated with impaired barrier function and a persistent increase in vascular endothelial cell permeability. However, the mechanism underlying this effect is unknown. In this article, we demonstrate that the AM-mediated dephosphorylation of pVE-cadherinY731 takes place through activation of the tyrosine phosphatase SHP-2, as judged by the rise of its active fraction phosphorylated at tyrosine 542 (pSHP-2Y542) in HUVECs and glioblastoma-derived-endothelial cells. Both pre-incubation of HUVECs with SHP-2 inhibitors NSC-87877 and SHP099 and SHP-2 silencing hindered AM-induced dephosphorylation of pVE-cadherinY731 in a dose dependent-manner, showing the role of SHP-2 in the regulation of endothelial cell contacts. Furthermore, SHP-2 inhibition impaired AM-induced HUVECs differentiation into cord-like structures in vitro and impeded AM-induced neovascularization in in vivo Matrigel plugs bioassays. Subcutaneously transplanted U87-glioma tumor xenograft mice treated with AM-receptors-blocking antibodies showed a decrease in pSHP-2Y542 associated with VE-cadherin in nascent tumor vasculature when compared to control IgG-treated xenografts.Our findings show that AM acts on VE-cadherin dynamics through pSHP-2Y542 to finally modulate cell-cell junctions in the angiogenesis process, thereby promoting a stable and functional tumor vasculature.


Sign in / Sign up

Export Citation Format

Share Document